
S1. Apparatus and experiment setup

The apparatus of the robotic swimmer device is shown in Fig. S1a. The
swimmer rests on a set of three kinematic mounts. Each mount is a 25mm ×
25mm × 25mm aluminum cube that was CNC machined at Georgia Tech’s
Montgomery Machining Mall using a Dayton Mill Drill Machine. One mount
has a ball and socket groove (constrains 3 degrees of freedom for motion),
another has a grooved slot (constrains 2 degrees of freedom for motion), and
the last has a smooth surface (constrains 1 degree of freedom for motion).
These mounts were fixed to the ground with super glue. Having the three
kinematic mounts ensures that the device has all six degrees of freedom for
motion constrained, preventing slipping or wobbling.

The triangular base of the swimmer was machined out of 0.25 inch alu-
minum using a Maxiem CNC Waterjet at Georgia Tech’s Flowers Invention
Studio. The base is an equilateral triangle with sides that are 550 mm long.
The base also has 3 holes (one at each corner) that have a thread brass insert
inside. A 0.25-inch-100-thread ultra-high precision set screw is placed inside
each brass insert, and the tip of each set screw rests on one of the kinematic
mounts. These set screws can be adjusted to make minute changes in the
angle of the base.

The side panels are machined the same way as the base and are attached
to the base using M5 bolts and corner brackets so that they stand up verti-
cally. In between the side panels, there are two 25 mm diameter air bushings
secured in the mounting boxes. When connected to air, the air bushings
blow tiny streams of air radially inward so that any rod inside of them is left
“floating” inside with minimal friction. Inside the air bushings, there is a 25
mm diameter steel shaft that is 450 mm tall. The bottom of the rod rests on
a 25 mm diameter flat air bearing mounted to the center of the triangular
base. Using the combination of two bushings and a bearing, the steel shaft
is supported vertically with minimal friction and allowed to rotate freely.
The air bushings, air bearings, and mounting boxes were from New Way Air
Bearings.

On top of the steel shaft is a T-Shaped connector that was 3D-printed in
PLA (polylactic acid) plastic using an Ultimaker S3 3D Printer at Georgia
Tech’s FLower’s Invention Studio. The connector has two holes that are
perpendicular to one another. The bottom hole is rigidly fastened to the
steel shaft using nuts and bolts. In the other hole of the Connector there is
a 15 mm diameter carbon fiber arm, that extends out 400 mm, which stays
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Figure S1: Apparatus and experiment setup of the swimmer. (a) The swim-
mer. (b) The motor module. (c) The tunable friction block.

perpendicular to the steel shaft and parallel to the ground. At the end of
this carbon fiber arm are the tracks and motors of the swimmer.

Each curved track has a center of curvature at the point where the steel
shaft and carbon fiber arm meet and a radius of curvature of 400 mm (same
as the length the carbon fiber arm extends out). Each has an arc length of
280 mm (forms an angle of 0.7 rad). The four curved tracks are all connected
in the middle of the rod on a connector piece. Each track has teeth running
along the outside. Traveling on each track is a motor module (Fig. S1b). The
module features a mount that the AX-12A servo motor (from ROBOTIS) is
rigidly attached to using screws and a gear that is rigidly attached to the
motor. The gear’s teeth line up with the teeth on the track allowing the
motor to travel up and down the curve. Opposite each AX-12A servo motor
is a counterweight with a weight equivalent to the AX-12A servo motor that
moves along the track with the motor. The four curved tracks, the connector,
the four gears, and the four motor mounts were printed in ABS (acrylonitrile
butadiene styrene) plastic using a Stratasys uPrint SE Plus Printer. To
support the tracks there are four 15 mm diameter wooden dowel rods that
extend from the carbon fiber arm to the end of each curved track (∼25 mm
tall). Wooden rods stabilize the tracks and prevent unwanted shaking.

The four AX-12A servo motors are all connected to a USB communication
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converter U2D2 (from ROBOTIS) using long soft wires so that the U2D2
does not rest on the swimmer. The wires remain loose and do not interfere
with the swimming motion. The servo motors are controlled by position
commands via TTL Communication.

A polyurethane foam is attached to the shaft to create tunable friction on
the swimmer. The foam is fixed on a sliding block (Fig. S1c), which allows us
to adjust the normal force, therefore the friction, by adjusting the set screw.

To track the motion of the swimmer in its position space, six IR reflective
markers were attached and tracked the trajectories of the markers using an
OptiTrack motion capture system with six OptiTrack Flex 13 cameras. Four
markers were attached to the motor modules, one was attached to the pivot
position on the T-connector, and the other one is attached on the carbon
fiber arm. Real-time 3D positions of the markers were captured at a 120
FPS frame rate.
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S2. Gait execution
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Figure S2: Commanded positions (a) sent to servo motors and the tracked
motor positions (b).

To avoid mechanical instability, we smooth the connection between the
piecewise strokes with sinusoidal functions. Fig. S2a shows an example of
the desired θv and θh for the gait with ϕd = −π/2 positions. In the experi-
ment, the rotary motor was controlled by the angular positions of its wheel
gear. Since the relation between θv (θh) and the position of a vertical (hori-
zontal) motor on the track is linear, and the motor position on the track is
proportional to the angular position of the motor wheel gear, the position
commands to motors were derived from θv and θh by a simple linear map-
ping. The swimmer executes the gait when all motors follow the sequences of
position commands. Fig. S2b shows the θv and θh observed from the motion
tracking system to show the quality of gait execution.

In each experiment, we executed the same sequence of gaits on the swim-
mer: the null gait, the swimming gait, and the null gait again. The first
null gait corresponds to the null stage in Fig. 4(a); the swimming gait cor-
responds to the swimming and the plateau stages; and the second null gait
corresponds to the negative momentum stage. We switched from the null
gait to the swimming gait at t = 170 s and switched back to the null gait at
t = 920 s.

Notice that there is a stage transition (from swimming to plateau) during
the swimming gait. We chose the transition point between the swimming
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and the plateau stages following the rule that – in experiment, the absolute
value of the difference between the time-averaged position at the current time
step, φ̄(tk), and the time-averaged position at the previous time step, φ̄(tk−1),
is less than a certain threshold, γ, for a certain time span, T transition. In all
results presented in the manuscript, we calculated φ̄ at a 30 Hz frequency and
set γ to be 10−4 rad and T transition to be 30 s. The choices of the thresholding
parameters were experimentally determined. The results are qualitatively
robust to changes in these choices within a reasonable range.
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S3. Equation of motion

The total angular momentum of the swimmer is composed of three parts: the
contribution from the vertical motors, the horizontal motors, and the track
system supporting the motors together with the supporting rod.

L = Lvertical + Lhorizontal + Ltrack (1)

= 2mvR
2
0 cos2 θvφ̇+ 2mhR

2
0(θ̇h + φ̇) + Itrackφ̇ (2)

If we collect the terms with φ̇ together, we have (following the “shape
dynamics” section of the Methods)

L = Iφ̇+ α̇ (3)

where now

I(t) = 2mvR
2
0 cos2 θv(t) + 2mhR

2
0 + Itrack, (4)

α(t) = 2mhR
2
0θh(t). (5)

The torque that changes the angular momentum is composed of two parts,
being the contribution from the slight residual gravity and Coulomb friction.

dL

dt
= τ = Ag + AC (6)

The force from the residual gravity is caused by the mass of the swimmer
on the equator, which normal slightly misaligns with the direction of Earth’s
gravity with an angle of θg. The residual gravity potential contributed by the
two horizontal motors, two vertical motors, and the track compose a total
residual potential energy of V = −(2mv+2mh+mtrack)gR0 sin θg cos (φ− φ0).
This leads to a torque of

Ag = −∂V/∂φ = −(2mv + 2mh +mtrack)gR0 sin θg sin (φ− φ0) (7)

where φ0 is the azimuthal position with the lowest potential energy. Without
loss of generality, we set φ0 = 0 so the torque from gravity and assume φ
is small and finally arrive at Ag = −τgφ where τg = msgR0 sin θg where
ms = 2mv + 2mh +mtrack.
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Figure S3: Setup of the swimmer. The swimmer with two horizontal
motors (each with mass mh) and two vertical motors (each with mass mv)
rotates about ns, the normal of the equator shown as the light purple plate.
The position of the swimmer, φ, the azimuthal angle of the beam arm con-
necting the center and the curved track arms, evolves as the positions of the
motors (θh, θv) move. Ideally, the normal of the equator ns should be aligned
with the opposite direction of gravity −g. In realistic experiment, we char-
acterize the small residual gravity by the angle θg (∼ 10−4 rad) between ns
and −g. We denote the minimal position of the gravity potential as φ0.

The torque from friction has a constant magnitude τC and a direction
opposite to the angular velocity so

MC = −τCsgn(φ̇) (8)

Piecing all above, we have the equation of motion as

L = Iφ̇+ α̇ (9)

L̇ = −τCsgnφ̇− τgφ (10)

where τg = (2mv + 2mh +mtrack)gR0 sin θg.
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S4. Friction characterization

To characterize and measure the friction, we tracked the decay rate of angu-
lar velocity as shown in Fig.S4a. Fig.S4b, an example of such experiment,
shows the instantaneous decay rate aC as a function of the angular velocity φ̇.
We note that it is reasonably anti-symmetric about zero, giving a symmetric
friction status such that the possible ratchet effect, which could introduce un-
wanted swimming, is nominal. When reporting the friction in the main text,
we use the acceleration evaluated for the range of angular velocity between
0.175 rad/s and 0.035 rad/s, which is the typical range of angular velocity
in the swimmer’s experiments. To average out the possible slight gravity
residue effect, we performed experiments at 5 different azimuthal positions
evenly spaced in (0, 2π). To avoid the ratchet effect, we only performed swim-
mer experiments when the discrepancy of friction between the clockwise and
counterclockwise value is less than 10 %.
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−

Figure S4: (a) The decay of angular velocity φ̇ over time in experiment. (b)
Angular acceleration over φ̇. The orange dots show the raw data. The blue
error bars show the median and the middle quartiles of the binned data.

To convert the acceleration to the torque from friction τC , we multiply
the average acceleration magnitude āC by the total moment of inertia of
the swimmer I0 = msR

2
0 where ms, R0 are the mass and the radius of the

swimmer, respectively.
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S5. Inferring the slight gravity potential

Since the gravity potential well from the slight tilting of the equator is so
shallow that direct measurement from devices such as bubble meter or optic
tracking does not have sufficient resolution due to possible error from the
mounting of trackers, we infer its depth using the long oscillation period
resulted from it.

Particularly, we perform a very long null gait in which only the horizontal
motor moves. The averaged φ (i.e., the envelope φ̄) is given by Eq. (4) in
the main text as

〈I(0)〉 ¨̄φ = −4τC〈I(0)〉
T |α̈|

[
˙̄φ− ωg

]
− τgφ̄. (11)

where ωg = 0 since there is no geometric phase enclosed. Given that the
moment of inertia is fixed as I0 = msR

2
0 in the null gait and α = 2mvR

2
0θh,

the equation for the long-time envelope is, therefore

I0
¨̄φ = − 2τCms

Tmv |θ̈h|
˙̄φ− τgφ̄. (12)

When τC is relatively small, the oscillation period of φ̄, Tenv, is approx-
imately (2π/Tenv)2 = τg/I0 where τg = msgR0 sin θg and I0 = msR

2
0. This

implies

θg ≈ sin θg =
R0

g

(
2π

Tenv

)2

. (13)

With R0 = 0.46 m, from an experiment with null gait and small friction
τ = 0.003 kg m2 s−2, we can see the period of the envelope Tenv is about 120
s and thus inferring a residual gravity of θg = 1.2× 10−4 rad.
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Figure S5: Inferring the gravity residue. The residual gravity angle is
inferred from the long-time envelope of a null gait experiment with small
friction (τ = 0.003 kg m2 s−2).

S6. Numerical integration

To obtain the equation for numerical integration, we plug the angular mo-
mentum Eq.3 into the equation of motion Eq.10, so

−τCsgn(φ̇)− τgφ =
dL

dt
(14)

=
dI

dt
φ̇+ Iφ̈+ α̈ (15)

=
∂I

∂θv
θ̇vφ̇+ Iφ̈+ α̈ (16)

Plugging in the I(θv(t)) in Eq.4 and the α in Eq.5, we finally arrive at

φ̈ = I(θv)
−1
(

2mvR
2
0 sin (2θv) θ̇vφ̇− 2mhR

2
0θ̈h − τCsgn(φ̇)− τgθ

)
(17)

The numerical simulation integrates Eq.17. The initial position φ(0) = 0
such that the swimmer starts from the bottom of the slight potential well
from the residual gravity. The initial angular velocity φ̇ is chosen that the
initial angular momentum L(0) = I(0)φ̇(0) + α̇(0) is zero.

The motor positions θv(t) and θh(t) use the commanded signal sent to the
motor (see Fig.S1). The sign function in the Coulomb friction is smoothed

10



by the arctan function with characteristic angular speed 0.01 rad/s � the
typical speed of the swimmer to avoid the numerical singularity. There are
two motors on the horizontal track and two motors on the vertical track.
The mass of each motor is 0.116 kg = mv = mh. The radius of the swimmer
is R0 = 0.46 m. The mass the track is mtrack = 0.388 kg.

For the convenience of implementing the same gait as the commanded
shape change sent to the motors, which are discrete signals requiring inter-
polation in the differential equations to be integrated, we use a numerical
scheme with fixed steps (forward Euler) so that the interpolation of the in-
put signal is time-economic. The test of convergence with step size h shows
a global (i.e. position φ) error of O(h) (and therefore local error of O(h2))
as expected for a first-order scheme. We use the step size h = 3.1 × 10−4 s
such that the relative error is 1.8 %.

ℎ = 3.1 × 10−4 s

6.1 × 10−4 s

a b

−1

Figure S6: Numerical convergence check. (a) Numerical integration of
a swimmer driven by a square swimming gait and subjected to a friction of
τC = 8.6× 10−3 kg m2s−2 and residual gravity τg = 4.0× 10−4 kg m2s−2 with
step sizes h = 3.1 × 10−4 s and 6.1 × 10−4 s. The inset shows a close-up
at around 650 s. (b) The relative error from numerical integration improves
with the decrease of step size h. The improvement largely follows a trend of
O(h), which can be seen by a comparison with the black line that has a power
of −1. Here the relative error is defined as the average of |φnum−φtruth|/|φnum|
where we use h = 7.7 × 10−5 s to approximate φtruth. The step size we use
in this study, h = 3.1× 10−4, is shown in a solid purple dot.

11



S7. Plateau and negative momentum

For small L, Eq.4 in the main text gives

0 =
1

〈I〉

(
−τC

4L̄

T |α̈(0)|
− τgφ̄

)
(18)

Lss
φss

= −τgT |α̈(0)|
4τC

= −g sin θgT |α̈(0)|
4RaC

= −gR sin θgTmh|θ̈h(0)|
2aC

(19)

To evaluate the angular momentum L = I(t)φ̇ + α̇, we compute with
all components (φ(t), I(t) = 2mvR

2 cos2 θv(t) + 2mhR
2 + ItrackR

2, α(t) =
2mhR

2θh(t)) from experimentally recorded data. As the raw angular mo-
mentum is expected to have large fluctuation, we filter it with a Gaussian
filter with width σ = T . The steady-state values of angular momentum and
φ, which are Lss and φss use the average of the last 80% in swimming stage
since the incipient part is transient.

We also want to note that the characteristic high friction τC0 = |α̈| =
2mhR

2|θ̈h| where |θ̈h| = 0.12 rad/s2 (which can be read from Fig. S2).
In fact, if we consider a moment t where L(t) = α̇(t), then after a short

time δt,

δ(Iφ̇) = δ(L− α̇) (20)

= L̇δt− α̈δt. (21)

For a large τC that we can neglect τg so that L̇ = −τCsgn(φ̇), we have

δ(Iφ̇) = (±τC − α̈)δt. (22)

This indicates that when τC > |α̈|, the steady state φ cannot be further
improved.
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Figure S7: Simulation of negative momentum. Note that the Lss gets
smaller with the torque of friction τC .
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S8. Swimmer on generic surfaces with axial

and mirror symmetries

Here we consider a generic surface with axial and mirror symmetries with
mass distribution shown in Fig.S8a. We can describe the shape by the ra-
dius R over z, the vertical coordinate in a cylindrical coordinate system.
Alternatively, R can be also viewed as a function over `v, the geodesic dis-
tance between the vertical mass and the center of the swimmer. We denote
R(z = 0) = R(`v = 0) = R0.

The kinetic energies of each horizontal mass and vertical mass with mass
m are

Th =
m

2
R2

0(φ̇+ ˙̀
h)

2 (23)

Tv =
m

2
(R2φ̇2 + ˙̀2

v) (24)

If we assume there is no external potential or friction, the Euler-Langrange
of L = 2(Th + Tv) gives

φ̇ =
R2

0

R2
0 +R2

˙̀
h + 0 ˙̀

v (25)

Therefore, the net displacement over one cycle is

∆φ =

∮
R2

0

R2
0 +R2

d`h (26)

=

∫∫
− R2

0

(R2
0 +R2)2

∂R2

∂`v
d`hd`v (27)

In conclusion, we can see that the Berry phase ∆φ can be viewed as an
effective scalar curvature field κeff integrated in the shape space.

κeff = − R2
0

(R2
0 +R2)2

∂R2

∂`v
, ∆φ =

∫∫
κeffd`hd`v (28)

where `h and `v are the geodesic distances of the horizontal masses and
vertical masses from the center of swimmer. R denotes the radius from the
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axis to the curvature as a function of `v and R0 ≡ R(0). Eq. 28 shows that
the sign of κeff, which largely dictates the direction of motion depends on
R,`v , which has the same sign as the intrinsic curvature. Fig. S8 shows three
representing cases: a sphere, a cylinder, and a hyperboloid with positive,
zero, and negative intrinsic curvature respectively. As the swimmer changes
its shape through `h and `v, the effective curvature enclosed in the trajectory
of (`h, `v) dictates the direction of motion. In the sphere and hyperboloid
case where effective curvature has the same sign everywhere, the swimming
per cycle increases with the area of shape space trajectory [Fig. 2(c)], which
increases with the phase lag [Fig. 2(b),3(b)].
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Figure S8: Enclosed effective curvature dictates the sign and mag-
nitude of swimming for the same gait. (a) A swimmer moving on
a sphere, a cylinder, and a hyperboloid by varying the geodesic distances,
`h and `v, between the masses (red dots) over time. We choose the radius
on the equator unit (R0(z = 0) = 1) and the Gaussian curvatures for the
three cases +1, 0,−1 respectively. (b) The integral of effective curvature
κeff over the directed area inside the swimmer’s trajectory in shape space
dictates the direction and magnitude of swimming per cycle. The spheri-
cal case here connects to our spherical swimmer tested in experiments with
`h = R0θh, `v = R0θv.

From the above, we can see that the direction of motion is not determined
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locally. Instead, it is dictated by the collective contribution of curvature
inside the trajectory in the shape space.

S9. Swimmer on helicoid

In this case, the surface coordinates, ρ and θ, map to the Cartesian coordi-
nates: x = ρ cos(αθ), y = ρ sin(αθ), and z = θ (the vertical axis), where α is
a constant that determines the pitch and handedness of the helicoid about
its axis so that geodesics of this surface satisfy the equations of motion:

ρ̈ = 2α2ρθ̇, (29)

θ̈ = −4α2ρ(1 + α2ρ2)θ̇ρ̇. (30)

The radial (r) and lateral (l) servo motors (respectively corresponding to the
vertical [v] and horizontal [h] servos on the sphere) can then be prescribed
some trajectory along the surface of the helicoid, from which the force-free
equation of motion can be determined via angular momentum conservation:

θ̇ = − (1 + α2ρ2)θ̇l
2 + 2α2ρ2 + α2ρr(2ρ+ ρr)

. (31)

In particular, let the radial (r) and lateral (l) servos (respectively cor-
responding to the vertical [v] and horizontal [h] servos on the sphere) be
prescribed sinusoidal gaits in the ρ and θ directions respectively,

θ±l (t) =
1

8
(1 + cos t)± 1

4
, ρ±r (t) = ±1

8
(1 + sin t), (32)

and fix the pitch α = 1 along with the radial coordinate of the central joint
ρ = 1/2. The resulting evolution is shown in Fig. S9, with snapshots along
the marked timestamps in Figs. S9C-F.

From Eq.31 we can see that when the Gaussian curvature is zero (α = 0),
the swimmer cannot swim since Eq.31 reduces to θ̇ = −θ̇t/2 so that a periodic
stretching of limbs (periodic θt) does not yield net translation of θ.
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Figure S9: Locomotion along a helicoid: (A) Schematic of the four servos and
the surface. (B) Time evolution of the curvature swimmer along the vertical
axis (θ = z) of the helicoid. (C-F) Snapshots of the curvature swimmer in
order of the four points marked in panel B.

S10. Supplementary Movie

In this video, we show demonstrations of the robot implementing the null
gait and the swimming gait, as well as examples of the positive and negative
swimming in the ‘spherical swimmer’ and a comparison to the ‘cylindrical
swimmer’.
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