
Special Issue: RSS2020

The International Journal of

Robotics Research

1–16

� The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/02783649211037715

journals.sagepub.com/home/ijr

Frequency modulation of body waves to
improve performance of sidewinding
robots

Baxi Chong1* , Tianyu Wang1* , Jennifer M. Rieser2, Bo Lin1 ,

Abdul Kaba3, Grigoriy Blekherman1, Howie Choset4 and Daniel I. Goldman1

Abstract

Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is

beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of

horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding

with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body

and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern,

undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article,

we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations

alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically

unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for

a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that

produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations

and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of

movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable

of traversing diverse terrain stably and/or rapidly.
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1. Introduction

Biological limbless locomotors successfully maneuver over

complex terrain, partially because of their ability to regulate

contact between their bodies and the environment (Astley

et al., 2015; Gong et al., 2015; Hu et al., 2009; Jayne, 1986;

Marvi et al., 2014). Of specific interest to our work, side-

winding motion offers an excellent example of the impor-

tance of contact pattern regulation. In sidewinding motion,

some portions of body are cyclically lifted from the ground,

which we refer to as vertical wave, in coordination with the

undulatory motion in the horizontal plane, which we refer

to as horizontal wave. Proper coordination of these waves

can generate self-propulsive forces that cause motions in a

desired direction, thereby enabling high maneuverability in

sidewinding locomotion (Astley et al., 2015; Gong et al.,

2015; Hu et al., 2009; Marvi et al., 2014).

Despite the maneuverability benefits of sidewinding, if

not properly coordinated, lifting certain body segments can

often result in unstable configurations: the locomotor’s

center of mass (CoM) can leave the support polygon formed

by body contacts (Mcghee and Iswandhi, 1979). Such a sit-

uation can result in the loss of body configuration stability,

which we refer to as static stability. This loss of static stabi-

lity could be compensated for by dynamic stability when

operating at high speed, such that the duration of the

unstable configuration is too short to affect the robot’s over-

all dynamics (McGeer, 1990). In contrast, at low speed, the

loss of static stability can lead to unexpected body contacts
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and change the ground reaction force distribution, which

can lead to undesirable deviations from the target behaviors.

While modulation of the horizontal wave could lead to

stable gaits, such stabilization often comes with the cost of

lower speed and/or changes in the direction of motion

(Astley et al., 2015, 2020). Therefore, it is preferable to sta-

bilize gaits by modulating the vertical waves. Marvi et al.

(2014) demonstrated that on granular media, modulating

the amplitude of waves in the vertical plane can increase

the amount of the body in contact with the environment

and, therefore, improve the robustness of gaits on sandy

slopes. In contrast, on non-deformable flat ground or even

on rough terrain, the contact distribution is less dependent

on amplitude modulation. Therefore, there is a need to sta-

bilize gaits by other modulations.

Inspired by contact planning methods in legged robots

(Ijspeert et al., 2007; Li et al., 2009; Pongas et al., 2007;

Ponton et al., 2020), we propose an approach to stabilize

statically unstable gaits by modulating the body contact pat-

tern. However, unlike legged robots, where contact patterns

can be readily realized and implemented, it is challenging

to modulate the contact pattern for serial limbless robots,

partially because the contact states of modules in serial

limbless robots are not independently modulated like those

in legged robots. Another challenge lies in the fact that

modulation in body contact pattern not only provides addi-

tional stability but also alters the distribution of ground

contact forces and, hence, the direction of motion (Astley

et al., 2015).

In this article, we develop an approach to stabilize stati-

cally unstable sidewinding gaits. We employ a 3D config-

uration optimization scheme (Wang et al., 2021) which

calculates the robot’s joint angles to realize a desired con-

tact pattern. We show that the generated contact patterns

can be accurately implemented on robots, which allows us

to redesign the contact pattern and therefore stabilize the

gaits. We then apply geometric mechanics tools (Gong

et al., 2018; Hatton and Choset, 2015; Hatton et al., 2013;

Marsden and Ratiu, 2013) to coordinate motions in the hor-

izontal plane and the contact pattern, which leads to trans-

lation and rotation in a chosen direction. As a result, we

extend the sidewinding gait family and obtain effective and

statically stable sidewinding gaits in both translation and

rotational movements. We validate our theoretical predic-

tions by numerical simulation (Figure 1(a)) and experi-

ments with a 16-joint serial elastic actuated (SEA) limbless

robot (Figure 1(b)) locomoting on flat hard ground.

2. Related work and methods

2.1. Sidewinder locomotion

Biological sidewinding motion has been described as the

superposition of two traveling waves: one in the horizontal

plane and another in the vertical plane (Astley et al., 2015;

Marvi et al., 2014; Rieser et al., 2019). The horizontal wave

of body curvature is described by

k(s, t)= km sin (vtt + vss) ð1Þ

where s 2 ½0 1� indicates the position along the arc length

of the body (s = 0 denotes head and s = 1 denotes tail);

k(s, t) denotes the local body curvature at position s and

time t; km, vs, and vt denote the amplitude, the spatial fre-

quency, and the temporal frequency of body curvatures,

respectively.

The vertical wave is often reconstructed as a time-

dependent contact state:

c(s, t)= s½sin (vst + vss + f0)� ð2Þ

where s½x�= 1
1 + e�gx , with the parameter g approximating

the sharpness of the contact state transition; and f0 is the

phase difference between the horizontal wave and the verti-

cal wave. Note that g ! ‘ indicates a stepwise transition

in contact state; to allow the continuity and the differentia-

bility in (2), we take g = 4 in this article unless otherwise

stated. Previous work (Astley et al., 2015) revealed that

f0 = 6p=2 yields to effective sidewinding motion.

Our group has demonstrated aspects of the performance

of sidewinding snakes in robots (Astley et al., 2015, 2020;

Gong et al., 2015; Hatton and Choset, 2010). In our experi-

ments, we use limbless robots with adjacent rotary motors

rotated by 908 such that successive modules can achieve

rotation in the horizontal and vertical planes alternatively.

In this way, the robot can have 3D configurations by a

superposition of a vertical wave and a horizontal wave. For

Fig. 1. Theoretical model and experimental robot. (a) The

theoretical model for the sidewinder robots. The filled black

ovals indicate the ground contact phase whereas the white ovals

indicate a no ground contact phase. The contact state is labeled

in black (c(i)). The joint angle in blue indicates pitch joints and

the joint angle in red indicates yaw joints. (b) The SEA robot

used to test the effectiveness of our stabilization approach.
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an N -joint limbless robot, joints are labeled 1 to N , and

links are labeled from 0 to N , where joint j connects link

j� 1 and link j. Odd numbered joints are yaw joints and

therefore produce motion in the horizontal plane (their

rotation axes are vertical). Even numbered joints are pitch

joints and, therefore, produce motion in the vertical plane

(their rotation axes are horizontal). The joint angles are pre-

scribed using the following functions:

u(2j� 1, t)= Al sin 2pKl

2j� 1

N
+ 2pft

� �
ð3Þ

u(2j, t)= Av sin 2pKv

2j

N
+ 2pft + f0

� �
ð4Þ

where ul(2j� 1, t) and uv(2j, t) refer to the yaw (odd) joint

angles and the pitch (even) joint angles, respectively; Kl

and Kv are the spatial frequency of the horizontal wave and

the vertical wave, respectively; Al and Av are the amplitude

of the horizontal wave and the vertical wave, respectively;

f defines the temporal frequency; and f0 is the phase lag

between the horizontal and the vertical wave.

The contact state of link i is represented by c(i), where

c(i)= 1 indicates that link i is in contact and c(i)= 0 indi-

cates that link i is not in contact. The links between two

consecutive vertical joints have the same contact state, i.e.,

c(2j)= c(2j� 1). Therefore, the contact state in robots can

be approximated by (Rieser et al., 2019)

c(2j� 1, t)= c(2j, t)

= s sin 2pKv

j

2N
+ 2pft + f0

� �� � ð5Þ

Previous work (Burdick et al., 1993) demonstrated that

some combinations of gait parameters (specifically, Kl = Kv

and f0 = 6p=2) can lead to translational sidewinding

(which we refer to as ‘‘T-sidewinding’’) motion, where the

locomotor displays translational displacement with no sig-

nificant turning. Note that during conventional sidewinding

(Kl = Kv and f0 = 6p=2), the direction of motion is

always 908 with respect to body axis regardless of the hori-

zontal amplitude. However, the modulation of horizontal

amplitude can affect the orientation of the ‘‘tracks’’ left by

body contacts (the track angle (Rieser et al., 2019)).

In addition, the modulation of the horizontal wave has

been shown to enable high maneuverability in sidewinding

locomotion. Astley et al. (2020) and Rieser et al. (2019)

showed that the direction of translation (the angle between

the direction of motion and the body axis) can be modu-

lated by controlling Al. Moreover, introducing differential

horizontal wave amplitude from head to tail results in gra-

dual rotation in limbless robot (Astley et al., 2015). In addi-

tion to the modulation in the horizontal wave, Marvi et al.

(2014) showed that manipulation of the vertical amplitude

Av can change the body contact ratio (average percentage of

the body that is in contact with the environment), and there-

fore enable climbing on sandy slopes. Finally, modulating

the ratio of the spatial frequency in the vertical and horizon-

tal directions (Kv=Kl) yields turning gaits ( frequency turn-

ing in Astley et al. (2015)). Either increasing (Kv = 1:3Kl)

or decreasing (Kv = 0:6Kl) the vertical spatial frequency

will lead to clockwise (CW) turning. In this article, we refer

the frequency turning as the rotational sidewinding (which

we refer to as ‘‘R-sidewinding’’) motion. Beyond sidewind-

ing, the sinus lifting gait is another snake gait uses horizon-

tal and vertical wave. Hu et al. (2009) showed that snakes

lift body portions with the largest curvatures during lateral

undulation (slithering) locomotion. In the scheme defined

in (3) and (5), this form of locomotion has Kv = 2Kl and

f0 = 0. We summarize previous work on wave modulation

in Table 1.

2.2. Contact pattern realization

For 3D limbless robots, sidewinding locomotion is com-

posed of a continuous sequence of 3D configurations.

Each 3D configuration is a ‘‘sum’’ of a 2D configuration in

the horizontal plane and a 2D configuration in the vertical

plane (Astley et al., 2015). Ideally, the projections of the

3D configuration onto the horizontal and vertical planes

are identical to the desired 2D horizontal configuration and

the desired 2D vertical configuration. When fitting a

mechanism to a backbone curve, three-degree-of-freedom

joints are practically preferred since they are easier to cap-

ture pitch, roll and yaw. However, our snake robot, along

with many others (Fu and Li, 2020; Rollinson et al., 2014;

Takemori et al., 2018), only has pitch and yaw degrees of

freedom (as shown in Figure 1(a)). If the robot’s yaw and

pitch joints directly employ the horizontal and vertical joint

angle equations (as (3)–(4)), the composed 3D configura-

tion of the robot fails to capture the twist features in the

desired 3D configuration (Wang et al., 2021). The inaccu-

racy of the 3D configuration can, in turn, cause an inaccu-

rate contact pattern realization (CPR). Previous studies

hypothesised that the vertical joint angle prescribed by (4)

can lead to the contact pattern in (5) (Marvi et al., 2014;

Rieser et al., 2019). Although in many cases such corre-

spondence is reasonable, in some cases the discrepancy in

the correspondence can lead to unexpected locomotion

behavior. Therefore, we apply a 3D configuration optimiza-

tion tool (Wang et al., 2021) to implement an accurate

mapping from the desired contact pattern to the robot joint

angles. In this section, we provide detailed steps to realize

an arbitrary contact pattern.

Table 1. Summary of previous work on sidewinder locomotion

Kl Kv f0 Behavior Source

1:5 1:5 p=2 T-sidewinding Marvi et al. (2014)
2 2 p=2 T-sidewinding Astley et al. (2015)
1:5 0:9 p=2 R-sidewinding Astley et al. (2015)
1:5 1:95 p=2 R-sidewinding Astley et al. (2015)
1:5 3 0 Slithering Hu et al. (2009)
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2.2.1. Desired configuration generation. To achieve the

desired configuration for an N -joint robot, we first denote

the 3D Cartesian coordinates of the anterior endpoint of the

robot by P0, the posterior endpoint of the robot by PN + 1,

and N joints by P1,P2, . . . ,PN. We define the xy-plane as

the horizontal plane and the xz-plane as the vertical plane.

We first obtain the coordinates of links in the xy-plane

by iteratively solving ½Pi, x,Pi, y�T by varying j from 0 to

N=2 following

g

P2j + 1, x

P2j + 1, y

P2j + 1, u

2
64

3
75

0
B@

1
CA= g

P2j, x

P2j, y

P2j, u

2
64

3
75

0
B@

1
CAD

g

P2j + 2, x

P2j + 2, y

P2j + 2, u

2
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75
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B@

1
CA= g

P2j + 1, x

P2j + 1, y
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B@

1
CAR u(2j + 1)ð ÞD

ð6Þ

where

g

x

y

u

2
64
3
75

0
B@

1
CA=

cos (u) � sin (u) x

sin (u) cos (u) y

0 0 1

2
64

3
75

D =

1 0 L

0 1 0

0 0 1

2
64

3
75

R(u)=

cos u � sin u 0

sin u cos u 0

0 0 1

2
64

3
75

u(2j� 1) is the yaw joint angle defined in (3); Pi, u is a

dummy variable introduced to obtain the coordinates (with

initial condition defined as P0, u = 0); and L is the link length.

Next, we obtain the coordinates in the xz-plane:

Pi, z = 1� c i� 1

2

� �� �
h ð7Þ

where c i� 1
2

� �
is the contact state of joint i (we use i� 1

2
to

indicate the relative position of joint i which connects link

i� 1 and link i along the body) defined in (2), and h is

amplitude of body lifting, which we empirically relate to

Av by sin (Av)= h=L. Note that under (7), the contact pat-

tern is realized by lifting the modules not in contact with

the ground by h.

Finally, we performed a 3D spline fitting to the discrete

coordinates P0, . . . ,PN + 1 to achieve a continuous curve.

We then uniformly resample the curve with N + 2 sample

points P00 , . . . ,PN + 1
0 such that distances between any two

consecutive points Pi
0 and Pi + 1

0 are equal, i.e., if we denote

the N + 1 links by vectors li = Pi + 1
0 � Pi

0 for 0 ł i ł N ,

all li have the identical length.

2.2.2. Robot joint position optimization. We use N + 2

coordinates Q0,Q1, . . . ,QN + 1 to denote the optimized

positions for the anterior endpoint of the robot, N joints of

the robot, and the posterior endpoint of the robot. Thus, the

optimal robot configuration (which is as close to the desired

configuration as possible) is found by minimizing the

objective function

XN + 1

i = 0

P0i � Qik k2 ð8Þ

We denote the N + 1 links in the optimized robot con-

figuration by vectors l0i = Qi + 1 � Qi for 0 ł i ł N. As each

joint possesses a single rotational degree of freedom, the

two links l0i�1 and l0i at joint i should lie in the same rota-

tional plane ai (1 ł i ł N ). We associate a unit normal vec-

tor ni 2 R
3 to plane ai ( nik k= 1) to describe its direction.

The alternating pitch and yaw joints robot geometry draws

the constraint that any two consecutive rotation planes

should be orthogonal in R
3, yielding ni � ni + 1 = 0, for all

1 ł i ł N � 1.

Given that the two links l0i�1 and l0i both belong to the

plane ai and the normal vector ni is orthogonal to ai, ni is

orthogonal to both l0i�1 and l0i. It follows that the three vec-

tors l0i�1, ni, ni�1 are pairwise orthogonal. In other words,

l0i�1 is parallel to the cross product ni�1 × ni for 2 ł i ł N.

Assuming the internal shape of the robot is fixed, i.e.,

relative positions of all Qi are determined, the value of the

objective function will only depend on the choice of abso-

lute positions of Qi. We let di = Pi
0+ (Q0 � Qi), where di

are constants under the assumption, then the objective func-

tion can be expressed as

XN + 1

i = 0

Pi0 � Qik k2 =
XN + 1

i = 0

(Q0 � di) � (Q0 � di)½ �

=
XN + 1

i = 0

Q0 � Q0 � 2Q0 � di + di � di½ �

= (N + 2)Q0 � Q0 � 2Q0 �
XN + 1

i = 0

di

 !
+
XN + 1

i = 0

di � dið Þ

= (N + 2) Q0 �

PN + 1

i = 0

di

N + 2

0
BB@

1
CCA � Q0 �

PN + 1

i = 0

di

N + 2

0
BB@

1
CCA

+
XN + 1

i = 0

di � dið Þ � 1

N + 2

XN + 1

i = 0

di

 !
�
XN + 1

i = 0

di

 !" #

Note that the last term in the square bracket is a con-

stant. Thus, the objective function attains the minimum if

and only if Q0 = 1
N + 2

PN + 1
i = 0 di, which is equivalent toPN + 1

i = 0 Qi =
PN + 1

i = 0 Pi
0. Also note that this constraint is

derived purely mathematically, but an intuitive interpreta-

tion of the constraint is that the centroid of the actual robot

configuration should coincide with the centroid of the

desired configuration.

We now arrive at the final formulation the optimization

problem which exploits the geometric structure of the robot
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minimize
Qi

PN + 1

i = 0

Pi0 � Qik k2

subject to (i) nik k= 1, 81 ł i ł N

(ii) ni � ni + 1 = 0, 81 ł i ł N � 1

(iii) l0i�1 = L � ni�1 × nið Þ, 82 ł i ł N

(iv)
PN + 1

i = 0

Qi �
PN + 1

i = 0

Pi
0= 0

The constrained nonlinear optimization problem can be

solve by standard gradient-descent algorithms such as

MATLAB’s built-in function fmincon (MATLAB, 2020).

For the sidewiding gaits we proposed in this work, we

experimentally verified that solving the nonlinear optimiza-

tion using MATLAB is feasible for the real-time implemen-

tation in the quasi-static motions. However, a limitation of

this method is that optimization problems might not be

solved fast enough in the scenarios where the robot has to

execute the gaits with complex backbone curves under high

temporal frequencies. In such cases, pre-optimizing the

configurations offline should be considered.

2.2.3. Joint angle derivation. The optimization algorithm

outputs the optimized coordinates Q0,Q1, . . . ,
QN + 1 2 R

3, which denote the optimal positions for N

joints, and the anterior and the posterior endpoints of the

robot in the work-space. To implement the optimized robot

configuration on the physical robot, we must translate the

coordinates to the robot joint angles in joint space: the

absolute value of the i th joint angle is achieved by the

inner product of l0i and l0i�1, given the coordinates

Q0,Q1, . . . ,QN + 1; and the orientation of the i th joint

angle can be determined by the direction of the normal vec-

tor ni of the rotation plane ai, given the coordinates

Q0,Q1, . . . ,QN + 1.

Thus the optimized joint angles ui (i = 1, . . . ,N ) are

sent to the robot as joint angle set points.

2.3. Geometric mechanics

In this subsection, we provide an overview of the geometric

tool, which we use to design the coordination between the

horizontal wave and the vertical wave to produce motions

in our desired direction. For a more detailed and compre-

hensive review, we refer reader to Marsden and Ratiu

(2013), Gong et al. (2018), Zhong et al. (2018), and Chong

et al. (2019). The geometric mechanics gait design frame-

work separates the configuration space of a system into

two spaces: a position space and a shape space. The posi-

tion space represents the location (position and rotation) of

a system in the world frame, whereas the shape space

denotes the internal shape of the system. The geometric

mechanics framework then establishes a functional rela-

tionship to map the velocities in the shape space to the

velocities in the position space; this functional relationship

is often called a local connection.

2.3.1. Kinematic reconstruction equation. In kinematic

systems where inertial effects are negligible, the equations

of motion (Marsden and Ratiu, 2013) can often be approxi-

mated as

j = A(r)_r ð9Þ

where j = ½jx jy ju�T denotes the body velocity in the for-

ward, lateral, and rotational directions; r denotes the inter-

nal shape variables (joint angles); A(r) is the local

connection matrix, which encodes environmental con-

straints and the conservation of momentum. As shown in

Hatton et al. (2013), the local connection matrix, A, can be

numerically derived by force and torque balance. It is chal-

lenging to model the ground reaction forces precisely, espe-

cially for a diverse contact surfaces. However, as shown in

Rieser et al. (2019), modeling movement on hard ground

using a speed-independent kinetic Coulomb friction force

model has produced good agreement with experimental

data.

2.3.2. Connection vector fields and height functions. Each

row of the local connection matrix, A, corresponds to a

component direction of the body velocity. Each row of the

local connection matrix over the shape space then forms a

connection vector field. In this way, the body velocities in

the forward, lateral, and rotational directions are computed

as the dot product of connection vector fields and the shape

velocity _r.
The displacement along the gait path ∂f can be obtained

by integrating the ordinary differential equation (Hatton

and Choset, 2015):

g(T )=

Z
∂f

TeLg(r)A(r)dr ð10Þ

where g(t)= ½x(t), y(t),a(t)�T 2 SE(2) represents the posi-

tion and rotation of body frame viewed in the worlds frame

(Murray, 2017); g(T )= ½Dx,Dy,Da�T denotes the transla-

tion and rotation of the body frame (with respect to the

world frame) in one gait cycle. Note that TeLg is the left-

lifted action with respect to the coordinates of g:

TeLg =
cos (a) � sin (a) 0

sin (a) cos (a) 0

0 0 1

2
4

3
5

The integral of (10) can be approximated to the first

order by

Dx

Dy

Du

0
@

1
A=

Z
∂x

A(r)dr ð11Þ

The accuracy of the approximation in (11) can be opti-

mized by properly choosing the body frame (Hatton and

Choset, 2015; Lin et al., 2020). According to Stokes’ theo-

rem, the line integral along a closed curve ∂x is equal to the
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surface integral of the curl of A(r) over the surface enclosed

by ∂x: Z
∂x

A(r)dr=

ZZ
x

r×A(r)dr1dr2 ð12Þ

where x denotes the surface enclosed by ∂x. The curl of

the connection vector field, r×A(r), is referred to as the

height function (Hatton and Choset, 2015). The three rows

of the vector field A(r) can, thus, produce three height

functions in the forward, lateral, and rotational direction,

respectively.

With the above derivation, we simplify the gait design

problem to drawing a closed path in a Euclidean shape

space. Displacements can be approximated by the integral

of the surface enclosed by the gait path. Hence, maximiz-

ing the integral leads to the maximal displacement.

2.3.3. Toroidal shape space. As we discuss in detail in

Section 3.1.4, in the sidewinding gait prescription, one of

the shape variable represents the phase of the horizontal

wave (t1 2 S1), and the other shape variable represents the

phase of the vertical wave (t2 2 S1). With both shape vari-

ables being cyclic, its shape space is toroidal, (T 2)
(Kobayashi and Nomizu, 1963). Examples of height func-

tions on toroidal shape spaces are shown in Figure 2.

Although the gait path (solid purple curve in Figure 2) is a

closed curve in the toroidal shape space, there is no obvi-

ous surface enclosed by the gait path.

To form an enclosed surface, Gong et al. (2018) intro-

duced the notion of ‘‘assistive lines’’ in the Euclidean cover

space of the toroidal shape space. As a result, the surface

integral can be calculated as the surface enclosed in the

upper left corner (see the surface labeled by solid lines in

Figure 2) minus the surface enclosed in the lower right cor-

ner (see the surface labeled by dashed lines in Figure 2).

We refer reader to Gong et al. (2018) for a detailed deriva-

tion and proof of motion planning in toroidal shape spaces.

3. Frequency modulation to stabilize gaits

3.1. Sidewinder gait formula

3.1.1. Joint angle prescription. We prescribe the joint

angle using two methods, sine wave prescription (SWP)

and CPR. In SWP, we use (3) and (4) to directly prescribe

the joint angle according to our choice of gait parameters.

In CPR, we use the methods introduced in Section 2.2 to

calculate the joint angles for our choice of gait parameters.

Note that in our robot (see Section 3.3 for a detailed

description), joint N (the last joint) always orients link N

(the tail link) into the air so the tether does not interfere

with robot motion.

3.1.2. Static stability. Static stability is defined as the frac-

tion of a temporal undulation period that the CoM is inside

the support polygon. The support polygon is defined as the

convex hull of all the links in contact with substrate. In

Figure 3, we show examples of stable (Figure 3(a)) and

Fig. 2. Height functions to design gaits to produce motion in the desired direction. Height functions on torus (top panel) and on

unfolded Euclidean cover space (lower panel) are shown. The height function for (a) horizontal spatial frequency Kl = 1:5, V–L ratio

Kv=Kl = 1:3 in lateral direction (the direction perpendicular to body axis) and (b) horizontal spatial frequency Kl = 0:9, V–L ratio

Kv=Kl = 1:2 in rotational direction. The purple curve in each plot maximizes the surface integral enclosed in the upper left corner

(marked in solid lines) minus the surface integral enclosed in the lower left corner (marked in the dashed lines). The assistive lines are

shown as lines with green arrows.
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unstable configurations (Figure 3(b)). We observe that gaits

with large vertical spatial frequencies have more distinct

body–environment contact patches, and are therefore more

statically stable than gaits with low spatial frequency in the

vertical wave. Inspired by this observation, we stabilize the

originally unstable gaits by increasing the spatial frequen-

cies of the vertical wave (frequency modulation).

3.1.3. Gait stabilization. We stabilize the sidewinding gaits

by increasing the spatial frequency of the vertical wave. In

other words, we gradually increase the V–L ratio, Kv=Kl,

until the satisfactory static stability is reached. As we

increase the vertical spatial frequency, the vertical spatial

period decreases. Thus, lower vertical spatial frequency

represents shorter but more frequent contact patterns, which

is more stable; whereas higher vertical spatial frequency

represents longer but less-frequent contact patterns, which

is less stable. In this article, we consider a gait as statically

stable when its static stability is greater than 0.5. Note that

this threshold is selected for our experiments on flat terrain.

If necessitated by conditions such as uneven terrain, the sta-

tic stability threshold may be raised to improve the capabil-

ity of the robot to remain statically stable even when some

modules fail to follow the prescribed contact states (e.g.,

perturbed by the environment).

3.1.4. Coordination of the horizontal and the vertical

waves. We decomposed the internal shape of sidewinder

robots into two independent traveling waves: a horizontal

traveling wave and a vertical traveling wave. The horizontal

traveling wave is prescribed by

ul( j, t1)= Al sin 2pKl

j

N
+ t1

� �
ð13Þ

where t1 is the phase of the horizontal wave. Similarly, the

contact state is prescribed as

c(2i� 1, t2)= c(2i, t2)= s sin 2pKv

i

2N
+ t2

� �� �
ð14Þ

where t2 is the phase of the vertical wave that can uniquely

determine the contact pattern. Here c(i, t2)= 0 represents

swinging state and, therefore, no ground reaction force

appears at link i at phase t2.

The phases of the horizontal wave and the vertical wave

then comprise the shape variable, t = ½t1, t2�T. Using the

geometric mechanics gait design tools mentioned in

Section 2, we can calculate the height function and visua-

lize the kinematics in the desired directions (translational

and rotational).

A gait that coordinates the horizontal and vertical wave

can be described as a function that maps t1 to t2. From the

structure of the height functions (see Figure 2), we

observed that in the Euclidean cover space of the torus

(where the edges are properly identified with each other at

0 and 2p), a straight line-path gives rise to an optimal path;

this is seen by the integral of the surface in the upper left

minus the integral of the surface in the lower right being

maximized. In this way, we characterize the coordination of

the horizontal and the vertical wave by the relative phase

lag: f0 : = (t2 � t1 mod 2p).

3.2. Numerical simulation

We first performed numerical simulations to test our

scheme’s ability to predict locomotion. Specifically, in the

simulation, we prescribed the horizontal amplitude and the

contact state of the robot using (3) and (5). In other words,

we take t1 = 2pft and t2 = 2pf + f0. Thus, the shape

variable and shape velocity can be prescribed as

t =
2pft

2pft + f0

� �
, _t =

2pf

2pf

� �
ð15Þ

Fig. 3. Examples of statically stable and unstable configurations.

(a) The contact state pattern and an example of a statically stable

configuration for gaits with high spatial frequency in both the

horizontal wave and the vertical wave. (b1) The contact state

pattern and an example of a statically unstable configuration for

gaits with low spatial frequency in both the horizontal wave and

the vertical wave. (b2) Stabilizing the statically unstable

configuration by increasing the vertical spatial frequency. The

label and the axis in panel (b) are the same as in (a). (c) Example

of an unstable configuration (left) and an unexpected touchdown

(right)
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Then we simulate the locomotion with the standard ordi-

nary differential equation (Hatton and Choset, 2015):

g(T )=

Z T

0

TeLg(t)A(t) _tdt

=

Z T

0

TeLg(t)A
2pft

2pft + f0

� �� �
2pf

2pf

� �
dt

ð16Þ

where g = (x, y,a) 2 SE(2) represents the body frame posi-

tion and rotation (Murray, 2017),

TeLg =
cos (a) � sin (a) 0

sin (a) cos (a) 0

0 0 1

2
4

3
5

is the left lifted action with respect to the coordinates of g.

Rate-independent kinetic Coulomb friction was used to

derive the local connection matrix, A, where the ground

reaction forces are related to the body velocity by

Fi = Fm

v

jvj ð17Þ

where Fi is the ground reaction force experienced on the i

th module, v is the body velocity, and Fm is the magnitude

of the friction force.

Solving the differential equation 16 throughout one

period (from t = 0 to t = 1=f ), we obtain the trajectory of

the locomotor and can, thus, determine the predicted dis-

placements in the forward, lateral, and rotational directions

over one gait cycle.

Note that we assume that the friction force dominates

the motion and we neglect inertia in the simulation.

However, inertia can be important in gait stability. That is,

when the statically unstable gaits are implemented on

robots with low temporal frequency (i.e., no dynamic stabi-

lity), the robot often cannot reach the prescribed configura-

tion; therefore, simulation–experiment discrepancy is

expected (see Figure 5(a)). On the other hand, when oper-

ated at high temporal frequency, inertial effects can make

the statically unstable gaits dynamically stable. In the case

where the gait can be stably (either statically stable or

dynamically stable) implemented on robots, inertia has a

relatively small contribution to the motion (i.e., friction

dominates the motion), as we show in Figure 5b.

3.3. SEA robot experiments

We conducted experiments with a SEA limbless robot

(Figure 1(b)). Our SEA robot (mass 3.7 kg, length 1.2 m)

is a modular series elastic actuated robot composed of a

chain of 16 identical modules that are capable of precise

torque, velocity, and position control (Rollinson et al.,

2014). As described in Section 2.1, the arrangement of

modules in the SEA robot ensures that the rotation axes of

neighboring modules were 908 off along the longitudinal

axis. Thus, the joints were divided into two groups: yaw

joints (odd modules from head to tail), which control the

horizontal body wave, and pitch joints (even modules),

which control the vertical body wave. Note that during the

experiments, the connection wire was lifted to avoid the

additional force.

Experiments were conducted on flat hard ground, where

we assume the ground reaction forces are given by rate-

independent kinetic Coulomb friction. The SEA robot was

controlled directly by joint angle commands. For each side-

winder gait tested, we conducted five trials. In each trial,

we commanded the SEA robot to execute two complete

gait cycles and collected the SEA robot motion data start-

ing from the first command being sent out until the SEA

robot stop moving.

To track the motion of the SEA robot in the environ-

ment, we uniformly attached 17 infrared (IR) reflective

markers along the body. An OptiTrack motion capture sys-

tem was employed, and 4 OptiTrack Flex 13 cameras were

installed to track the 3D positions of the markers at a frame

rate of 120 frames per second (FPS). We recorded the tra-

jectory of the markers over two cycles, from which we cal-

culate the forward, lateral, and rotational displacements.

Examples of the SEA robot experiments can be found in

Extension 1.

We summarize our steps to stabilize the sidewinding

gaits in Algorithm 1.

4. Results

4.1. Verification of CPR

In this subsection, we compare the locomotion perfor-

mance using (3)–(4) (SWP) and the method introduced in

Section 2.2 (CPR) to prescribe the joint angles. We com-

pare three gaits: high stability (HS), intermediate stability

(IS), and low stability (LS). The detailed parameters for

these gaits are listed in Table 2. Note that in all three gaits,

the expected rotation is zero with effective translational dis-

placement (Astley et al., 2015; Rieser et al., 2019).

In the HS experiments, both methods can lead to almost

no rotation with effective lateral displacements. This is as

expected from previous experiments (Astley et al., 2015).

In the IS experiments, we note that there is significant

body rotation in SWP, whereas in CPR, the body rotation is

almost negligible. We hypothesize that SWP does not give

accurate configurations as expected, which causes the discre-

pancy in contact patterns. To test our hypothesis, we mea-

sure the body contact and compare the empirically collected

contact pattern data with the expectation given by (5).

Interestingly, we observe that in SWP, the actual contact pat-

tern in robot experiments (Figure 4(e2)) is clearly different

from the expectation (Figure 4(e1)). In contrast, in CPR, the

actual contact pattern in robot experiments (Figure 4(e3)) is

almost identical to the expectation. Therefore, the discre-

pancy in contact pattern is at least one of the reasons for the

unexpected turning in SWP robot experiments.

Finally, in the LS experiments, both methods display

significant rotation. We suspect that this body rotation is

8 The International Journal of Robotics Research 00(0)



Fig. 4. Contact pattern comparison of the SWP (implementation of sine wave joint angle templates as in (3)–(4)) and the CPR method

(introduced in Section 2.2). (a) Comparison of body rotations in low-stability (LS, K = 0:5), intermediate-stability (IS, K = 1:2), and

high-stability (HS, K = 1:5) gaits. Both SWP and CPR cause low body rotations in the LS case and high body rotations in the HS

case; in the IS case, significant body rotation is only observed in the SWP. (b)–(d) Snapshots of robot experiments implementing gaits

using SWP (1) and CPR (2). (e) The comparison of IS body contact pattern from simulation (1), SWP (2), and CPR (3).

Table 2. Gait parameters for three sidewinding gaits: high

stability (HS), intermediate stability (IS), and low stability (LS)

Gait HS IS LS

Kl 1.5 1.2 0.5
Kl=Kv 1 1 1
Al=Kl 0.7 0.7 0.7
Av=Kv 0.15 0.15 0.15
f0 p=2 p=2 p=2
f 2.0 2.0 2.0
Stability 1.00 0.60 0.12

Algorithm 1: Stabilizing sidewinding and turning gaits

1 Initialization: Kv=Kl = 1:0;
2 whileStatic Stability \ 0.5 do
3 Kv=Kl  Kv=Kl + 0:1;
4 CPR;
5 Calculate height function (HF);
6 Take f0 to maximize HF surface integral;
7 end
8 Perform numerical simulation
9 Implement robot experiments
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caused by the low stability contact pattern. We evaluate this

in detail in later sections.

From the observations in this section, we have shown that

contact pattern with at least intermediate static stability can

be reliably realized using methods introduced in Section 2.2,

allowing us to directly modulate the contact pattern to stabi-

lize gaits based on contact patterns prescribed by (5).

4.2. Statically unstable gaits

Previous work (Rieser et al., 2019) suggested that sidewind-

ing gaits with 1.5 spatial waves (Kl = 1:5, Kv=Kl = 1) were

typically faster than the sidewinding gaits with 2 spatial

waves (Kl = 2, Kv=Kl = 1). In both cases, the gaits are stati-

cally stable and the simulation can predict the trajectory of

body motion, with good agreement with experiments. With

this knowledge, we proceed to study the locomotion perfor-

mance of the statically unstable sidewinding gaits.

We calculate the static stability for sidewinding gaits

with different spatial frequencies (Kv = Kl = K) in Figure 5.

High spatial frequencies lead to a dense distribution of short

contact patches (Figure 3(a)) and are often statically stable.

In contrast, low spatial frequencies lead to sparse distribu-

tion of long contact patches (Figure 3(b1)) and are often

not statically stable.

To investigate the behavior of statically unstable side-

winding gaits, we perform similar experiments on side-

winding gaits with 0.9 spatial wave and 1.5 waves on our

robot (Figure 1(b)). We set horizontal amplitude Al = 40Kl

(unit of amplitudes: degrees), vertical amplitude

Av = 8:5Kv, and a temporal frequency f = 2:0 Hz for all

the robot experiments unless otherwise stated. Snapshots of

the robot implementing such gaits are shown in Figure 6.

Good agreement between experiment and theory is

observed in the sidewinding gait with 1.5 spatial waves.

However, we observe significant discrepancies between the

simulation and robot experiments the sidewinding gait with

0.9 spatial waves (see Figure 6). We hypothesize that at

low spatial frequency, the configuration of the robot is not

statically stable (static stability = 0.34 for 0.9 spatial wave,

static stability = 0.83 for 1.5 spatial waves), which leads to

the robot falling down (see Figure 3(b) and (c)) and causes

contact patterns different from expectation. The unexpected

touchdown can change the distribution of ground reaction

forces and therefore lead to motions in other directions (in

this case, turning).

We further conducted robot experiments across a range

of spatial frequencies. Those robot experiments showed that

such discrepancies (stability related turning) vanished at

high spatial frequencies. We observed that, the cut-off static

stability that leads to unexpected behavior is around 0.5. In

this way, we use 0.5 as the threshold to determine the static

stability in later analysis.

4.3. Temporal frequency dependency

Despite being statically stable, it is possible that, when

operated at high temporal frequency, the acquired dynamic

stability can compensate for the loss of static stability.

Following this idea, we test the effect of the temporal fre-

quency on the performance of gaits.

(a)

(b)

Fig. 5. Effect of spatial frequency on static stability. (a) The top

panel shows the relationship between the spatial frequency

(Kv = Kl = K) and the static stability. Robot experiments showed

that significant turning (bottom panel) was observed in gaits with

low static stability (top panel) and the turning vanished at gaits

with high static stability. (b) We directly plotted the relationship

between the body rotation and static stability. The curve appeared

to be piecewise linear function. In the range where the static

stability is less than 0.5, the body rotation grows almost linearly

with the loss of static stability (R2 = 0:99), whereas in the range

where the static stability is higher than 0.5, the body rotation are

almost negligible.
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We first evaluate the effect of temporal frequency on the

translational sidewinding gait with 0.9 spatial wave

(Kl = 0:9,Kv=Kl = 1). We set Al = 508 and Av = 758 for all

the SEA robot experiments. From our static stability analy-

sis, this translational sidewinding gait is not statically stable

(static stability = 0.35). At low temporal frequency (see

Figure 7(a)), significant rotations are observed in robot

experiments, whereas at high temporal frequency, the mag-

nitude of rotation reduces but the robot rotates in a different

direction. Our experiments show that the locomotion per-

formance for statically unstable gaits is not predictable and

controllable when operated at different temporal frequen-

cies. However, the magnitude of rotation significantly

decreases when the SEA robot was operated at high tem-

poral frequency, which suggests that the loss of static stabi-

lity can be compensated by emergent dynamic stability at

high speed.

Next, we evaluate the temporal frequency dependence

of the rotational sidewinding gait from Astley et al. (2015):

Kl = 1:5, Kv=Kl = 0:6, and f0 = p=2. From our static sta-

bility analysis, the rotational sidewinding gait is not stati-

cally stable (static stability = 0.46). In addition, numerical

simulation predicts that the rotational sidewinding gaits

should lead to counterclockwise rotation, in contrast with

the results in Astley et al. (2015). Therefore, we suspect

that the rotational sidewinding gait is driven by the unex-

pected touchdowns and, therefore, will be strongly temporal

frequency dependent. SEA robot experiments verified that

locomotion performance (Figure 7(b)) in the rotational

sidewinding gait is strongly correlated with the temporal

frequency. Higher rotation angles are achieved when the

SEA robot operated at low temporal frequency.

4.4. Stabilization by contact modulation

We use the algorithms proposed in Section 3 to stabilize

the statically unstable translational and rotational sidewind-

ing gaits. As discussed previously, the translational side-

winding gait with 0.9 spatial wave is not statically stable.

We show that we can stabilize this gait by increasing the

V–L ratio Kv=Kl to 1.2. From the lateral height function

(Figure 2(b)), we take f0 = 1:076 to optimize the surface

enclosed in the lateral height function. The static stability

analysis suggests that this gait is statically stable (static sta-

bility = 0.5). We implement this gait on SEA robot experi-

ments (Figure 8(a)), which show that no significant turning

was observed over our range of temporal frequencies.

Note that the stabilized translational sidewinding gait

(Kl = 0:9, Kv=Kl = 1:2) exhibited effective lateral displace-

ment. SEA robot experiments demonstrate that the average

lateral displacement per gait cycle is 0:6960:02 body

lengths per cycle, significantly greater than the displace-

ment (0:4260:01 body length per gait cycle) of the transla-

tional sidewinding gait with 1.5 spatial waves (Kl = 1:5,

Kv=Kl = 1).

We next stabilize the rotational sidewinding gait with

1.5 spatial waves, Kl = 1:5. We show that we can stabilize

this gait by raising the V–L ratio Kv=Kl to 1.3. From the

rotational height function (Figure 2(a)), we take f0 = 1:02

to optimize the surface enclosed in the rotational height

function. The static stability analysis suggests that this gait

is statically stable (static stability = 0.62). We implement

this gait on the SEA robot (Figure 8(b)), revealing that the

locomotion performance (rotation per gait cycle) is robust

over a range of temporal frequencies.

4.5. General sidewinding gait formula

4.5.1. Empirical sidewinding governing equation. As dis-

cussed earlier, the coordination pattern of horizontal and

vertical waves in sidewinding locomotion has been well

studied and documented (Astley et al., 2015, 2020; Burdick

et al., 1993; Hu et al., 2009; Marvi et al., 2014; Rieser

et al., 2019). Some of the well-known sidewinding gaits are

(a) (a)

Fig. 6. Discrepancy between robot experiments and simulation

at low spatial frequency. (Top) The trajectories of body motion in

six gait cycles. The colors represent gait periods. Initial positions

of the robot indicated by the black circles. (Bottom)

Comparisons of time evolution of displacement of the simulation

and robot experiments. We compared the low-spatial-frequency

gait (a) and high-spatial-frequency gait (b). The simulation–

experiment discrepancy occurs in low-spatial-frequency gaits.

The unit and the axis labels in all panels are the same.
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summarized in Table 1. In previous sections, we showed

that there is a broad range of gait parameters that can pro-

duce pure translation or pure rotation. In this section, we

explore the question of whether empirical equations gov-

erning sidewinding gait parameters exist and can be identi-

fied. Such equation can help us better understand the

kinematic principles behind the seeming complex sidewind-

ing motion.

First, we show in Figure 9(a) that when we fix the hori-

zontal spatial frequency Kl and modulate the V–L ratio, the

patterns of height functions change accordingly.

Surprisingly, we note that the emerging f0 linearly corre-

lates with the V–L ratio Kv=Kl, with slope a = � 0:44 and

intercept b = 1:2 (R2 = 0:96). We then investigate how the

slope and intercept are related to the horizontal spatial fre-

quency Kl. From Figure 9(b), we see that both slope a and

intercept b linearly correlate with Kl. Therefore, we can for-

mulate an empirical function that governs the sidewinding

gait parameters for the pure sideways translational motion

(R2 = 0:98):

(a) (b)

Fig. 7. Temporal frequency dependency of unstable gaits. Dependence of the rotation angle (per cycle) on the temporal frequency of

(a) statically unstable translational sidewinding gaits and (b) statically unstable rotational sidewinding gaits on SEA robot experiments.

The subplots (i) and (ii) show the snapshots of the SEA robot implementing gaits in low temporal frequency (0.2 Hz, red) and high

temporal frequency (2.0 Hz, blue) over three gait cycles.

(b)(a)

Fig. 8. Robustness of statically stable gaits as a function of temporal frequency. Dependence of the rotation angle (per cycle) on the

temporal frequency of (a) the stabilized translational sidewinding gaits and (b) the stabilized rotational sidewinding gaits on SEA

robot experiments. In both cases, the rotation angle is steady over a range of temporal frequencies. The unit and the axis labels in all

panels are the same. The subplots (i) and (ii) show the snapshots of the SEA robot implementing gaits in low temporal frequency (0.2

Hz, red) and high temporal frequency (2.0 Hz, blue) over three gait cycles.
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f0

2p
= � 0:438(Kv � Kl)+ 0:750 ð18Þ

Similarly, we can obtain the empirical equation that gov-

erns the sidewinding gait parameters for backwards transla-

tion (enables pure sideways translation in the opposite

direction to the motion enabled by (18), R2 = 0:98):

f0

2p
= � 0:438(Kv � Kl)+ 0:250 ð19Þ

CW in-place turning (maximal area in rotation height

function, R2 = 0:98)

f0

2p
= � 0:438(Kv � Kl)+ 0:498 ð20Þ

and counterclockwise in-place turning (minimal area in

rotation height function, R2 = 0:98)

f0

2p
= � 0:438(Kv � Kl)+ 0:001 ð21Þ

4.5.2. Simple model for sidewinding governing

equations. In this section, we develop a model to derive

the conditions for sidewinding gaits that exhibit T-side-

winding and R-sidewinding.

Consider a continuous traveling wave (Figure 9(c)) in

the CoM frame. The lateral displacement of a body segment

can be expressed as d(s, t)= dm sin (vt � 2pKls), where

dm is the amplitude of undulation. Its non-swinging-state

spans the period

ftjt 2 ½f0 + 2pKvs, f0 + 2pKvs + p�g

To simplify the derivation, we use a linear expression

F = bv to model the ground reaction force instead of the

discontinuous Coulomb friction. Although this linear

expression differs from the Coulomb friction (see (17)), it

can at least offer reasonably good local approximations,

especially when v is small (Selmic and Lewis, 2002). In

addition, the linear expression can also allow us to study

the kinematics analytically. In this way, the ground reaction

force can be calculated as

F(s, t)= b
∂d(s, t)

∂t
= fm cos (vt � 2pKls)

where fm is the amplitude of ground reaction force. Then

we can calculate the angular momentum contribution (with

respect to CoM frame) at position s over a period as

L(s)=

Z f0 + 2pKvs + p

f0 + 2pKvs

s� 1

2

� �
fm cos (vt � 2pKls)

= Lm s� 1

2

� �
sin (f0 + 2ps(Kv � Kl))

where Lm is the amplitude of angular momentum. We then

propose a sufficient condition for pure translation without

rotation in locomotion as L(s)+ L(1� s)= 0, meaning that

(a)

(b) (c)

Fig. 9. Extended sidewinding gait formula. (a) Height functions for different V–L ratios with fixed Kl = 1:0. We showed that while we

change the V–L ratio, the optimal phase f0 emerged to increase linearly from height function predictions. We then ran regression and we do

find that f0=2p linearly correlates with V–L ratio Kv=Kl, under slopes a = � 0:44 and intercept b = 1:2. (b) We then test how the slopes

and intercept correlates with the horizontal spatial frequency Kl. It turns out that both the slope a and the intercept b linearly correlate with

Kl (a;� 0:439Kl + 0:001, b;0:439Kl + 0:750). (c) A model to explain the empirical equations. We develop our model in CoM frame,

neglecting the forward displacement (along the direction) of body segments, and only investigate the effect of lateral displacement.
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the angular momentum contributions from two body seg-

ments symmetric about the CoM cancel. Solving for

L(s)+ L(1� s)= 0, we obtain

f0

2p
= � 1

2
(Kv � Kl)+

1

4
+

1

2
k

where k 2 Z.

In the discrete case, where in a N -link robot (or a

(N � 1)-joint robot, N as an odd number), the central link

is located at i = N�1
2

, therefore the governing equation

should be modified to

f0

2p
= � N � 1

2N
(Kv � Kl)+

1

4
+

1

2
k ð22Þ

In our case, N = 17, the analytic equation ((22)) and

empirical equation (k = 1 for (18) and k = 0 for (19)) are

close in numerical values.

Similar to the pure translation without rotation situation,

the maximal CW/counterclockwise in-place rotation situa-

tion can be expressed as L(s)= L(1� s), where the angular

momentum contribution from two body segments sym-

metric to CoM have the same direction. Solving for

L(s)= L(1� s), we can obtain the continuous case

f0

2p
= � 1

2
(Kv � Kl)+

1

2
k

and discrete condition

f0

2p
= � N � 1

2N
(Kv � Kl)+

1

2
k ð23Þ

where k 2 Z. Note that, in our case, N = 17, thus (23) are

close to the empirical equations (k = 1 for (20) and k = 0

for (21)).

5. Discussion

5.1. Sidewinding gait family

In previous work, T-sidewinding gaits were described as the

superposition of body waves in the horizontal and the verti-

cal planes of the same spatial frequency (Kv = Kl). This

equality limited the applicability of sidewinding gaits, espe-

cially at low temporal frequency. In this work, we showed

that Kv = Kl is not necessary to produce translational side-

winding locomotion. In fact, for almost any V–L ratio,

Kv=Kl, we can always find a f0 to produce pure translation.

In our expanded sidewinding gait family, smaller V–L

ratio in general corresponds to faster but less-stable locomo-

tion; greater V–L ratio, in general, corresponds to slower but

more stable gaits. By modulating the V–L ratio, we can sys-

tematically tune the balance between the speed and stability.

5.2. Mechanisms of frequency turning gaits

Turning motions of limbless robots have been less studied

than translational motion. R-sidewinding (also known as

frequency turning in Astley et al. (2015), modulating the

V–L ratio with fixed phase lag f0 = p=2) was identified as

an effective in-place turning strategy for limbless locomo-

tors (Astley et al., 2015). However, the mechanism of fre-

quency turning gaits was not well understood.

In this article, we studied frequency turning gaits sys-

tematically. Static stability analysis shows that the fre-

quency turning gaits with V–L ratio greater than one are

statically stable. Moreover, SEA robot experiments showed

that the locomotion performance of frequency turning gaits

with V–L ratio greater than one was not temporal frequency

dependent. Our kinematic model suggested that it is the

changes in the symmetry of ground reaction forces that lead

to the changes in the direction of motion.

On the other hand, in the simulation and geometric

mechanics prediction, the frequency turning gaits should

lead to counterclockwise turning when the V–L ratio is less

than one, which contradicts the experimental results.

Furthermore, static stability analysis shows that the fre-

quency turning gaits with V–L ratio less than one are not

statically stable. SEA robot experiments also suggested that

their locomotion performances are not robust over the tem-

poral frequencies. In this way, we speculate that the fre-

quency turning gaits with V–L ratio less than one are

driven by the unexpected ground reaction forces in the

unstable configurations.

6. Conclusion

In this article, we have shown that, at low temporal fre-

quency, statically unstable sidewinding gaits have undesir-

able locomotion performance and deviate from simulation

expectations. In other words, these unstable gaits are pre-

dictable only at high temporal frequency, where the static

instability can be compensated for by the gained dynamic

stability. In fact, the loss of static stability limits the feasi-

ble choices of sidewinding gaits at low temporal frequency.

We have proposed an approach to stabilize these stati-

cally unstable sidewinding gaits by modulating the spatial

frequency of the vertical wave. We have used height func-

tions, analytic tools previously developed in the geometric

mechanics literature, to coordinate the horizontal wave and

vertical wave to produce effective motion in the desired

directions. Robot experiments have verified that the tem-

poral frequency dependence was eliminated in stabilized

sidewinding gaits.

In this way, we have greatly expanded the range of stati-

cally stable sidewinding gaits by introducing another con-

trol variable Kv=Kl to regulate the trade-off between the

static stability and the speed (temporal frequency).

Limbless robots in the real world should not only achieve

effective locomotive performances at high speed but also

locomote stably at low speed. For example, in the scenario

of snake robots navigating through cluttered environments

for search and rescue, stability is often more important than

the speed. Hence, our method expands the range of stati-

cally stable sidewinding gaits and extends the applicability

14 The International Journal of Robotics Research 00(0)



of limbless robots to those environments where being oper-

ated in high temporal frequency is not possible. Our work

can also generate testable neuromechanical control hypoth-

eses for how living systems coordinate multiple body

waves to translate or rotate stably and/or rapidly.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Examples of the
SEA robot experiments
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