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Abstract—Gaits are crucial to the performance of locomotors.
However, it is often difficult to design effective gaits for complex
locomotors. Geometric mechanics offers powerful gait design
tools, but the utilities of these tools have been limited to systems
with two joints. Using shape basis functions, it is possible to
approximate the kinematics of complex locomotors using only
two shape variables. As a result, the tools of geometric mechanics
can be used to study complex locomotion in an intuitive way.
The choice of shape basis functions plays an important role in
determining gait kinematics, and therefore the performance of a
locomotor. To find appropriate basis functions, we introduce the
shape basis optimization algorithm, an algorithm that iteratively
improve basis functions to find effective kinematic programs.
Applying this algorithm to a snake robot resulted a novel gait,
which improves its speed of swimming in granular materials.

I. INTRODUCTION

Geometric mechanics [1]–[4] offers a powerful framework
for studying a wide range of locomotor behaviors [5]–[8].
Comparing to conventional planning/design techniques, geo-
metric mechanics offers a set of tools, including connection
vector fields and height functions [9], [10], for intuitively
analyzing and designing locomotor kinematics.

Past uses of the gait design tools of geometric mechanics
were mainly limited to systems which only had two internal
degrees of freedom (DoFs) [9]–[13]. We show the shapes
of systems that have many DoFs can be approximated as a
linear combination of two shape basis functions. These shape
basis functions can be incorporated into the formulation of
geometric mechanics and, as a result, the tools of geometric
mechanics can be applied to design gaits for complex systems.
We demonstrate this technique on a snake robot, a serial
chain of degrees of freedom which are coordinated to produce
locomotion.

It is of critical important to choose proper shape basis
functions so that effective kinematic programs can be found.
In the past, shape basis functions were either derived from
observations on biological systems [14], [15] or determined
empirically from robot experiments [16], [17]. Instead, this
paper proposes an analytical approach, called the shape basis
optimization algorithm which iteratively improves the choice
of shape basis functions. Applying the shape basis optimiza-
tion algorithm to a snake robot resulted in a novel gait which
significantly improved its speed of swimming in granular
materials.

II. GEOMETRIC MECHANICS

This work draws heavily on the tools of geometric mechan-
ics and necessitating a brief overview of such techniques. For
a more comprehensive review of geometric mechanics, see
[1]–[4]. For a class of mechanical systems, called principally
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Fig. 1: A snake robot executing the optimized gait. Time interval between
each snapshot is five seconds.

kinematic systems, their equations of motion can be expressed
as [6], [7]

ξ = A(α)α̇, (1)

where ξ denotes the body velocity and α denotes the joint
angles. In kinematic systems, inertial effects are negligible.
They do not coast and will stop immediately when joints are
frozen.

Equation (1) is referred to as the kinematic reconstruction
equation, and A(α) is called the local connection, a matrix
that relates shape velocity α̇ to body velocity ξ. The kinematic
reconstruction equation separates group variables (position and
orientation) from shape variables (joint angles), and builds an
explicit mapping from internal shape changes to displacements
in the workspace. By analyzing this mapping, one can readily
design gaits for locomoting systems, and we will exploit the
structure of this mapping to optimize gaits.

A. Connection Vector Fields and Height Function

For a planar system with only two joints, i.e. α ∈ R2, the
local connection A(α) is a 3× 2 matrix. The body velocities
in the x, y and θ directions respectively are computed as the
dot product between each row of A(α) and α̇. Each row
of A(α) can be visualized as a connection vector field (see
Figure 2), which graphically shows the kinematics of the sys-
tem. Intuitively speaking, a shape velocity α̇ in the direction
of the vector field would produce the largest possible body
velocity in the specific direction, whereas a shape velocity
α̇ perpendicular to the vector field would yield zero body
velocity.

A gait, i.e. cyclic shape change, is represented as a closed
curve in the shape space. The displacement resulting from a
gait ∂φ can be approximated by the line integral∆x

∆y
∆θ

 ≈ ∫
∂φ

A(α)dα. (2)

According to Stokes’ Theorem, the line integral along a closed
curve ∂φ is equal to the area integral of the curl of A(α) over
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Fig. 2: The connection vector field and height function corresponding to the
forward motion of a three-link swimmer in a viscous fluid. (a) A three-link
swimmer. (b) The connection vector field corresponding to motions in the
forward direction. (c) The height function corresponding to motions in the
forward direction.

the surface area enclosed by ∂φ,∫
∂φ

A(α)dα =

∫∫
φ

∇× (A (α)) dα1dα2, (3)

where φ denotes the surface bounded by ∂φ. The curl of the
connection vector field ∇×(A (α)) is referred to as the height
function [10].

Determining a gait that produces the largest displacement
per cycle can be quite challenging with the connection vector
fields. However, with the height function a gait that can
produce the largest displacement per cycle can be determined
by finding the zero set which has the largest area integral.
For example, Figure 2 shows the connection vector field and
height function corresponding to the forward direction of a
three-link swimmer in a viscous fluid [18]. Given the structure
of the height function, the gait that can produce the largest
displacement can be identified as the zero-set of the height
function, which is highlighted as the blue curve.

The height function represents a distinct class of gait
optimization technique which does not require parameteriza-
tions of stroke patterns. In comparison, Tam and Hosoi [19]
successfully determined the optimal stroke of a three-link
swimmer by modeling joint trajectories as Fourier series.
Kanso [20] empirically found the optimal undulatory pattern
of a continuum swimmer assuming a sinusoidal body wave.

B. Average Body Frame

In general, the integral of body velocity does not equal to
actual displacement in the workspace because of the non-
commutativity effect of the group space [9]. However, it
has been shown that with a properly chosen body frame,
called the minimum perturbation coordinates, the integral of
body velocity can very well approximate the actual displace-
ments [9]. In this work, we used the average body frame as
the frame of reference. The average body frame mitigates the
non-commutativity effects in a way similar to the minimum
perturbation coordination, and it is relatively easy to compute.

For a planar snake robot with N joints, let x0l, y0l, θ0l

represent the position and orientation of the l-th link with
respect to the frame of the head (link 0). The position and
orientation of the average body frame with respect to the head
frame are computed as the average position and orientation of
all links,

x̄ =
1

N + 1

N+1∑
l=1

xl

ȳ =
1

N + 1

N+1∑
l=1

yl

θ̄ =
1

N + 1

N+1∑
l=1

θl.

The configuration of the average body frame with respect to
the head frame can also be represented as a homogeneous



transformation matrix

ḡ =

cos(θ̄) − sin(θ̄) x̄
sin(θ̄) cos(θ̄) ȳ

0 0 1

 . (4)

III. SHAPE BASIS FUNCTIONS

The utility of the height function technique is limited to
systems that have only two internal DoFs due to the lack
of generalization of Equation (3) in high dimensional space.
Fortunately, evidence from biology suggest body waves can
be employed to manage locomotor complexity [21]. And we
show these body waves can be mathematically represented as
a linear combination of two shape basis functions, a concept
originally proposed by Chirikijian and Burdick [22] for model-
ing the kinematics of hyper-redundant manipulators [23]. And,
as a result, the utility of the height function technique can be
extended to study gaits of snake robots with many joints.

A. Local Connection with Respect to Shape Basis Functions

We modeled the shape of a snake robot with N joints as

α = w1β1 + w2β2, (5)

where α ∈ RN denotes the joint angles and β1, β2 ∈ RN
are two shape basis functions, which are mutually orthogonal
and of unit-length. Equation (5) reduces the control of a snake
robot with N joints to controlling two shape variables w =[
w1 w2

]T ∈ R2. This reduction allows for deriving a local
connection with respect to the reduced shape variables w,

ξ = Ã(w)ẇ, (6)

where Ã(w) = A(α)Jα is the local connection with respect
to the reduced shape variables w, and Jα is the shape
Jacobian,

Jα =
∂α

∂w
=
[
β1 β2

]
. (7)

B. Low Reynolds Number Swimmer

We derive the kinematic reconstruction equation for a N -
joint snake robot swimming in viscous fluid, which will be
used to elucidate how shape basis functions help to simplify
gait design for high dimensional systems.

Let ξ0l denote the body velocity of link l with respect to
the head frame, which was computed using the following,

ξ0l = Jbl
[
α̇1 · · · α̇l

]T
, (8)

where Jbl ∈ R3×l denotes the body Jacobian matrix when
viewing link l as the tool frame [24] and (·)T means transpose.
To simplify derivations, we rewrote (8) into the following,

ξ0l =
[
Jbl 0l

]
α̇ = Jlα̇, (9)

where 0l ∈ R3×(N−l) denoted a zero matrix and Jl ∈ R3×N is
a linear differential map from joint velocity (shape velocity) α̇
to ξ0l. We denote the body velocity of the head with respect
to the world frame as ξw0. The body velocity of individual

links with respect to the world frame is then computed using
the following [24],

ξwl = Adg−1
0l
ξw0 + ξ0l, (10)

where Adg denotes the adjoint operator, which maps body
velocity between different frames and g0l denotes the config-
uration of the l-th frame with respect to the head frame.

The viscous force experienced by link l with respect to its
own body frame was thus computed as

F bl = −Kξwl = −

kx ky
kθ

 ξwl, (11)

where kx = 1, ky = 2, kθ = 1 assuming each link is thin and
long [18]. All the off-diagonal terms of K are zeros. F bl was
then transformed into the head frame using the following [24],

Fl = AdT
g−1
0l
F bl (12)

where Fl denoted the force applied to link l with respect to
the head frame. Because inertial effects are negligible during
locomotion in a viscous fluid, the net forces experienced on a
system sum to zero [11],

N∑
i=0

Fi = 0. (13)

Rewriting Equation (13) in terms of α̇ and ξw0 led to
N∑
l=0

(
AdT

g−1
0l
K
(

Adg−1
0l
ξw0 + Jlα̇

))
= 0. (14)

A close inspection to Equation (14) shown that the only
unknown variable was the body velocity of the head frame,
ξw0. Rearranging (14) resulted in the following,(

N∑
l=0

(
AdT

g−1
0l
KAdg−1

0l

))
︸ ︷︷ ︸

ωξ

ξw0 = −
N∑
l=0

(
AdT

g−1
0l

KJl

)
︸ ︷︷ ︸

ωα

α̇.

The body velocity of the head frame, ξw0, was then computed
as

ξw0 = −ω−1
ξ ωαα̇ = A(α)α̇, (15)

which was purely determined by shape velocity α̇.
To mitigate the non-commutativity effects of group SE(2)

and to intuitively represent the whole body motion of a
undulating snake robot, we used the average body frame as
the frame of reference of the robot motion. The body velocity
of the average body frame with respect to the world can be
derived from the body velocity of the head frame as,

ξ̄ = Adḡξw0 + ḡ−1 ˙̄g

= AdḡA(α)α̇+ ḡ−1 ∂ḡ

∂α
α̇, (16)

where ḡ denotes the average body frame. Therefore, Equa-
tion (15) can be mapped to the average body frame,

ξ̄ =

(
AdḡA(α) + ḡ−1 ∂ḡ

∂α

)
α̇ (17)



By incorporating shape basis functions into the above equation
using Equation (5), the kinematic reconstruction equation can
be expressed in the average body frame,

ξ̄ = Ā(w)ẇ, (18)

where Ā(w) =
(
AdḡA(α) + ḡ−1 ∂ḡ

∂α

)
Jα. Note Ā(w) is a

3 by 2 matrix, which allows us to efficiently design gait using
the height function technique.

IV. SHAPE BASIS OPTIMIZATION

The choice of shape basis functions β affects gait kine-
matics (joint trajectories), and therefore the performance of
a locomotor. It is crucial to choose appropriate shape basis
functions so that effective kinematic program can be found.
This section introduces the shape basis optimization algorithm,
which is based on gradient ascent, to choose proper shape basis
functions.

A. The Serpenoid Curve and Parameterized Gaits

The serpenoid curve [14] is accepted as a good model to
describe the time varying shape of an undulating snake. The
serpenoid curve models the body curvature of an undulating
snake as a sinusoidal function,

κ(s, t) = A sin(Ωs+ ωt), (19)

where s denotes the arc length along the body, A denotes the
amplitude of the wave, ω denotes the temporal frequency and
Ω denotes the spatial frequency.

The serpenoid curve [14] can actually be reformulated as
a linear combination of two sinusoidal shape basis functions.
The spatial and temporal components of a serpenoid curve can
be separated as

κ(s, t) = A sin(Ωs+ ωt) (20)
= A cos(ωt) sin(Ωs) +A sin(ωt) cos(Ωs). (21)

The two spatial-related components sin(Ωs) and cos(Ωs) can
be interpreted as two shape basis functions with A cos(ωt)
and A sin(ωt) as the time varying weights associated with the
two shape basis functions. In other words, w1(t) = A cos(ωt)
and w2(t) = A sin(ωt). The weights of the two shape
basis functions (w1, w2) traces a circular path in the two
dimensional shape space. The radius of this circle is equal
to the wave amplitude A of the serpenoid curve. Therefore,
a serpenoid curve can be represented as a circle centered in
the middle of the shape space spanned by the two shape basis
functions sin(Ωs) and cos(Ωs).

For gaits with a given parametric form, e.g. the serpenoid
curve, gait design was achieved through systematic simulation
or experiments with different gait parameters. For example,
Sharpe et al. [25] studied how the parameters of a serpenoid
curve affect the speed of swimming underneath sand through
systematic simulations. Their study revealed biological organ-
isms operate at the wave parameters that maximizes speed of
swimming. The compound serpenoid curve [16] is a general-
ization to the serpenoid curve. It models snake gaits as two

body waves in the dorsal and lateral planes. Gait parameters
that can achieve useful motions were determined by direct
experimentations on hardware [17], [26]. In the central pattern
generator (CPG) paradigm [27], [28], joint trajectories are
modeled as coupled harmonic oscillators. Gait design in the
CPG framework is empirically achieved through systematic
testing on different parameters that govern the states of the
oscillators. However, with no assumption on the parametric
form of joint trajectories, it is challenging to design gaits. The
shape basis optimization algorithm provides a non-parametric
way to design effective gaits.

B. Optimizing Shape Basis Functions

To illustrate the principle of the shape basis optimization
algorithm we use a four link swimmer in Low Reynolds
fluid as an example. A four link swimmer has a three-
dimensional shape space α =

[
α1 α2 α3

]T
, where α1, α2

and α3 denote the three joint angles. Although the kinematic
reconstruction equation of a four link swimmer can be easily
derived using the method described in the previous section,
it is challenging to design gaits in a computationally efficient
and intuitive manner. We hence choose to reduce the three
dimensional shape space to a two dimensional one using shape
basis functions so that the height function technique can be
applied. And, we used the shape basis optimization algorithm
to select proper shape basis functions.

The objective of the shape basis optimization algorithm is
to choose proper shape basis functions β1,β2 so that the
swimmer can achieve maximum forward displacement per
gait cycle (using only two basis functions). However, it is
not immediately clear β1 and β2 would lead to effective
movement. We arbitrarily initialized β0

1 =
[
1 0 0

]T
and

β0
2 =

[
0 0 1

]T
. Here the superscript denotes the number of

iteration. This particular choice of shape basis functions only
use the first and third joints of the swimmer which define a
reduced shape space corresponding to the plane spanned by
α1 and α3, as shown in Figure 3. Physical intuition suggests
that β0

1 and β0
2 are not good choices for shape basis functions

because undulatory motions that use only part of the body are
not likely to generate the most effective movements. However,
this choice of initial conditions will highlight how the shape
basis optimization algorithm can improve from even poor
initial choices of shape basis functions.

Given the initial shape basis functions β0
1 and β0

2 , we can
use the height function technique to identify the optimal gait
∂φ0 in the reduced shape space, shown as the blue curve
in Figure 3. With ∂φ0, it is straightforward to compute the
forward displacement using

∆x0 =

∫
∂φ

Ā0
x(w)dw, (22)

where Ā0
x(w) denotes the first row of Ā0(w), and ∆x0 is

the maximum displacement per gait cycle that can possibly be
achieved in the two dimensional shape space spanned by β0

1

and β0
2 .
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Fig. 3: Height functions of a four link swimmer in viscous fluid. (a) Height function before shape basis optimization. (b) Height function after shape basis
optimization. The blue curves represent the optimal gaits in the corresponding reduced shape space. The insets show the evolution of body shape of a four
link swimmer while executing the optimal gaits (in two different reduced shape space).

To improve the speed of locomotion, the shape basis func-
tions have to change. The next step is to compute the gradient
of ∆x0 with respect to the coefficients of β0

1 and β0
2 , and

then update the shape basis functions along the direction of
the gradient as

βt+1
i = βti + η

∆xt

βti
, (23)

where βti denotes a shape basis function in the t-th iteration.
The gradient provides a direction along which updating the
shape basis functions would result in larger displacement per
gait cycle.

After each iteration, the algorithm normalizes βt+1
1 and

βt+1
2 and then uses the Gram-Schmidt algorithm to force βt+1

1

and βt+1
2 are orthonormal. The entire process repeats until βt1

and βt2 (and ∆xt) converged. A detailed description of the
shape basis optimization algorithm is included in Algorithm 1.

The algorithm converged to two optimal shape basis func-
tions,

β∗1 =
[
-0.73 0.04 0.69

]T
(24)

β∗2 =
[

0.44 0.79 0.43
]T

(25)

In simulation, displacement per cycle of the four link swimmer
was improved from 0.06 body length (BL) per cycle to 0.14
BL/cycle.

The process of shape basis optimization can be graphically
shown as in Figure 3. When the shape basis functions βt1 and
βt2 were updated, the plane that represented the reduced shape
space spanned by βt1 and βt2 rotated in the three-dimensional
shape space. While the plane was rotating, the optimal gait
in the corresponding reduced shape space changes. When
the plane (reduced shape space) reaches a stationary orien-
tation, the optimal gait in this reduced shape space achieved
maximum displacement per gait cycle (local optimum). And,
the improvement in displacement per gait cycle can be seen
from the increased color intensity of the area enclosed by the
optimal gait.

Algorithm 1: Shape Basis Optimization
1 initialize shape basis functions β0

1 and β0
2 ;

2 t = 0;
3 using the Gram-Schmidt algorithm to orthogonalize and

normalize βt1 and βt2;
4 using the height function technique to find the optimal

gait ∂φt;
5 compute displacement ∆xt;
6 compute gradient ∆xt

βti
;

7 update basis functions βt+1
i = βti + η∆xt

βti
;

8 t = t+ 1;
9 repeat step 3-8 until convergence;

V. LOCOMOTION IN GRANULAR MATERIALS

The previous section describes the shape basis optimization
algorithm for systems whose kinematic reconstruction equa-
tions can be analytically derived. For some types of locomo-
tion, especially for those locomoting in complex substrates,
e.g. sand, it is difficult to derive the kinematic reconstruction
equation analytically. Alternatively the kinematic reconstruc-
tion equation and connection vector fields can be computed
numerically [11] for those systems.

A. Granular Resistive Force Theory

Granular resistive force theory (RFT) [29] has been devel-
oped to model the movements of animals and robots within
granular media. Prior works [25], [30] have shown simulations
using granular RFT agreed well with actual robot and animal
movements. We therefore used granular RFT to numerically
derive local connections. Doing so allows us to not only design
gaits, but also to test these gaits on a robot in a granular
material. It is also interesting to examine if granular RFT
would serve a reasonable model for studying movements of a
robot which is only partially submerged in granular materials.

In granular RFT, the resistive force experienced on an



infinitesimally small segment of a moving intruder is decom-
posed into thrust and drag components. The reaction force
applied on the entire system is computed as,

F =

∫ (
dF⊥ + dF‖

)
, (26)

where F‖ and F⊥ respectively denote forces parallel and
perpendicular to a segment. F⊥ and F‖ are only functions of
attack angle and are independent from the magnitude of the
speed. The attack angle of a moving segment can be computed
from its body velocity. Further details regarding granular RFT
can be found in [29].

We assumed the motion of a undulating snake in granular
material is quasi-static, which means the total net force applied
on the system goes to zero

F =

∫ (
dF⊥ + dF‖

)
= 0. (27)

The only unknown in the above equation is the body velocity
of the chosen body frame, i.e. the average body frame. Given
a shape velocity α̇, the body velocity of the average body
frame can be computed by solving for Equation (27). In our
implementation, we used the MATLAB function fsolve to
compute the root of Equation (27).

B. Numerical Computation of the Local Connection

With given shape basis functions, the local connection of
a snake robot moving in granular media can be computed
numerically. We uniformly sampled the two dimensional shape
space on a 31 by 31 grid where w1, w2 ∈ [−π, π]. At every
point (w1, w2) on the grid, we first locally perturbed the value
of the first shape variable w1 := w1+ε, while holding the other
constant. In practice, the magnitude of perturbation ε = 0.05.
This small change in shape produces a small displacement
∆xb1, ∆yb1 and ∆θb1 measured in the body frame, which can
be easily computed using the RFT calculation. Next, we kept
the value of the first shape variable constant, but perturbed
value of the second shape variable w2 := w2 +ε. The resultant
displacement measured in the body frame were ∆xb2, ∆yb2 and
∆θb2. These numerically calculated displacements served an
approximation to the local connection at shape (w1, w2),

A(w1, w2) ≈ 1

ε

∆xb1 ∆xb2
∆yb1 ∆yb2
∆θb1 ∆θb2

 . (28)

The same procedure was repeated at every sampled point. This
numerically determined local connection can then be used to
plot connection vector fields and height functions.

VI. RESULTS

A. System

We tested the efficacy of the shape basis optimization
algorithm on a snake robot swimming in a 1m×2m test bed
filled with 6mm plastic balls (a type of granular material
commonly used in robot experiments [11], [31]) as shown in
Figure 1. Four Opti-Track IR 13 cameras located above the
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Fig. 4: The two optimized shape basis functions β∗
1 ,β

∗
2 and the corresponding

optimal gait in the reduced shape space. The blue curve in the top figure shows
the optimal gait ∂φ∗. The two figures at the bottom show the shape of a snake
robot when the two optimized shape basis functions are commanded.

bed were used to record the motion of the robot. The snake
robot has 16 joints, which alternatively rotate in the pitch
(vertical) and yaw (horizontal) directions. The body length
of the robot is 86 cm. Because the robot was only used to
generate planar movements, only the eight horizontal joints
were used in the experiments. During the experiments, the
robot was mostly buried in the material (immersion depth from
the bottom surface of the robot to the surface of the granular
materials was nearly equal to the diameter of the robot).

B. Shape Basis Optimization

The serpenoid curve (sinusoidal shape basis functions) has
been proved a good model for modeling undulatory locomo-
tion [14]. We therefore initialized the shape basis functions β0

1

and β0
2 as

β0
1 =

[
sin(2π Ω

N ) sin(2π 2Ω
N ) · · · sin(2πNΩ

N )
]T

(29)

β0
2 =

[
cos(2π Ω

N ) cos(2π 2Ω
N ) · · · cos(2πNΩ

N )
]T

(30)

where N = 8 denotes the number of horizontal joints of the
snake robot. We chose the spatial frequency Ω = 1 as an initial
guess, and relied on the shape basis optimization algorithm to
determine shape basis functions that can lead to gaits with
larger displacement per cycle.

The shape basis optimization algorithm yielded two opti-
mized shape basis functions

β∗1 = [0.3049 0.4799 0.4196 0.1619

-0.1569 -0.4081 -0.4578 -0.2716]T

β∗2 = [0.0235 -0.1661 -0.3991 -0.5532

-0.5561 -0.4073 -0.1763 0.0168]T ,

and the corresponding optimal gait ∂φ∗ in the reduced shape
space, shown as the blue curve in Figure 4. The insets of
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Fig. 5: Displacement per cycle of a snake robot using different gaits in simula-
tion and robot experiments. Undulation efficiency ηs means displacement per
gait cycle normalized by body length. Each marker represents the mean value
at a particular value of Ω and A. (a) Comparison of ηs using different gaits in
simulation. (b) Comparison of ηs using different gaits in robot experiments.
The purple line highlights the performance of the optimized gait with standard
deviation = 0.007 BL/cycle)

Figure 4 show the resultant body shapes on a snake robot
when β∗1 and β∗2 were commanded.

The resultant body shapes generate undulatory patterns
similar to that of a serpenoid curve, but differ in some respects.
The body shape resulting from the first shape basis function
was similar to a serpenoid curve with spacial frequency
approximately equal to one (one complete wave along the
body). The body shape resulting from the second shape basis
function generated half of a wave along the body, and there
was a DC component in the joint angles (all the joints bend
towards one direction rather than presenting a pure undulatory
pattern).

C. Simulation and Experiment Results

We next compared displacement per cycle normalized by
body length ηs of the optimized gait ∂φ∗ with that of serpenoid
curves using different wave parameters in both simulation
and robot experiments. To generate serpenoid curves on the
snake robot, we used the discrete counterpart to the continuous
serpenoid curve in Equation (19),

α(n, t) = A sin(2πΩn+ ωt) (31)

where A denotes the amplitude of the serpenoid curve, ω
denotes the temporal frequency and Ω denotes the spatial

frequency.
In simulation, we sampled amplitudes A from 0.1 to 1.6 rad

with an interval 0.1 rad, and Ω = 1
15 ,

1
10 ,

1
8 ,

1
6 ,

1
4 exclud-

ing those combinations of parameters that may cause self-
collision. Displacements per cycle using different wave param-
eters were calculated using RFT simulation. The simulation
results are shown in Figure 5(a).

In robot experiments, we sampled amplitudes A from 0.2
to 1.6 rad, and Ω = 1

15 ,
1
10 ,

1
8 ,

1
6 ,

1
4 excluding those combi-

nations of parameters that may cause self-collision. During
the experiments, the value of temporal frequency was fixed
at ω = 2π

10 rad/s to keep the period of a gait constant. Three
trials for each combination of A and Ω were conducted. The
experiment results are shown in Figure 5(b).

We observed that in both simulation and experiments for a
fixed value of spatial frequency, if the wave amplitude was too
small, the robot did not undulate sufficiently to push against
the surrounding material and was not able to generate large
displacements. However, if the value of wave amplitude was
too large, the highly curved body reduced the effective length
of each step in the workspace and, as a result, the robot did
move far either. For a fixed value of spatial frequency, there
existed an optimal value of wave amplitude at which the robot
achieved maximum speed of locomotion. Serpenoid curves
with a value of the spatial frequency smaller than 1

15 or larger
than 1

4 did not generate effective movements on the robot.
We observed the maximum speed of locomotion ηs ≈ 0.59
BL/cycle was achieved at spatial frequency Ω = 0.53 and at
wave amplitude A = 0.7 rad.

When the optimized gait ∂φ∗ was used, the robot was able
to achieve a speed of locomotion of ηs = 0.77 BL/cycle
in simulation and ηs ≈ 0.7 BL/cycle in robot experiments,
outperforming the performance of the serpenoid curve even
with its best parameters. This result demonstrates the efficacy
of the shape basis optimization algorithm in finding proper
shape basis functions for finding effective gaits for complex
robots.

VII. DISCUSSION

A. Understanding Shape Basis Functions

The shape basis optimization algorithm can be understood
as a means of finding proper coordinations among all joints.
Intuitively speaking, only when all joints “cooperate” with
each other can effective movements be achieved. Finding
proper coordinations among many joints can be computa-
tionally difficult, and the shape basis optimization algorithm
provide a way to find proper coordinations. Joint coordinations
or shape basis functions provide an appropriate intermediate
layer between high level motion plan and low level joint
control, allowing for simplified control of robot motion via
regulating fewer parameters than directly controlling all the
joints.

The idea of shape basis functions is closely related to the
concept of kinematic synergies [32]–[34], a concept widely
used in robotics. Kinematic synergies widely exists in both
manipulations and locomotions, and they have been proven
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Fig. 6: Comparison between simulation and robot experiments. Red means
simulation and black means robot experiments. Each marker represents the
maximum displacement per cycle ηs at a specific value of spatial frequency
Ω.

to be an effective strategy to manage complexity in tasks
of both locomotion and manipulation. The proposed shape
basis optimization algorithm provides a framework to design
kinematic synergies.

B. Optimality

It is worth noting that the optimized gait ∂φ∗ only achieved
a locally optimal solution. The shape basis optimization al-
gorithm assumed a two-dimensional shape space. While it is
possible to find better gaits in a higher dimensional shape
space using other expensive computational techniques, by
restricting to a two-dimensional shape space the shape basis
optimization algorithm balances the performance of gaits and
computational efficiency (also making analysis more intuitive
using the height function).

The objective of this work is not to find the globally
optimal gait, but to demonstrate the importance of finding a
proper low-dimensional shape space while designing gaits for
complex systems. By representing the complex kinematics of
a locomotor using only two shape basis functions, effective
gaits can be found in a computationally efficient and intuitive
way.

C. Implications on Biological Systems

The optimization criterion in the shape basis optimization
algorithm was displacement per cycle. However, energetic
efficiency might be a more preferable metric to optimize
for both biological and robotic systems. Nonetheless, the
optimized shape basis functions β∗1 and β∗2 exhibit patterns
very similar to the wave patterns displayed on some species
of biological snakes, e.g. Chionactis occipitalis. This simi-
larity suggests the waveforms displayed on these biological
snakes have the benefit of producing high speed motion. The
slight differences between the body waveforms observed on
biological snakes and the optimized basis functions are likely
due to the differences in optimization criterion, which requires
further studies in the future.

D. Comparing Simulation to Robot Experiments

Figure 6 shows a comparison between results from simu-
lation and robot experiments. Although we have ignored the
surface effects of granular materials in simulation, simulation
results agree with robot experiments. The differences between
simulation and experiments are partially due to the surface
effects of granular materials, which require further investiga-
tion in the near future. Another possible source of differences
between simulation and experiments is the joint-level control
laws of the robot. In the experiments, proportional control was
used. As a result, the joint angles might not have perfectly
tracked the commanded joint trajectories, causing a difference
between simulation and experiments.

E. Initialization of Shape Basis Functions

Because of the non-linear nature of shape basis optimiza-
tion for high dimensional locomoting systems, the optimized
shape basis functions sensitively depend on the initial values
of β0

1 and β0
2 . In this work, we used serpenoid curves to

initialize shape basis functions. In the future, other forms of
basis functions can be considered. It is also possible to use
various sampling techniques to start shape basis optimization
at different initial values of shape basis functions.

VIII. CONCLUSION

Shape basis functions are useful for simplifying the rep-
resentation of complex kinematics. By representing the com-
plex kinematics of a high DoFs locomotors with two shape
variables, the tools of geometric mechanics can be applied to
design gaits in an intuitive manner. The proposed shape basis
optimization algorithm is useful to find proper shape basis
functions. Applying the shape basis optimization algorithm to
a snake robot resulted in a novel gait which improved its speed
of swimming in granular materials.

Optimizing shape basis functions can be understood as
designing coordinations among many joints. Designing gaits
by starting from design coordination among joints builds a
novel and general framework for designing gaits for complex
locomoting devices. The proposed shape basis optimization
algorithm establishes such a framework to first design proper
joint coordination, and then design effective gaits in this space.
Although we have focused our application on a snake robot,
the generality and predictive power of the proposed framework
would benefit the analysis of other types of locomotors.

In the future, various types of optimization techniques can
be incorporated into the shape basis optimization algorithm for
finding good shape basis functions. In addition, this work has
focused on the metric of displacement per cycle. In the future,
power metrics [35] can be considered to design energetically
efficient gaits.
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