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Abstract
Smarticles or smart active particles are small robots equipped with only basic movement and sensing abilities that are incapa-
ble of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these 
very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. 
We show that an ensemble of smarticles constrained to remain close to one another (which we call a supersmarticle), achieves 
directed locomotion toward or away from a light source, a phenomenon known as phototaxing. We present experimental and 
theoretical models of phototactic supersmarticles that collectively move with a directed displacement in response to light. 
The motion of the supersmarticle is stochastic, performing approximate free diffusion, and is a result of chaotic interactions 
among smarticles. The system can be directed by introducing asymmetries among the individual smarticle’s behavior, in 
our case, by varying activity levels in response to light, resulting in supersmarticle-biased motion.

Keywords  Swarm robotics · Locomotion · Phototaxing · Active matter · Programmable matter

1  Introduction

In developing a system of programmable matter, one hopes 
to create a material or substance that can utilize user input 
or stimuli from its environment to change its physical prop-
erties in a programmable fashion. Many such systems have 
been proposed (e.g., smart materials, synthetic cells, and 
modular and swarm robotics) and each attempts to perform 
tasks subject to domain-specific capabilities and constraints. 

In this paper, we are interested in active programmable 
matter, where the energy input takes place directly at the 
scale of each active (matter) particle and allows for self-
propelled movement [1].1 We investigate how such a system 
can achieve directed locomotion, wherein the individual par-
ticles move together as a collective in a desired direction.

Specifically, we consider active programmable mat-
ter ensembles composed of particles that individually are 
incapable of locomotion. When constrained to remain in 
close proximity to other particles, we show that the overall 
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ensemble can generate movement. Moreover, external stim-
uli that introduce asymmetries into the system with regards 
to individual particle activity can be used to produce a mode 
of directed displacement, either towards or away from a light 
source, known as phototaxing. We investigate this phenom-
enon through both experimental and theoretical models.

We show, in Sect. 3, that phototaxing emerges in testbed 
experiments on a constrained collection of smarticles (that 
we call a supersmarticle). A smarticle is a small, 3-link, 
planar robot, developed by Goldman’s group, equipped 
with sensing abilities but incapable of rotating or displacing 
individually. A supersmarticle is a collection of smarticles 
enclosed by an unanchored rigid ring. One can think of a 
supersmarticle as a “robot made of robots” which achieves 
capabilities greater than any individual smarticle; phototax-
ing is one such capability.

To investigate phototaxing from a theoretical perspec-
tive, we utilize previous work on self-organizing particle 
systems, that abstractly describes programmable matter as a 
collection of simple computational elements (particles) with 
limited memory that each execute fully distributed, local, 
and asynchronous algorithms to solve system-wide problems 
of movement, configuration, and coordination (e.g., [2]). 
Recent work applying stochastic approaches to algorithms 
for self-organizing particle systems has yielded surprisingly 
fruitful results, producing local algorithms that are robust, 
nearly oblivious, and truly decentralized. This approach was 
initially applied to develop an algorithm for compression in 
self-organizing particle systems under the assumptions of 
the geometric amoebot model [3]. To solve the compression 
problem, particles gather as tightly together as possible, as in 
a sphere or its equivalent in the presence of some underlying 
geometry. This phenomenon is observed in natural systems 
(e.g., fire ants forming floating rafts [4]).

1.1 � Our results

In this paper, we demonstrate how one can create a phototax-
ing particle ensemble by giving an algorithm for an abstract 
particle system under the amoebot model in which phototax-
ing is observed. It is achieved, rather remarkably, with just 
one very subtle modification to the compression algorithm: 
particles become more (or less) active when they sense light. 
In Sect. 4, we formally prove that phototaxing occurs for 
systems of two and three particles; we also present simula-
tion results of our algorithms for much larger systems that 
demonstrate the same behavior. We note that in the amoebot 
model, unlike smarticles, individual particles are capable 
of movement, but this will be undirected regardless of how 
active they become in response to a light source. In con-
trast, we show that groups of particles can achieve directed 
displacement in response to light in the theoretical model, 
similar to the smarticles.

Both the physical and theoretical systems we consider 
have three components: (1) individual particles move reg-
ularly with no sense of direction, (2) there is a constraint 
ensuring the particles remain in close proximity to one 
another, and (3) particles’ activity changes in response to 
light. In both cases, these basic requirements suffice to pro-
duce phototaxing. Perhaps the most surprising result is that 
phototaxing can be achieved without all particles knowing 
the direction of the light source; the occlusion of light by 
individual particles suffices for the ensemble as a whole to 
“know” where the light is and move accordingly, entirely via 
local distributed algorithms. We posit that more generally, 
many other systems with these three features should also be 
phototactic.

The remainder of this paper is organized as follows: in 
Sect. 1.2, we present a brief overview of related work. In 
Sect. 2, we describe the physical smarticles and the theoreti-
cal abstractions that we will use in this paper. Section 3 pre-
sents our experimental testbed results on phototactic supers-
marticles, which were the inspiration for the theoretical and 
simulation analysis on an abstraction of smarticle ensem-
bles that we present in Sect. 4. We present our concluding 
remarks, including directions for future work, in Sect. 5.

1.2 � Related work

When examining the recently proposed and realized sys-
tems of programmable matter, one can distinguish between 
passive (e.g., [5–7]) and active (e.g., [8–11]) systems. Our 
work falls within the latter category, which distinguishes 
itself from passive systems due to self-propelled motion at 
the particle level. Examples of active programmable matter 
systems include swarm robotics and various other models 
of modular robotics.

Swarm robotics systems usually involve a collection of 
autonomous robots that move freely in space with limited 
sensing and communication ranges. These systems can per-
form a variety of tasks including gathering (e.g., [8]), shape 
formation (e.g., [9]), and imitating the collective behavior of 
natural systems (e.g., [10]); however, the individual robots 
are more complex and have more powerful computational 
capabilities than those we consider. Modular self-reconfig-
urable robotic systems focus on motion planning and control 
of kinematic robots to achieve dynamic morphology (e.g., 
[11]). The nubot [12] and amoebot models [13] both seek to 
provide a formal framework for rigorous algorithmic study 
of active programmable matter; we work with the latter 
(detailed in Sect. 2.2).

In our physical experiments, our supersmarticles achieve 
phototaxing by changing the behavior of individual smarti-
cles in response to light, making some of them inactive. We 
believe that the inactive smarticles can be approximated as 
a loose extension of the boundary, and one whose collision 
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model is softer than the normal rigid boundary. This is con-
sistent with previous work done with randomly diffusing 
self-propelled particles in [14, 15]. These studies investi-
gated systems of self-propelled active particles enclosed in 
a boundary. The boundary’s perimeter was divided into two 
sections, each composed of distinct materials, one half with 
a softer potential and the other half a more rigid potential. 
They found the applied pressure on the soft boundary from 
the particles was larger than on the more rigid boundary. 
We utilize this emergent response resulting from physical 
interactions, shown previously in simulation, in experiment 
to generate directed motion from a collection of individually 
non-motile robotic units.

2 � Preliminaries

2.1 � Smarticles

To explore emergent phenomena that result from collections 
of entities with limited mobility and sensing, we developed 
what we are calling “smarticles”. Smarticles, or smart par-
ticles, are small 14 × 2.5 × 3 cm robots which can change 
their shape in situ, but are incapable of rotating or displac-
ing individually. Each smarticle is a three-link, two revolute 
joint, planar robot where only the center link is in contact 
with the ground.

Each smarticle consists of two Power HD-1440A MicroS-
ervos, a MEMS analog omnidirectional microphone, two 
photoresistors, a current sensing resistor, and a re-program-
mable Arduino Pro Mini 328–3.3V/8MHz, which handles 
the ADC and servo control. The two servos control the 
smarticle’s two outer links, allowing the smarticle to fully 
explore its two-dimensional configuration space. The micro-
phone and pair of photoresistors represent two channels 
through which we can send basic commands: using vary-
ing frequency ranges of sound or controlling levels of light. 
The current sensing resistor detects current draw from the 
servos, and thus the torque they are experiencing, allowing 
each smarticle to sense its own stress state. The links of the 
smarticles were 3D printed, ensuring uniform construction 
between all smarticles. Each smarticle is capable of perform-
ing predefined shape changes in the joint space. When we 
place a collection of smarticles inside an unanchored ring, 
we call this new assemblage a supersmarticle (Fig. 1).

2.2 � The geometric amoebot model

To study smarticle systems from a more formal perspective, 
we turn to self-organizing particle systems, which abstract 
away from specific instantiations of programmable matter to 
a more general model. This approach describes programma-
ble matter as a collection of simple computational elements 

(particles) with limited memory that each execute fully dis-
tributed, local, asynchronous algorithms to solve system-
wide problems of movement, configuration, and coordina-
tion. In the geometric amoebot model, space is modeled 
as the infinite triangular lattice G� (Fig. 2a). Each particle 
occupies a distinct lattice point and can move along lattice 
edges. Each particle is anonymous, and there is no shared 
coordinate system or global sense of orientation. Particles 
interact only if they are neighbors, that is, if they occupy 
adjacent vertices of the lattice. Every particle has a constant-
size, local memory which both it and its neighbors are able 
to read from and write to for communication. Due to the 
limitation of constant-size memory, particles cannot know 
the total number of particles in the system or any estimate of 
this quantity. We assume that any conflicts (of movement or 
shared memory writes) are resolved arbitrarily. Full model 
details can be found in [13].

Fig. 1   a A supersmarticle composed of 5 individual smarticles. A 
single smarticle, as viewed from the b front and c rear
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For phototaxing, we furthermore assume that each parti-
cle can sense light, and that particles can occlude that light. 
More specifically, we consider point light sources that broad-
cast along rays in G� . The light from a source is sensed only 
by the first particle in the lattice line along which the light 
is shining, and not by any other particles that may be in that 
lattice line (Fig. 2b).

2.3 � Compression

Our local distributed algorithm for phototaxing under the 
assumptions of the geometric amoebot model uses the sto-
chastic compression algorithm of Cannon et al. [3] as a 
subroutine, so we present a high-level summary here. We 
assume particles start in a connected configuration, and we 
design algorithms that ensure they become and remain sim-
ply connected. Variants of the compression algorithm in [3] 
produce a variety of other useful behaviors, including expan-
sion over as wide an area as possible, coating an arbitrarily 
shaped surface, spanning fixed sites, and forming shortcut 
bridges [16] (a behavior also observed in army ants [17]); 
here, we show another variant produces phototaxing. For 
all of these problems, tools from Markov chain analysis and 
distributed algorithms allow us to relate local and global 
optimal behavior.

The stochastic algorithm in [3] achieves compression by 
favoring moves that increase the number of edges in the 
particle system configuration, where an edge of a configu-
ration is an edge of G� where both endpoints are occupied 
by particles. Since the total number of particles stays fixed, 
maximizing the number of edges within a configuration is 
equivalent to minimizing the number of edges on the perim-
eter. The compression algorithm takes as input a parameter � 
that controls how desirable it is for a particle to have neigh-
bors, where 𝜆 > 1 favors configurations with more neighbor-
ing pairs of particles and thus more edges. The distributed 
compression algorithm ensures the system converges to a 
distribution that favors having more edges using a Metropo-
lis filter [18, 19], a tool from Markov chain analysis that 

allows local probabilities of moves to be set so that global 
convergence to a certain distribution occurs. Specifically, 
our algorithms incorporate carefully chosen probabilities for 
particle moves so that the system converges to a stationary 
distribution � over particle system configurations � where 
�(�) ∼ �e(�) , where e(�) is the number of edges of configura-
tion � . When 𝜆 > 1 , this leads directly to distribution � plac-
ing the most weight on configurations with the most edges, 
which provably are the most compressed configurations. In 
particular, for any 𝜆 > 2 +

√
2 ∼ 3.42 , under � all but an 

exponentially small fraction of particle configurations will 
be compressed. This means that the resulting Markov chain 
and its associated distributed local algorithm converge to 
a distribution over particle configurations where with very 
high probability compression is achieved.

Algorithm 1 is a simplified, high level description of 
the local distributed algorithm executed by each particle to 
achieve system-level compression [3]; parameter � , the input 
to the compression algorithm, is known by each particle. 
A simulated asynchronous execution of this compression 
algorithm is shown in Fig. 3. 

Algorithm 1 (Compression for particle P )
1: Let � denote P ’s current location; choose neighboring

location �′ uniformly at random from the six possible
choices in G∆.

2: if �′ is unoccupied and certain local connectivity condi-
tions hold in the neighborhood of � ∪ �′ then

3: Generate a random number q ∈ (0, 1).
4: Let e be the number of other particles adjacent to

location � and e′ be the number adjacent to �′.
5: if q < λe′−e then Move to �′.
6: else Remain at �.

To analyze the limiting behavior of the algorithm, we 
assume each particle activates and executes Algorithm 1 at 
a time drawn randomly from a Poisson distribution. This has 
the benefit of indirectly ensuring that our particle activations 
are fair, in the sense that for any particle P and any time 
t, P will always be activated at least once after t. Further 
details regarding resolutions of the conflicts (of movement 
or shared memory writes) that arise when nearby particles 
are activated at nearly the same time are available in [3]; 
most importantly, these efforts ensure that for the formal 
analysis, we may assume that at most one particle is active 
(performing a bounded amount of computation and at most 
one movement) at a time. This follows the standard asyn-
chronous model of computation [20], which greatly simpli-
fies analysis. In particular, one can define the (centralized) 
Markov chain  associated with Algorithm 1 as follows:  
picks a particle uniformly at random and then executes the 
steps of Algorithm 1 for that particle. This enables the use 
of techniques from Markov chain analysis to prove guaran-
tees about the behavior of the system when each particle is 

(a) (b)

Fig. 2   a A section of the triangular lattice G� . b An example particle 
system with some point light sources broadcasting upward along lat-
tice lines; the particles that sense the light are outlined, while all oth-
ers are occluded
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independently executing Algorithm 1; we now summarize 
those guarantees.

Theorem 1  Consider a self-organizing particle system under 
the geometric amoebot model where each particle individu-
ally executes Algorithm 1 with some fixed 𝜆 > 2 +

√
2 . 

The particle system will always remain simply connected 
and will converge to a distribution over configurations 
�(�) ∼ �e(�) where with all but exponentially small prob-
ability the system is compressed.

3 � Physical phototactic supersmarticles

For each experiment, we place the supersmarticle, i.e., the 
smarticles and ring, on a level plane and each smarticle per-
forms a gait, where a gait is a closed periodic trajectory in 
the joint space of a smarticle. The smarticles used in the 
experiments were programmed to exhibit two behavioral 
states: one where the smarticle servos traced a square drawn 
in the 2-dimensional joint space as seen in Fig. 4, called the 
active state, and another where the servos were held at a 
fixed position such that all links of the smarticle were paral-
lel, called the inactive state. Smarticles will persist in the 
active state until either photoresistors—one found on either 
sides of the smarticle—detect light above a certain thresh-
old. When above the threshold, the smarticle will persist in 

the inactive state until the light level sensed by either of its 
photoresistors drops below the threshold and will become 
active again.

Fig. 3   The compression algo-
rithm for 100 particles initially 
in a line after a 1 million, b 2 
million, c 3 million, d 4 million 
and e 5 million iterations of 
Algorithm 1 (Markov chain  ) 
with bias � = 4 (a)

(b) (c)

(d) (e)

1α

2α

(b)
1α 2α

w

l(a)

Fig. 4   a Configuration space of a single smarticle defined by the 
angles �

1
 and �

2
 between the outer and inner links. b The square gait 

with selected configurations illustrated
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The experimental setup is planar, and hence the smarti-
cle nearest to the light source occludes light from reaching 
other smarticles behind it inside the supersmarticle. Given 
the light sensor locations on the smarticle body and the 
geometry of the straight configuration, typically only one 
smarticle at a time is inactive. The inactive smarticle will 
occlude light from reaching its neighbors, thus ensuring its 
neighbors stay below the photoresistor threshold necessary 
to trigger a state change. The occlusion of the light source 
effectively produces a light gradient across the supersmarti-
cle which provides a decentralized, stigmergic communica-
tion method. Each smarticle’s behavior is a response to the 
local environment, which in turn tends to affect the local 
environment of its neighbors.

3.1 � Experimental methods

Two types of experiments were performed: one where all 
smarticles remained active and another with both active and 
inactive smarticles. In the second experiment, one side of 
the system is illuminated with a light source, thereby forcing 
certain smarticles into the inactive state. All experiments 
were performed in a dark room, so that smarticles only 
entered the inactive state when subjected to the controlling 
light source input.

Experimental trials were initiated with the supersmarticle 
at the center of a 0.6× 0.6 m test plate and ended when the 
supersmarticle had translated to an edge of the test plane. 
When internal supersmarticle configurations exhibited slow 
displacement rates, trails were cropped at 10 min.

Multiple trials were taken with the light source at one of 
four locations to minimize systematic error. In each light 
experiment, one light source was placed at the center of an 
edge of the test plate. The light source was directed towards 
the nearest exposed photoresistor, thereby rendering a single 
smarticle within the system inactive.

Trajectories of the supersmarticle center of geometry 
were recorded using OptiTrack infrared video recording 
technology, and the data were exported and analyzed in 
MATLAB using a MSD analysis package [21].

3.2 � Experimental results and discussion

The supersmarticle’s motion was dependent on the activity 
within the ring. Diffusive behavior was observed in both 
the control (Fig. 5a,c) and directed experiments (Fig. 5b,d), 
but the presence of inactive smarticles near the light source 
introduces a biased drift towards the light. The light-con-
trolled supersmarticle system consistently diffused in the 
direction of the light source, with an average success rate of 
82.3 ± 6.0% across all trials.

Mean squared displacement (MSD) curves are useful for 
describing the types of diffusive behavior present in a given 
dynamic system [22]. The MSD is defined as:

where � is the diffusion coefficient for the system. Subdiffu-
sive, free diffusive, and superdiffusive movements are char-
acterized by 0 < 𝛾 < 1 , � = 1 , and 1 < 𝛾 < 2 , respectively. 
By fitting a line to the log–log plot of the MSD curve, the 
slope of the resulting fit will be the diffusion parameter �.

After performing our analyses across all data sets, 
the mean slope for fully active system was computed 
to be 0.99 m2∕s and the light-directed systems were 
1.04 ± 0.02 m2∕s . The application of the light-controlled 
algorithm resulted in a shift in diffusive behavior: from a 
freely diffusive system to a superdiffusive system where the 
active transport phenomenon causes the system to propagate 
towards the light source.

4 � A phototactic algorithm

To complement the physical experiments, we developed a 
local distributed algorithm for phototaxing in self-organizing 
particle systems under the geometric amoebot model. We 
prove the algorithm causes the system to diffuse in a certain 
direction in response to light when there are two or three 
particles and give simulations that demonstrate this same 
effect for larger systems.

We assume the particle system starts in some connected2 
initial configuration �0 . For phototaxing to occur, we assume 
a collection of point light sources (sufficiently far from the 
particle configuration to not interfere with its motion) broad-
cast light along lattice lines in the same direction. Specifi-
cally, we assume the light sources form an infinite jagged 
line below all the particles and broadcast light upwards, as 
in Fig. 2b. We define the height of a particle system to be 
the y-coordinate of its center of mass, and all light sources 
are assumed to have y-coordinate 0 or −1∕2 ; we assume all 
edges of G� are of length 1. We say that phototaxing occurs 
if there is some fixed number of iterations after which the 
height of the particle system has strictly increased or strictly 
decreased in expectation.

Our local distributed algorithm for phototaxing (specifi-
cally, for locomotion away from a light source) is remarkably 
simple; each particle executes Algorithm 2 when activated. 
The probability of execution in Algorithm 2 was chosen to 
be 1 / 4 because it seems to work well in practice. Smaller 

�2 = ⟨� ⋅ �⟩ − ⟨�⟩ ⋅ ⟨�⟩ = 4Dt� ,

2  The assumption of connectedness can be relaxed, but it simplifies 
the proofs while maintaining the phototaxing behavior we desire. We 
can think of connectivity and compression as playing a role analo-
gous to that of the ring in the physical model.
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values for this probability can cause different structural con-
figurations to emerge, while larger values (that are still less 
than 1) correspond to slower locomotion. Conflicts of move-
ment or shared memory writes are resolved just as they are 
for compression; recall from Sect. 2.3 that this allows us to 
assume at most one particle is active at a time. 

Algorithm 2 Phototaxing for a particle P
1: if P senses light then
2: P executes Algorithm 1.
3: else
4: P executes Algorithm 1 with probability 1

4 .

So far, we assumed all particles activate at the same rate; 
under this assumption, we will see that the particle system 
achieves the desired phototaxing when all the particles 
independently execute Algorithm 2. If instead we assume 
that it is possible for particles’ activation rates to change in 
response to light, as is the case for the physical smarticles 
of Sect. 3, then phototaxing can occur when each particle 
simply executes Algorithm 1. For instance, if particles are 

four times more likely to activate when exposed to light and 
each executes Algorithm 1 upon activation, this is equivalent 
to a system of particles with uniform activation rates execut-
ing Algorithm 2.

4.1 � Provable phototaxing for very small systems

Here, we formally verify the observed phototaxing for very 
small systems (with two or three particles) by proving that 
when the particles independently execute Algorithm 2, the 
system exhibits a drift away from the light source.

We first consider a system of two particles, each acti-
vating at the same rate and executing Algorithm 2. In this 
case, Algorithm 2 simplifies to Algorithm 3: 

Algorithm 3 Phototaxing for a particle P : 2 particles
1: Choose one of the two locations adjacent to both particles

uniformly at random; call it �.
2: if P senses light then Move to �.
3: else Move to � with probability 1

4 .

Fig. 5   a and b are trajectories 
of the supersmarticle’s center 
of geometry for unbiased and 
light-biased motion, respec-
tively. Each colored trajectory 
represents a separate trial where 
all trials begin at 0 and termi-
nate with a circle. c and d are 
lines connecting the initial and 
final positions of the supers-
marticle for each trial in unbi-
ased and light-biased motion, 
respectively. Trials where the 
light direction was not in the 
+x direction were rotated to +x , 
allowing comparisons between 
all trials. Illumination direction 
is depicted with the flashlight 
graphic
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Theorem 2  For a system of two particles each executing 
Algorithm 3, phototaxing occurs.

Proof  We show that after two particle activations, the 
expected height of the system has increased by at least 
3 / 64, which implies the particle system is moving away 
from the light source. Up to translation and reflection, there 
are two possible states a system of two particles can be in: 
either both particles are exposed to the light (State 1), or 
one particle occludes the other from the light (State 2); see 
Fig. 6. Regardless of state, both particles are equally likely 
to activate next. In State 1, case analysis shows the expected 
change in height after one particle activation is 0. Further-
more, with probability 1 / 2 the system remains in State 1 
and with probability 1 / 2 it enters State 2. For a particle 
system in State 2, with probability 1 / 2 the occluded particle 
activates next, and with probability 1 / 4 it moves a distance 
of −1∕2 in the y-direction, causing the height of the system 
to decrease by 1 / 4. With the remaining probability 1 / 2, the 
particle exposed to light is activated and moves a distance of 
+1∕2 in the y-direction, causing the height of the system to 
increase by 1 / 4. Overall, in this case, the expected change 
in the height of the system is:

Beginning in State 1, we condition on the state of the sys-
tem after one activation and see that after two activations 
the expected height of the system has increased by at least 
3 / 64. Beginning in State 2, after two particle activations 
the expected height of the system has increased by at least 
3∕32 > 3∕64 . This proves the theorem. 	�  □

Thus, for systems of two particles each executing Algo-
rithm 3 upon activation, the expected distance from the 

1

2
⋅
1

4
⋅

(
−
1

4

)
+

1

2
⋅

(
+
1

4

)
=

3

32
.

light sources strictly increases over time, meaning photo-
taxing provably occurs.

The same result holds for systems of three particles, albeit 
with a slightly slower drift. For systems with exactly three 
particles, Algorithm 2 simplifies to Algorithm 4, below. 
Note that the compression bias parameter � and the move-
ment probability filter based on the number of edges in the 
system (Step 5 of Algorithm 1) begin to play a role. 

Algorithm 4 Phototaxing for a particle P : 3 particles
1: Determine possible valid locations to move to, of which

there are at most 2.
2: For each such location, set move probability to 1/2.
3: if move decreases number of edges in system then
4: Divide move probability by λ.
5: if P does not sense light then
6: Divide each move probability by 4.
7: Move to a possible valid location with the corresponding

move probability; with all remaining probability, don’t
move.

Theorem 3  For a system of three particles each executing 
Algorithm 4 with bias parameter 𝜆 > 2 +

√
2 , phototaxing 

occurs.

Proof  We show that after three particle activations the 
expected height of the system has increased by at least 
1∕(64�) . Up to translation and reflection, there are seven 
possible states the particle system could be in; all are shown 
in Fig. 7. Doing a case analysis just as for two particles, we 
see that the expected change in the height of the system after 
one particle activation is nonnegative in all seven states. 
For states (e–g), the expected increase in height after one 
particle activation is more than 1∕(64�) , and as expected 
height is nondecreasing the same holds after three parti-
cle activations. For the states (a–d), the expected change in 
height after one particle activation is zero, so we consider 
multiple particle activations at a time. For state (a), after 
one particle activation there is a positive probability it is in 
state (e) or state (g), and we can use conditional expectation 
to calculate that after two particle activations, beginning in 
state (a), the expected increase in the height of the system is 
1∕(64�) . Similarly, beginning in state (b), after two particle 
activations, the expected change in the height of the system 
is 1 / 96; because 𝜆 > 2 +

√
2 , we have 1∕96 > 1∕(64𝜆).

Beginning in states (c) and (d), it takes at least two parti-
cle moves to reach a state where there is a positive expected 
increase in height after the next particle activation; each 
reaches state (e) after two particle activations with prob-
ability 1∕18 + 1∕(9�) and state (g) after two particle activa-
tions with probability 1∕18 + 5∕(72�) . The total expected 

1/2

1/2
1/2

1/2

(a)

1/2 1/2

1/8 1/8

(b)

Fig. 6   A two-particle system and the probabilities of each particle’s 
movement if it is activated next. a If both particles are exposed to the 
light source, the expected change in height after one iteration is 0. b 
If one particle occludes the other from the light source, the expected 
change in the height after one iteration is +3∕32
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increase in height after three particle activations starting in 
either states (c) or (d) is:

since 𝜆 > 3 . Thus, for all possible states, after three particle 
activations the height of the system has strictly increased in 
expectation by at least 1∕(64�) . 	�  □

4.2 � Phototaxing simulations for larger systems

Algorithm 2 can be used to achieve phototaxing for arbitrarily 
large particle systems, not just those with two or three parti-
cles. Simulations for a system of 91 particles can be seen in 
Fig. 8. Though the motion is largely random, there is an evi-
dent general trend away from the light sources. This drift was 
consistent across all simulations of Algorithm 2. In all simula-
tions, including the one shown in Fig. 8, the particle system 
also exhibited lateral drift of varying magnitude and direction; 
that drift is not shown in Fig. 8 due to space constraints.

(
1

18
+

1

9𝜆

)
1

48
+
(
1

18
+

5

72𝜆

)
1

24
=

1

288
+

1

192𝜆
>

1

64𝜆
,

5 � Conclusion

This study presented the use of physical and simulated 
atomic agents incapable of directed motion in confined 
active matter systems which exhibit locomotion on the 
collective scale. Moreover, the responses of the individu-
als of the system to external fields were used to introduce 
asymmetries in the system, producing biased locomotion.

Robophysical studies of the supersmarticle system 
were demonstrated to probabilistically favor the direc-
tion of the inactive smarticle, though the physics which 
drives this behavior has yet to be fully explored. Future 
work will probe the underlying system dynamics to refine 
and develop a more comprehensive understanding of the 
system interactions between active and inactive particles 
which generate biased locomotion. Physical variables such 
as the masses of the particles and the confining ring and 
the friction coefficients are expected to modulate the diffu-
sive properties of the system. Additionally, the interaction 
behaviors of the particles as they move through their joint 
space trajectories may lead to various system modes of 

1/(2λ)1/(2λ)

1/(2λ)

1/(2λ)1/(8λ)

1/(8λ)

(a) E[∆h] = 0

1/2
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1/2

(b) E[∆h] = 0

1/2
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1/2
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(d) E[∆h] = 0
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(e) E[∆h] = 1
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Fig. 7   The seven states for a three-particle system (up to reflection 
and translation) and the probabilities of each particle’s movement if 
it is activated next; the expected change in the height of the system 

after one iteration beginning in each state is also shown. a E [�h] = 0 . 
b E [�h] = 0 . c E [�h] = 0 . d E [�h] = 0 . e E [�h] = 1

48
 . f E [�h] = 1

24
 . g 

E [�h] = 1

24

Fig. 8   An execution of 
Algorithm 2 with � = 4 for a 
system of 91 particles, with 
light sources that shine upwards 
shown in red, after a 0, b 10 
million, c 20 million, and d 30 
million iterations. Multiple 
executions all exhibit a drift 
upwards, as seen here

(a) (b) (c) (d)
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oscillations characterized by hysteretic displacement loops 
which lead to the biased locomotion seen in our research.

These physical features will be explored by developing 
a reduced theoretical model of the supersmarticle system 
where the smarticles are abstracted out and treated only 
as forces on a ring. This system will give insight into what 
drives the system dynamics and how biased locomotion 
arises.

We plan to continue complementing the experimental 
robophysical extensions with rigorous algorithmic studies 
of the systems to provide a better understanding on how 
to program collections of smarticles to achieve the desired 
collective behavior. Here, we extended a known algorithm 
by changing particles’ probabilities of movement; while the 
simplicity of this approach is one of its strengths, new algo-
rithmic ideas and approaches could provide further insights 
into phototaxing behavior.
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