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SUMMARY

Fire ants (Solenopsis invicta) are social insects who work together to excavate

and build large underground nests. In addition to the challenges of working in narrow

spaces and dark environments, the ants must also avoid creating traffic jams which

could negatively affect the colony’s construction efforts. Traffic jams could be created

if too many ants are going to the same destination which could happen if the workload

is not shared wisely. We hypothesize that a part of the ant’s traffic jam avoiding

strategy is to be inactive, or lazy.

A model is needed to test this hypothesis and to study which excavation work

sharing methods are effective. Robots are often used as physical models to study ani-

mals in general and their behavior. Unlike animals, robots can be precisely controlled

as well as equipped with sensors to systematically measure parameters of interest.

This thesis documents how robotic ants were designed and built, as well as outlines

how the robots will be used to study ant behavior.

Although we did not study laziness here, preliminary data showed that tunnel

excavation was proportionally faster in a test bed containing multiple active digging

robots. An increase in the number of robots, however, caused an increase in the

amount of energy required to propagate the tunnel forward. The increase in the

energy came from the fact that multiple robots were colliding and jamming.

In this thesis, Chapter I contains relevant background information and motivation.

Chapter II discusses the design approaches for the robot and test bed. Chapter III

covers electrical engineering design topics and Chapter IV presents mechanical design.

Software elements are discussed in Chapter V. Lastly, Chapter VI contains interesting

remarks and observations, as well as data, conclusions, and future work.

xi



CHAPTER I

INTRODUCTION

1.1 Robots and Science

Robots are increasingly popular tools used to study animals and their behaviors [1].

An early example of such robot is shown in Figure 1. Figure 1 shows a robotic

tortoise constructed by William Grey Walter in the 1950s [2]. Unlike animals, robots

can be commanded to act or move in a desired fashion. In addition, robots can be

equipped with various sensors so that parameters of interest can be measured. This

allows scientists to experimentally and systematically test biological hypotheses. For

example, Marvi et al. [3] used a robotic snake to study how sidewinding rattlesnakes

traverse dry granular media. In another example, Mazouchova et al. [4] used a robot

to discover principles of terrestrial locomotion used by animals with flippers, like sea

turtles.

Research has been also done with multi-robot systems. This is often referred to

as “swarm robotics”. A good example of a swarm robotics project is the Kilobot

Project [5]. The Kilobot Project was partially inspired by ants, and can be used to

program and experiment with collective behaviors. Each robot has a programmable

microcontroller, motion controller, and local communication. The robots are low

cost and are simple. Nevertheless the robots can be programmed to collaborate and

do sophisticated tasks which can not be accomplished by an individual robot. These

robots have been used to study and develop algorithms for tasks such as self-assembly

and collective transportation [5].

Swarm robotics has been also used to study animal behavior. For example, Werfel

et al. [6] built robots which performed collective construction. These robots were
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Figure 1: A robotic turtle built by William Grey Walter
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inspired by termites. While working together, these robots were able to construct

structures without an online centralized controller.

1.2 Digging Animals

There are many animals in nature that dig and excavate to build burrows for shelter.

Rabbits, rodents, badgers, and moles are several good examples. Perhaps the most

impressive nests are made by social insects like fire ants. Fire ants have bodies which

have widths and lengths on the order of millimeters. Individual ants have limited

cognitive abilities [7]. Yet, fire ants are known to dig nests with footprints that are

larger than 10 meters in diameter [8]. The nests are large and complex because ants

need room for shelter, food storage, brood care, and other social activities.

Ants benefit from working collectively. Sudd [9] conducted an experiment where

he confined one ant in an artificial tunnel. The digging behavior of the single ant was

observed, and the tunnel excavation and propagation was measured. A second ant

was added to the tunnel. One would expect that the excavation rate to double. Sudd

discovered that two ants spent less time digging than a single ant, and the tunnel

propagation was comparable. Shared workload was an observed benefit. Both ants

were not digging as aggressively as they did on their own. Social behaviors, such as

mutual grooming were also observed.

Ants face difficult challenges while working collectively. The tunnels and spaces

in which they work are small and confined. Also, navigation is a challenge since

ant tunnels are shrouded in darkness. Ants must be able to find their way to their

destination while also sharing the same narrow passages with other ants. Having too

many active ants in the nest could create jamming and bottle neck situations which

would stymie ants from getting where they need to go.

Ants must have strategies to mitigate challenges associated with collective work.

We hypothesize that ants are being lazy because it is part of the strategy to optimize

3



the growth of the tunnel and to prevent traffic jams. Charbonneau et. al. [10]

studied how ants spend their time in the colony by observing their behavior in the

lab and in the artificially build field nest. The experiments showed that the ants were

inactive and appear to be doing nothing for almost 80% of their time while in the

nest. Inactive ants were not engaging in the activities such as building, excavation,

or caring for brood. Garvish et al. [11] studied how ants of different sizes contribute

to excavation. A large percentage of the population of ants was found to be inactive

and not participating in digging. The same behavior was noticed while doing similar

experiments in our lab.

1.3 Objective

To test a lazy ant hypothesis, a physical model is needed. Building a robotic ant

will enable research to systematically study which strategies are effective in social

digging. Once developed, many copies of a robot ant can be made. In addition,

having a physical model could yield other interesting insights which would not be

evident if a computer simulation model was used. This work will document how a

robotic ant was designed and constructed, as well as some of the interesting insights

and observations made in the process of building and testing.

It is of interest to study how ants work together to excavate and to construct

such complex nests. Strategies used by ants certainly can be used or applied in some

commercial applications. An example of this would be a swarm of robots mining

minerals, or deployment of swarm robots to other planets or asteroids for resource

mining or exploration purposes.

1.4 Relevant Robotic Work

This is not the first instance of using robots as a tool to study behavior of ants.

SwarmLab [12] [13] built robots to better understand how robots navigate complex

networks by relying on a a pheromone trail. Robots possessed photoreceptors which

4



detected beams of light. These beams of light were projeted on the maze to simulate

pheromone trails.

MIT Artificial Intelligence Lab conducted a project titled “The Ants: A commu-

nity of Microrobots” [14]. Several ant inspired robots were built. Each robot had

a variety of sensors including light, bump, tilt, and food sensors. The food sensor

detected if a robot’s gripper stumbled upon a conductive sphere, which served as a

model for food. The locomotion was achieved with a set of individually driven treads.

These robots were used to develop algorithms which would enable the robots to col-

lectively complete tasks. In that research, the robots could play various games like

follow the leader, tag, and manhunt. Our application required development of a new

robotic platform for several reasons. Kilobot robots require a centralized controller;

however, in our application we wanted decisions to be made by individual robots.

SwarmLab robots lack sensors and were developed to be used in a maze environment.

Our focus was to study collective excavation where a complicated pheromone trail

following was not needed. MIT’s ants were the closest match, but their battery life

was limited, did not have autonomous charging, and had long bump sensors which

would conflict with tunnel digging. In addition, our robot was designed and con-

structed with readily available, off-the-shelf parts and utilized open source hardware

when possible.

5



CHAPTER II

SYSTEM ENGINEERING

In this chapter, we will review the general approach on developing a robotic ant

model, design constraints and requirements, as well as test bed design.

2.1 Design Requirements

The design of a robot satisfies the list of design constraints shown in Table 1. Each

design constraint will be further discussed in this section.
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Table 1: Design Constraints

Design Constraint Brief Description

Autonomous Operation The robot must have a sufficient amount of sensors so

that it can be programmed to perform social excavation

activities autonomously. The robot must make all ac-

tions and decisions based on what the robot perceives

in the environment around it.

Robustness The robot must not fail unexpectedly mechanically, elec-

trically, or otherwise during operation.

Durability The robot must be able to operate over an extended

period of time with minimal maintenance.

Programmable Behavior The user must be able to provide the robots with the

rules which will shape how the robot reacts to the envi-

ronment.

Experiment Oriented The robot must transmit or log data of interest so that

various behaviors can be assessed.

Scalability One must be able to build additional robots with mini-

mal costs.

Safety The robot must have features which will ensure that the

robot will not cause any harm to human operators under

any circumstances.

2.1.1 Safety

Making the robot safe to operate was the number one priority. The mechanical

design of the robot avoided having any sharp shapes or objects. The robot was

7



designed to act autonomously, which means that the robot planned and executed its

actions independently. The robot could start and stop operating automatically which

could produce unexpected behaviors or unanticipated movements. For this reason,

it was not a good idea to have anything on the robot that could potentially cut or

physically injure a user in any way, shape, or form. The circuitry was also designed

with safety in mind. Each component was not expected to be loaded beyond its

rating. Components were also individually tested and were not found to generate

excessive heat. The circuits were hidden away from view inside of the robot. In the

event of an unforeseen catastrophic failure, such as a circuit catching on fire due to a

defect in a component, the failure should be contained inside of the robot.

The robot featured a mechanical emergency stop switch. The purpose of the

switch was to disable the robot by cutting the power supply. The emergency switch

could be used if an accident occured and immediate robot shutdown was needed.

Also, the emergency switch could be used to safely put the robot in storage. The

robot’s battery could still be manually charged with the emergency switch engaged.

2.1.2 Autonomous Operation

As mentioned before, the core requirement for this robot was to be completely au-

tonomous. The robot had to be able to perform various tasks such as (but not limited

to): moving around the test bed, finding the excavation site, performing digging op-

erations, retrieving and depositing excavated media into designated areas, seeking

charging station and recharge its own batteries. The robot would operate indepen-

dently without commands or guidance from an external source such as a centralized

controller.
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2.1.3 Robustness

The robot was designed to be strong enough to handle impacts and collisions. During

the debugging process, the robot could perform unpredictable actions such as acceler-

ating and ramming itself against the walls. Since there was no centralized controller,

it was also expected that the robots would collide with each other. For these reasons,

the robot had to be able to survive mechanical abuse and not be at risk of getting

knocked out of operation in the event of rough interactions. Likewise, all electronics,

cables, and wiring had to be well secured to enable robust operation.

2.1.4 Durability

Each robot was designed so that it could be used and reused for a long time (at

least a year worth of use). Parts were designed to be adequately strong and robust.

Electric components were expected to have a reasonably long life. Circuitry was

designed with safety in mind and was not found to be a subject to overheating or

have vulnerability to voltage or current spikes. Fragile parts, such as electronics, were

adequately protected or shielded from possible mechanical or physical damage.

2.1.5 Scalability

The goal of this project was to construct multiple robots and have them collectively

dig as a swarm. Thus, it was desired to minimize the cost associated with build-

ing each robot. It was also desired to make the processes of parts acquisition, robot

assembly and manufacturing as simple and straightforward as possible. It was also de-

sired that the robot construction from start to finish would take a reasonable amount

of time.
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2.2 Testbed and Experiment Design

2.2.1 Test Bed Overview

The mission was to build a simulated ant tunnel test bed and let robots dig in it for an

extended period of time. Although ants dig tunnels in three dimensional space, the

test bed constrained robots to dig in a quasi 2D space. The test bed was constructed

on top of the flat rectangular table. A picture of a test bed is shown in Figure 2

and a schematic diagram is shown in Figure 3. Wooden planks were added along the

perimeter of the table to serve as walls. The walls were needed to constrain excavation

and to prevent the robots from falling of the table. The table top was covered with

black construction paper so that the top surface was not as slippery. In doing so, the

robot could move around the test bed. Pink tape was placed in the middle along the

tunnel. This visual clue served as a simulated pheromone trail and was used to help

robot navigate. The test bed was filled with a granular media (cotton) which modeled

cohesive granular material like slightly wet soil, and in which the robots would dig

tunnels. The test bed also had a small bay where robots could autonomously dock

and recharge their batteries. The charging area was distinguished with bright colors

so that the robot could find it autonomously.

The charging station design is shown in a Figure 4. Two 22 gage wires were

stretched across the charging bay. Each wire was soldered to a spring on each end,

and the springs were bolted with metal conductive bolts to plastic parts. The springs

helped wires stretch and to be compliant when the robot ran into them. Once the

robot was done charging, the springs returned the wires to an equilibrium position.

The top wire carried +5V, while the bottom wire served as a ground wire. The

springs were bolted to a 3D printed plastic part which was an insulator. The 3D

printed plastic part was bolted to aluminum t-slot extrusions which were used to

construct the charging station frame.
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Figure 2: A picture of a tabletop experimental setup with robots
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Figure 3: A diagram of a tabetop setup with dimensions

Figure 4: A picture of a robot charging at the charging station
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2.2.2 Simulated Granular Media Choice

It was desired to have a material with cohesive properties so that there would be

energy cost associated with excavation activity. The energy cost comes from the

fact that cohesive particles are not easy to pull apart. Jumbo cotton balls was an

inspired choice to serve as simulated granular media, which has cohesive properties.

Cotton balls can be pulled out of pile one by one or in small bunches to form 2D

tunnels. Cotton balls are also squishy which makes them an easy target for pick up

with claw-style robotic manipulators.

13



CHAPTER III

ELECTRICAL DESIGN

In this chapter, we will discuss circuitry design, and other topics pertaining to elec-

trical engineering.

3.1 Microcontroller Selection

Perhaps one of the most important decisions that was made at the early project stage

was selection of a microcontroller (MCU) board: a heart and a brain of each robot.

Four MCUs were considered: Arduino Mega [15], Arduino Due [16], BeagleBone [17],

and Raspberry Pi [18]. Intel Edison [19] is another great alternative choice, but it

became available long after the inception of a project and is not included in this

discussion. These MCUs were chosen because they are relatively inexpensive, readily

available, and there is plenty of documentation available since all of these candidates

are open source hardware.
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Table 2: Microcontroller Comparison

Arduino

Mega

Arduino Due Raspberry PI

Model A

BeagleBone

RAM 8 KB 96 KB 512 MB 512 MB

Flash 128 KB 512 KB 256 MB 4 GB

CPU ATmega1280 AT91SAM3X8E ARM1176JZ-F ARM AM335x

Cortex A8

Clock

Speed

16 MHz 84 MHz 700 MB 1 GHz

OS None None Linux Linux

GPIO 54 (15 PWM) 54 (12 PWM) 40 69

ADC pins 16 12 None 7

Comm 4 UART, SPI,

I2C

4 UART, SPI,

I2C

USB, CSI

camera port,

UART, I2C,

SPI

USB, Ethernet,

SPI, 4 UART

Cost $39 $52 $25 $80

Size 10.2 cm x 5.4

cm x 0.8 cm

10.2 cm x 5.4

cm x 0.8 cm

8.6 cm x 5.4 cm

x 1.5 cm

8.6 cm x 5.4 x

4.8 cm

From Table 2, we can see that BeagleBone and Raspberry PI are superior to

Arduinos in terms of computational power and memory. These boards run Linux

OS and would be an excellent choice for development of autonomous control code

and software. Preference was given to Arduino family microcontrollers because robot

prototyping could be accomplished faster. Arduinos have plenty of GPIO, ADC,
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and communication ports (UART, I2C, SPI) making it easy to connect and evaluate

performance of any sensor. Arduinos can be programmed in C or C++, and it can

be argued that writing Arduino code is easier and faster than programming a board

like Raspberry Pi or BeagleBone. Also, Arduinos have been around for a longer time

than other boards discussed above. Beacause of that, the hardware is relatively bug

free. There are also many great resources, libraries, and guides available online, as

well as a huge forum community which can be taken advantage of for solving or

troubleshooting any microcontroller related issues.

Of all available Arduinos, Due was chosen because it has the fastest clock and

the largest program memory. Arduino Mega was a close runner-up. Arduino Due

and Mega have a similar footprint and number of pins. Even though Due has more

memory, not all existing libraries are compatible because Due has an ARM family

chip while Mega has an AVR chip. Incompatibilities primarily arise from the fact

that Dues clock runs faster. Libraries which rely on timers or SPI communication

would require some meticulous modifications. Unlike Mega, Dues pins have 3.3V pin

logic, even though the board requires 5V to power. For this reason, integration of Due

with external circuitry and sensors is not as straightforward as with Mega. (Mega

requires at least 5V to power and features 5V logic). Nevertheless, Arduino Due was

ultimately chosen to be the brains of a robot.

3.2 Sensors

Our robot carries a variety of sensors that allow it to sense and interact with the

environment. We will examine and discuss each sensor here.

3.2.1 Pheromone Trail Sensing

It is well known that ants leave pheromone trails to leave a path for other ants to

follow [20]. To simulate this, two approaches were tested. The first (and earliest)

approach involved leaving a dark line on a white floor surface and then using an
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array of infrared proximity sensors, also known as line sensors. Each line sensors

consists of an infrared (IR) light emitting diode (LED), and an IR detector. Each

sensor emits IR light and measures the reflected portion. These sensors can be used

to distinguish if the sensor is aimed at a light or dark surface. Having a linear array

of these sensors allows for tracking a dark line on a white surface (or white line on

dark surface). Line sensors, however, must be positioned close to the ground which is

bad if the robot needs to drive over obstacles, such as loose or stray granular media.

This approach has a limited sensor resolution and requires the robot to maintain a

constant distance between the line sensors and the floor.

The second approach involved the use of a camera. A pheromone trail then could

be either drawn with a writing utensil in advance, or by a moving robot. These lanes

could be then erased and drawn again creating a changing and dynamic environment

for robots to explore and navigate. Likewise, trails could be constructed using LEDs,

some of which could be turned on and off. Having a camera could also enable the

robot to identify objects of interest, such as digging area or charging station from a

distance. Camera sensors were challenging to work with because they produced a lot

of data which had to be processed in real time, as well as required knowledge and

implementation of machine vision techniques.

Line sensors were evaluated and were found to serve as an adequate and simple

solution to lane following. The line sensors however had tendencies to hinder the

robot mechanically because they had to be positioned close to the ground which

would create situations where granular media would get stuck between the ground

and the sensors. Granular media could also skew the sensor readings if it was to get

underneath a line sensor causing robot to lose track.

A second option to detect a pheromone trail was explored and a Pixy (CMU

Cam 5) camera was found to provide a great solution. Pixy hardware performs image

processing onboard on its own processor, and then sends processed data to an external
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device, in our case our Arduino, via UART, SPI, or I2C connection. It does all of the

image capturing and processing in real time and returns only necessary information,

such as pixel coordinates of a detected pheromone trail, which is then sent to a PID

controller to accomplish line following.

3.2.2 Navigation

The Pixy camera was also used to tell the robot the locations of important landmarks

in the tunnel. For example, the charging station is marked with a particular color

that Pixy can detect. Once the charging station marker is detected, the robot knows

where to drive if charging is needed.

In addition to the camera, the Inertial Measurement Unit LSM9DS0 (IMU) was

used. IMU had a triple axis accelerometer, triple axis gyroscope, and triple axis mag-

netometer. The magnetometer served as a compass and helped the robot to orient

itself to face the simulated granular media or any other direction. The magnetome-

ter was calibrated in advance. The gyroscope was used for feedback for turning.

The robot knew if it was making turning progress by checking if there is angular

acceleration.

3.2.3 Obstacle Avoidance

Fire ants are capable of detecting obstacles in front of them by using their antennas.

A similar capability was sought in the robot. HC-SR04 ultrasonic sound sensor and

Sharp GP2Y0A21YK infrared (IR) sensors were evaluated. An ultrasonic sensor was

lower cost and required two digital pins to measure distance. The ultrasonic sensor

also required a 5V power supply and logic to operate which means that a logic level

shifter would be necessary to interface with a 3.3V Arduino Due logic. The infrared

sensor was smaller in size, required one analog pin, and yield a faster and more

accurate measurement. The infrared sensor was simpler to use and thus was chosen.

A digital proximity QRE1113 sensor was also used for obstacle detection. This
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sensor works by measuring how much of the emitted infrared light is reflected back

and is commonly used for line following and. This sensor was mounted on the head of

the robot and was used to detect if there is anything in front of it up to 3 mm away.

This sensor was primarily used to prevent the robot from hitting objects head on.

3.2.4 Grip Feedback

An analog version of a QRE1113 sensor was used to detect whether the robot was

holding something in it’s gripper. The sensor was positioned in a way that its pro-

duced a low voltage output if there was something gripped. The same sensor was

used to trigger an excavation routine. The sensor’s output changed when the robot’s

head touched the cotton ball pile.

3.2.5 Power Consumption

Energy consumption was an important quantity to measure. This was accomplished

by having the robot periodically measure its current consumption and battery volt-

age. The battery current draw was sensed with an Allegro’s ACS714LLCTR05B-T

breakout board. This sensor is bidirectional and can be used to measure current

flowing out of the battery, and into the battery when the robot was charging. It is

worthwhile to point out that this sensor runs on 5V, with means that the analog

output pin which can output voltage from 0 to 5V. The analog pin has a nominal

output of 2.5V. The output voltage rises if the current goes one way, and drops if

the current flows the other way. The output pin can be safely connected to Arduino

DUE’s 3.3V analog pin since the sensor output is not expected to go beyond 3.3V

due to the design of power supply circuitry.

A LiPo battery with a 3.7V nominal charge was used for reasons to be discussed

later. The voltage on a battery can go as high as 4.2V while charging and cannot be

safely measured with Arduino’s 3.3V ADC pin. A simple voltage divider was used to

safely monitor the battery’s voltage. A voltage divider circuit is shown in a Figure 5
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Figure 5: Voltage divider circuit schematic

where Vin is connected to a battery and Vout is connected to ADC pin. From Ohms

law, the following relationship can be deduced:

Vout =
R2

R1 +R2

Vin (1)

R1 was set to be equal to R2 so that the voltage output of this circuit is half of the

voltage input. Doing so will enable a 3.3V ADC pin to safely measure voltages as

high as 6.6V which is greater than anticipated batterys 4.2V level. 3.3kΩ resistors

were found to work well. If the voltage on the battery is 4.2V, from Ohms law

we can compute that only about 636 µA of current was sacrificed to obtain the

voltage measurement. It is obvious that increasing the values of resistors would

decrease wasted current. The impedance of the pin, however, must be greater than

the impedance of the resistor. Otherwise, the current will mostly go through the

ADC pin and not through R2 and the voltage divider will not work. The pins on

DUE are guaranteed to have impedance between 50kΩ and 150kΩ. A 3.3kΩ resistor

was found to serve well by experimentation.

3.2.6 Charging Station Detection

The same voltage divider circuit used for battery voltage measurement was also used

to detect when a robot’s charging electrodes were in contact with the charging station.

The Vin was connected to robot’s positive charging electrode, and Vout was connected

to a digital pin. The digital pin on the Arduino would be driven to a high state if the

robot was touching the charging station and low if it was not. This information was
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Figure 6: Contact switch circuit schematic

used to verify successful docking to the charging station. The Pixy camera was used

to guide the robot to the charging station.

3.2.7 Bump and Physical Contact Sensing

Since collisions and physical contacts and interactions were expected, it was desired

to have some form of sensing or detecting such events. Simple single pole single throw

(SPST) switches were implemented. Six switches were mounted around the robots

body: two on each side and two on the back. The robot had an outer shell which was

split into six sections (see Mechanical Design chapter). Touching or pressing the shell

segment triggered the switch to close, allowing contact detection. The spring inside

of the switch would make the switch open if the contact was removed. The electrical

schematic is show in Figure 6. The digital pin was used to read if the pin was on or

off. The resistor R1 was necessary to pull the pin to a low state when the switch was

open. A resistor value of 3.3kΩ was found to work well.

It is worthwhile to mention that both the gyroscope and accelerometer could also

be used to detect bumping and collisions. A spike in a reading could be observed at

the moment when the bumping or collision occurs. It is hard to tell, however, if the

robot is being continuously pressed or touched.

3.2.8 Deposit Area Detection

A Pixy camera and a beacon were used to signal the robot when and where to deposit

an excavated payload. The robot could calculate how far it was from a deposit beacon

since the beacon area was fixed and known. This approach was phased out in favor of

a more robust version. Two SPST switches were mounted to the top of the robot and
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used in the exact same way described in the section above. When the robot reached

the end of a table, it hit an overhead horizontal bar which prevented the robot from

driving off the table. When the switches closed, the robot started the deposit routine,

dropping the cotton balls off the table and into a collection bin.

3.2.9 Sensor Summary

Table 3: List of Sensors

Sensor Function

Pixy (CMU5) Camera Pheromone Trail, Navigation

IMU Navigation, Turning feedback

IR Distance Sensors (x2) Obstacle Avoidance

Digital Proximity Sensor Obstacle Avoidance

Analog Proximity Sensor Grip Feedback

Current Sensor Power Consumption Monitoring

Battery Voltage Sensor Power Consumption Monitoring

SPST Switches Physical Contact Sensing, Deposit Area Detection

3.3 Radios

A radio was mounted on the robot to monitor a robot’s power consumption. The

radio could also be used to manually control the robot although this feature was not

fully integrated with the autonomous program. However, the radio was not used for

peer to peer communication between robots.

It was desired to pair up a radio with another microcontroller so that the main

microcontroller would not be burdened with handling communication. An XBee ZB

radio was selected to enable communication between the data logging computer and

a robot. XBee ZB was found to be easy to set up and serve as a robust solution.
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Arduino Fio was chosen as a microcontroller since the Fio had a socket connector for

XBee radios, and had an adequately small footprint. Arduino Fio also was linked

to Arduino Due with UART serial. With two microcontrollers linked, Arduino Due

could also send and receive data over radio. For example, Due reported operational

mode changes, such as decision to terminate excavation activity and going charging.

Addition of a second Arduino also expanded the robot’s capabilities since the Fio had

unused GPIO and ADC pins.

The robot also saved a copy of all wireless transmissions to a micro SD card. A

micro SD card reader was connected to the Arduino Fio.

3.4 Motion Actuators

The robot features two servo motors for the arm control and two DC motors for

locomotion.

3.4.1 Servo Motors

Servo motors chosen for arm actuation are easy to use and do not require special

circuitry or a driver. The HS-55 servo was used for gripping, and the HS-A5076HB

servo was used for moving the arm up and down. These servos were chosen because

they fit well with the mechanical design, were relatively inexpensive, and featured an

adequate torque and reasonable current draw. The HS-A5076HB servo can be freely

substituted with another servo (with minor changes to the mechanical design). The

same cannot be said about the HS-55 servo because it was used with an off-the-shelf

gripper kit, which was designed to work for this particular servo motor.

Servo motors have 3 pin connectors: power, ground, and signal. Both servos can

be commanded to move to a desired position with a pulse width modulated (PWM)

signal. Servos have an onboard controller which measures the width of the signal and

drives the motor to a corresponding angle. Figure 7 shows how PWM signal maps to

command angle for the HS-55 servo.
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Figure 7: Gripping servo control diagram, courtesy of www.servocity.com

Figure 8: Gripping servo control diagram, courtesy of www.servocity.com

A PWM signal with rising edges spaced out 600µs apart will move the servo to a

-90 degree position and a 2400µs pulses will move the servo to a +90 degree position.

Interpolation can be used to figure out pulse width for a desired angle. Note that

HS-55 servo does not rotate continuously and its movement is constraint to a 180

degree range. This servo has a 18 oz-in torque rating. Likewise, the HS-A5076HB

servo is commanded in an analogous method and is constrained to 120 degree range

as shown in a Figure 8. This servo has 42 oz-in of maximum torque rating.

3.4.2 Drive Motors

Simple geared brushed DC (direct current) motors were chosen to power wheeled

locomotion. Brushless DC motors were not considered because they tend to be more

expensive than their brushed counterparts and generally more complicated to control.

Likewise, stepper motors were not considered due to complexity, cost, as well as

typical high current draw.

There were several criteria for motor selections. The motors required sufficient
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torque to drive the robot, draw as little current as possible, have a reasonable stall

current, have an output shaft that could be coupled with a large variety of wheels, and

low cost. Several different motors were tested, and ultimately a Pololu mini plastic

gearmotor (Pololu part #1511) was chosen. These motors are compact and include

a 120:1 reduction gearbox. The gearbox also features a built-in safety clutch which

helps protect the gears from excessive loads. The output shaft is 3mm in diameter

and has a D-shaped profile which easily interfaces with many wheels. At 4.5V the

output shaft spins at 150 RPM and 25 oz-in torque according to the manufacturer

specifications. Free running current is listed to be 130mA with 1.25A stall current.

A breakout board for TI’s DRV8835 dual motor driver was used to control both

drive motors. DRV8835 is a dual H-bridge that provides a bidirectional motor control.

The driver can deliver 1.2A per channel continuously with peak currents up to 1.5A

per channel for a few seconds if 5V are supplied to motor input and logic. This

board was tested and found to run chosen motors well and safely with supply voltage

varying from 3V to 5V. To control each motor, two digital pins were needed. One pin

(enable) was used to set the motor direction while another pin (phase) was used for

speed control with a PWM signal. In addition, a small 0.1µF ceramic capacitor was

soldered to the positive and negative leads of each motor. This was done to remove

some of the motor electrical noise.

3.5 Power Circuit

This subsystem was designed with the intent of being operated by a single recharge-

able battery. The power circuitry handles voltage conversions and regulations to

supply power to all electronics and actuators on board.

3.5.1 Battery Selection

Actuators and most of the sensors can operate on a voltage supply ranging from 3V

to 5V. Only the Arduino Due and Pixy camera require 5V supply to function. For
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this reason, it was decided that batteries with a nominal voltage in the 3V to 5V

range would be given preference over batteries with a nominal voltage higher than

5V. It would be more efficient to step voltage up for just two devices rather than step

voltage down for all sensors and actuators.

An obvious task before picking a battery was to estimate the current consumption.

Most of the items had the current consumptions listed on a data sheet. For all other

items, the current consumption had to be either calculated or measured. The results

of the estimates are listed in a Table 4.
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Table 4: Current Estimation

Item QNTY Current in

mA (per each)

Estimation

Method

DC Gear Motor 2 300 Measured

HS-A5076HB Servo 1 200 Data Sheet

HS-55 Servo 1 150 Data Sheet

IR Distance Sensor 2 30 Data Sheet

Analog Proximity Sensor 1 25 Data Sheet

Digital Proximity Sensor 1 25 Data Sheet

5V Step-Up Voltage regulator 2 2 Data Sheet

Current Sensor 1 13 Data Sheet

SPST Switch 7 1 Calculated

Voltage divider 1 0.6 Calculated

Dual Motor Driver Board 1 2 Data Sheet

Solid State Relay 1 12 Measured

Arduino Due 1 110 Measured

Arduino Fio + XBee 1 50 Measured

IMU 1 6.2 Data Sheet

The total sums to approximately 1.3A. We should also remember that the current

draw can spike up in the event of an actuator motor stall. Drive gear motors are

not expected to stall because they have a build-in clutch. Servo motors could poten-

tially stall if the robot is involved in some form of a hard physical contact with the

environment or other robots.
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Rechargeable alkaline, NiMH, LiPo, and Lithium ion (Li-ion) batteries were con-

sidered to power the robot. NiMH and alkaline batteries were dismissed because they

did not have a specific energy density as good as LiPo and Li-ion batteries. The

desire to have the robot as small, light, and as compact as possible calls for a battery

with a high energy density. Li-ion batteries were given preference over LiPo due to

safety considerations. LiPo batteries have a higher energy density than Li-ion and

can discharge larger currents but are more prone to failures (including explosion) if

shorted, punctured, over charged, or mishandled in any way. A single cell 3.6V Li-ion

battery with 3400mAh and a 2C discharge rating was chosen. In other words, chosen

battery will be able to supply 3.4A of current for an hour, or supply an estimated

1.3A of current for about 156 minutes. The 2C discharge rating implies that the

battery can continuously source up to 2A of current. The chosen battery also comes

with a build-in safety circuit which will shut the battery if too much current is drawn,

or if the battery’s voltage drops too low (about 3V).

3.5.2 Circuit Design

The power circuit schematic is shown in Figure 9.

Figure 9: Power circuit schematic

The power from the battery was routed through an emergency shut off switch

SW1 and then through a current sensor. Next, the power trace was connected to a
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charging breakout board containing a MCP73831T chip. Arduino Fio and XBee radio

were powered from the same node (the charging breakout board had a convenient JST

connector). Next, the battery power was routed through another kill switch SW2.

With SW1 closed and SW2 open, the robot could be manually charged with all current

flowing to the battery. SW2 disconnects all loads from the battery. The node after

SW2 was connected to a voltage step-up chip. The voltage step-up chip converts any

voltage above 3V to a 5V output. This 5V output was used to power the current

sensor, and the Arduino Due. The output of the SW2 was also connected to a solid-

state relay. The robot could use this relay to put itself in a low power consumption

state by cutting power to the actuators and sensors. The output from a power relay

was used to power all actuators and sensors and was filtered with a 470µF capacitor.

The output from a power relay was also passed to another voltage step-up chip to

achieve a 5V output. This output was used to power 5V sensors, such as Pixy camera.

The 5V output was also filtered with a 470µF capacitor. A picture of the assembled

power circuit is shown in Figure 10.
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Figure 10: A picture of an assembled and installed power circuit

3.6 Other Circuits

3.6.1 Main Circuit Board

The main circuit board was connected to the 5V and the 3V power outputs from the

power circuit and distributed the power to all sensors and actuators. Most sensors

and actuators were standardized to a 3 pin connector (GND, Power, I/O). The main

board had header pins to connect all sensors and actuators to the power and to

Arduino pins. The main circuit board also had an I2C bus and a socket for the motor

driver. A picture of the assembled main board is shown in Figure 11.
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Figure 11: A picture of an assembled and installed main board

3.6.2 Switch Board

This circuit board carried a circuit shown in Figure 6 for every contact switch. There

were 7 contact switches in total: 6 switches were used for contact sensing, and 1

switch was used for dumping sensing. Two switches were used for dumping sensing,

but they were wired up in parallel. The assembled switch board circuit is shown in

Figure 12.
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Figure 12: A picture of an assembled and installed switch board

3.6.3 Charging Detector

A picture of a circuit discussed in a Charging Station Detection subsection is shown in

Figure 13. In the same figure, charging electrodes can also be seen. These electrodes

were made out of a conductive brass mesh.

3.6.4 Transistor Reset

Two common 2N3904 NPN transistors were used to create an or gate circuit. The

schematic of the circuit is shown in Figure 14. This circuit was used to reset the main

microcontroller if the code was not running properly. The Arduino Due would be

reset if either the Due or the Fio would drive a digital pin connected to a transistor

gate high. A 3.3kΩ resistor was used to pull each transistor gate down to prevent
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Figure 13: A picture of a charging detector board and electrodes

an accidental reset. This circuit was built as a work around to a problem discovered

with Pixy camera. Sometimes on power-up, the camera would not start up properly

due to an unknown bug in the library. The Arduino Due reset would fix the problem.

The assembled circuit transistor reset circuit is shown in Figure 15.
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Figure 14: Reset circuit schematic

Figure 15: A picture of an assembled and installed reset circuit
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3.6.5 Radio

The Arduino Fio and the XBees radio were mounted on top of the robot as shown

in Figure 16. The Arduino Fio had analog pins connected to the voltage and current

sensors.

Figure 16: A picture of a Radio and XBee attached to the robot
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CHAPTER IV

MECHANICAL DESIGN

In this chapter, we will go over how the mechanical design of a fire ant was developed.

4.1 Design Approach

The availability of 3D printers drove the mechanical design approach. A 3D printer is

a machine which can precisely manufacture a three-dimensional solid object. In our

case, the machine takes plastic filament, melts it, and then lays it down in successive

layers. Melted plastic solidifies once it is in place. A part is first designed with a

computer-aided design software. Next, the part is saved in a certain file format, and

then imported into another software which creates a set of instructions which are

uploaded to the printer to build the part. The printer can make the parts with an

accuracy on the order of 300 micrometers (the actual accuracy depends on the printer

and the manufacturer). The printer can also be used to make parts which would be

difficult or time consuming to manufacture in a traditional machine shop environment.

The plastic model material is light and adequately strong. It is advantageous to have

light parts to minimize the amount of energy to run the robot (which will in turn

reduce the cost and complexity of the robot). For these reasons, a 3D printer is an

essential tool that was heavily utilized in the project. Also, if the project is to be

released to the open source community, schematic files can be shared and anyone with

access to a 3D printer would be able to make exact replicas of all parts.

It is worthwile to point out that the mechanical design presented in this work is a

result of an iterative process. The body of the robot was designed to be as compact

and storng as possible while having all sensors mounted in locations needed.
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4.2 Prototype Overview

Figures 17, 18, and 19 show the CAD model of the robot from various angles.

SolidWorks software was used to design the model. The robot was 13.5 inches long, 6

inches wide, and 9 inches tall. The height measurement was from the ground to the

tip of the IMU.

Figure 17: CAD model of a robot
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Figure 18: CAD model of a robot, rear view
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Figure 19: CAD model of a robot, overhead view

To assemble a robot, one starts with a Main Body part. Please refer to Appendix

A for a list of 3D printed parts and dimensioned drawings. The top of the Main Body

part was flat so that the main microcontroller, Arduino Due, can be mounted with

#4 screws. There were four holes on the body matching the four hole pattern on

the Arduino Due. These holes were used to secure the Arduino to the body. Along

the perimeter of the body, there was an array of holes just wide enough for a #4

screw to fit through. These holes were used to mount a Circuit Board Holder part,
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as well as Contact Switch Holder parts. Holes which were not used for fastening

parts were used for cable management. Cable ties were snaked through these holes

to secure various wires and cables. Figure 20 shows a close up exploded side view for

illustration. Contact Switch Holders support contact switches which were fastened

with a #2 machine screw. Figure 20 also shows how the Shell Mount part slides

and snuggly fits into the Circuit Board Holder. The Shell Mount part, as the name

suggests, was used to mount the shell. The shell pivoted on a #10 screw which served

as an axle. The shell segments rest on contact switches and closed the switches when

an external force was applied. The spring inside of the contact switch was stiff enough

for the shell to rest on and returned the switch to its default state when an external

force was applied and then removed. The IMU Extension part was added to the shell

holder with a #4 screw. A #4 screw was also used to secure the IMU to the IMU

Extension circuit. The IMU Extension part was used to raise the IMU unit away from

the circuitry because the magnetometer inside of the IMU would give false readings if

placed near circuitry. The main circuit board was placed on top of the Circuit Board

Holder and the Power Circuit was placed on the back of the robot, right behind the

Arduino so that both of these circuits were protected by the shell. All other (smaller)

circuity was hot glued to the top of the Shell Mount.
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Figure 20: Parts bolted to the main body

Underneath the body, there were two points of attachments. These were used to

attach a drive system allowing for flexibility and a modular design. In our case, a

simple differential wheel drive locomotion system was implemented. If needed, one

could swap the current drive system with another design without having the need

to take the whole robot apart. Other designs could feature different wheels, treads,

or even leg mechanisms provided they are driven by two motors which would be

compatible with an on-board motor driver. Assembly of a drive system is illustrated

in the exploded view in Figure 21.
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Figure 21: Drive system assembly

The drive motors were tightly pressed into the Motor Mount part. In this particu-

lar drive system, wheels that are 24mm in diameter and 19mm wide were used. These

wheels were plastic and had a D-profile bore which coupled nicely with the motor’s

3mm D-profile shaft. The plastic hub also had 48 outside teeth which could be used

with an optional quadrature optical encoder. The plastic hub carried a rubber tire.

The Motor Mount part was attached to the Main Body with #4 screws. At the front

of the robot, the Caster Holder part was also attached to the body with #4 screws.

There were two metal ball casters attached to the Caster Holder with #2 screws. The

metal ball casters were in place for support and to make sure that the robot did not

tip forward.

There were two holes which were used to mount an arm assembly and the Hexag-

onal Pole Part. Figure 22 shows how the arm assembly was assembled and mounted

to the body. The Arm Mount part was connected to the main body with two #4

screws. The same screws were used to attach the Hexagonal Pole part to the body.

A servo motor which moves the arm up and down was placed on the Arm Mount and

was secured with #4 screws. One one side, the Gripper Assembly was attached to the
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servo horn with #0 screws. On the other side, a #4 screw was used and doubled as

a pivot for the Gripper Assembly. Figure 22 provides a view of how the Pixy camera

was attached to the Main Body with #4 screws.

Figure 22: Arm assembly

Figure 23 shows how the Gripper Assembly was assembled. The grip servo motor

slided in the Gripper Holder part. The claw mechanism was attached to the servo

output shaft, and then #0 screws were used to secure the motor and the claw to the

Gripper Holder. The analog proximity sensor (which was used for grip feedback) was

mounted to the Gripper Holder with a #4 screw. Lastly, the digital proximity sensor

(used for head bump detection) was glued to the Gripper Holder.
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Figure 23: Gripper assembly

The last part that was attached to the main body was the Hexagonal Pole part.

As mentioned earlier, it was attached to the body with the same #4 screws that were

used to fasten the Arm Mount. The Hexagonal Pole part was a core of the Front

Assembly which is illustrated in Figure 24. The IR Holder parts had a hexagonal

bore and slid right on top of the Hexagonal Pole. The IR Holder part had a socket

for the infrared sensor to fit flush. The IR Holder also doubled as a guard to cover

and protect circuitry on-board. The IR Holder was secured with a #4 screw. Once

in place, the Switch Bar was installed. The Switch Bar also had hexagonal bores and

slid on top in a similar fashion. Two contact switches were secured on top of the

Switch Bar with #2 screws. These switches were used to detect if the robot made it

to the dumping site. Hot glue was used to bond parts to each other.

The Hexagonal Pole part was also used to carry the charging electrodes. A piece

of conductive brass mesh was used to make the charging electrodes as shown in Figure

13. Alternatively, the charging terminals could have been made by winding stripped

wire around the hexagonal pole.
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Figure 24: Front assembly

4.3 Assembled Robot

Pictures of a fully assembled robot are shown in Figures 25 - 27.
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Figure 25: Assembled robot
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Figure 26: Assembled robot, side view
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Figure 27: Assembled robot, top view
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CHAPTER V

SOFTWARE OVERVIEW

In this chapter, we will discuss embedded code architecture for microcontrollers used

in this project, as well as how other computer software was used for data acquisition

and processing purposes.

5.1 Arduino DUE

Arduino IDE was used to write and compile the code. The code contains two im-

portant loops. The first loop is a setup() loop which runs only once as soon as the

microcontroller starts. All global variables and class declarations and initiations are

performed in the setup. The second loop is a main() loop which runs forever and

ever. In other words, the main() loop is equivalent to while(1) loop without a break

statement. Inside of the main() loop, global boolean variables are used for flow con-

trol and to select which mode of operation the robot will enter. The robot has several

different behavior modes programmed and each of these modes will be discussed in

the subsections below. The robot will autonomously change its mode of operation

when appropriate. Simplified pseudocodes are presented in Figures 28–36.

To summarize, the robot had seven modes of operation. The “going in mode”

allowed the robot to drive to the excavation area and search for cotton. The “digging

mode” was triggered once the cotton was found. The robot would make several

attempts to pick up cotton. In the event of success, the robot engaged the “going

out mode”. The “going in mode” was engaged if the robot failed to pick up cotton in

several attempts. The “going out mode” allowed the robot to bring excavated payload

to the dumping site. The “deposit mode” was triggered once the cotton deposit site

was found. In the deposit mode, the robot disposed of the payload. Next, the “going
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in mode” was enabled and the cycle was repeated. “Resting mode” could be randomly

engaged after the “deposit mode” instead of the “going in mode” if the robots were

allowed to be lazy. The probability of a robot engaging and remaining in a “resting

mode” (lazy mode) would be taken from experiments conducted in a parallel study

in our lab involving observations of fire ants and assessment of probabilities of ants

becoming lazy. If the robot sensed that the battery was running low, it would switch

its mode to the “going charging mode”. The “going charging mode” was only allowed

to be engaged when the robot was in the “going in mode” or the “resting mode”.

The “going charging mode” made the robot find and drive to the charging station.

The “charging mode” was enabled when the robot made physical contact with the

charging station, while in the “going charging mode”. The robot maintained contact

with a charging station until the batteries were adequately charged. The robot was

programmed to find the charging station again if contact with the charging station

would be lost.

5.2 Notes on Pixy Camera

As mentioned earlier in the Electrical Design chapter (Chapter III), The Pixy is a

camera sensor that can detect objects of different colors. All image processing is

done on board the Pixy’s CPU. The user could set the Pixy to search for up to seven

different color signatures. Pixy reports information to the Arduino if an object of a

matching color signature is detected.

Pixy comes with a software called PixyMon. PixyMon was used to monitor what

the camera was seeing and to set the color signatures. Example calibrations are shown

in Figures 37 and 38.
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Figure 28: Setup Loop
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Figure 29: Main Loop
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Figure 30: Going In Mode
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Figure 31: Digging Mode
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Figure 32: Going Out Mode
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Figure 33: Deposit Mode
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Figure 34: Going Charging Mode
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Figure 35: Charging Mode
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Figure 36: Resting Mode
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Figure 37: Raw video frame

Figure 38: Processed video frame

Figure 37 shows a frame from the camera’s unprocessed video feed. PixyMon

software calls this “raw” video. At this instance, Pixy was mounted on the robot

inside of the test bed facing cotton balls. Figure 38 shows a “cooked” (processed)

video frame. The Pixy was set to look for a pink tape (pheromone trail) and green

cotton balls. The processed video frame has a box drawn around pink tape, and

another box around green cotton balls. The box around pink tape has “S=1” label

which means that this box contains pixels matching color #1 signature. Likewise,

the box around cotton balls has “S=7” label which means that the box contains

pixels matching color #7 signature. Information about each box, such as label, pixel

width, pixel height, and pixel centroid coordinates will be reported to the Arduino

via the UART connection. Each detected group of pixels is called a “block”, and

Pixy can detect multiple blocks of the same signature as shown in Figures 39 and
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40. There are three detected blocks in Figure 40. The first block represents pink

tape. The second block represents a big pile of cotton. The third block represents a

single cotton ball placed away from the big pile. In addition to the pink tape (the

pheromone trail) and cotton balls (the simulated granular media), the Pixy was also

configured to identify the charging area and charging station, as shown in Figures 41

and 42. Blue construction paper was used to mark the charging area (color signature

#4) and bright yellow socks were used to mark the direction of a charging station.

Figure 39: Raw video frame, multiple signatures

Figure 40: Cooked video frame, multiple signatures
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Figure 41: Raw video frame, charging area

Figure 42: Cooked video frame, charging area

5.3 Arduino Fio

The code running on the Arduino Fio is fairly straightforward. Analog pins on the

Arduino were used to read the voltage and current sensors. The Fio sampled each

sensor 100 times, computed the average and sent it out via XBee radios every two

seconds.

The Arduino Fio also had the capability to reset the Arduino Due. If the Arduino

Due detects that something is not going right, it will send a reset request to Arduino

Fio. Arduino Fio has a has a digital pin connected to a reset circuit which will be

used in the event of a reset request.
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Figure 43: LabVIEW program developed for monitoring power consumption of each
individual robot in real time

5.4 Digi XCTU

Digi XCTU software was used to configure XBee radio devices. Each pair of radios

was set to operate on its own channel at the maximum RF level.

5.5 LabVIEW

LabVIEW was used to create a program for data aquisition. The program had two

functions: video capturing and receiving wireless transmissions from the robots. Lab-

VIEW controlled a webcam above the test bed. The camera was configured to record

and save a frame every four seconds so that time lapsed videos could be generated.

Receiving radios were connected to LabVIEW. LabVIEW would analyze incoming

data packets, as well as sort and log data to text files. LabVIEW was also used to

monitor the robot’s power consumption in real time. A screen shot of a developed

user interface is shown in Figure 43.
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5.6 Matlab

Matlab was used to load data from text files and perform analysis.

5.7 Virtual Dub

Virtual Dub software was used to make .avi format videos from frames saved out by

LabVIEW. Virtual Dub tools, such as compression and cropping were used for video

processing.
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CHAPTER VI

RESULTS

In this chapter, we will discuss results, observations, and insights gained from con-

structing and testing digging robots.

6.1 Observations

By attempting to build a robot that simulates ants, it became clear that ants are

quite sophisticated organisms who manage to solve a series of problems and challenges

associated with social digging of granular media. Some of the observations made while

attempting to build robotic ants are shared here.

6.1.1 Digging

At the beginning of the project, the task of excavating and gripping granular media

was falsely assumed to be trivial. How hard could it be to grab a few particles when

there is a big pile in front of you? The first robot prototype was a differential drive

robot with a similar robotic arm. The arm could be raised up and lowered down,

and had a gripper claw attached at the end. Before development of autonomous

software, the robot was manually controlled with a joystick. Gripping, picking up,

and moving hard particles, such as plastic BB’s, and 3D printed spheres was a difficult

task. The spheres would slip out of the gripper most of the time. The success of

picking up these spheres was sensitive to where the gripper gripped the spheres, and

the amount of force the gripper applied to the spheres. One can visualize this by

picking up a sphere with one hand, or a cylindrical object such as a plastic bottle

or a pen, hold it only with a thumb and a middle finger, and start squeezing hard.

More than likely, the object will slip out of the hand. Training the robot to grip an
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object at a specified location autonomously is challenging and is probably not possible

with robot’s current set of sensors. This may or may not be accomplished with the

development of some sophisticated machine vision algorithms alone. The problem

becomes even harder when the particles that the robot encounters are different sizes,

as well as not guaranteed to be spherical. Controlling the amount of force that the

gripper exerts on a particle is also problematic. The servo motor which opens and

closes the gripper can be commanded to a specific angle (with 1 degree resolution), and

an onboard controller will apply the torque to move. Torque control could be achieved

if the controller on the servo was replaced with something custom. Torque control

could be possibly achieved if the current supplied to the servo motor was controlled.

An even harder question would be a development of a feedback mechanism that can

be used to decide if more or less torque should be applied. The sensor would need to

be quite small, light, and be able to send out data fast.

Ants were also observed to use their head to scrape the tunnels as an excavation

method, and then use their body to compact excavated media and form large pellets,

which are then picked up and carried out [21]. We were able to somewhat mimic this

behavior by using the robotic arm as a shovel and securing a bulk of cotton balls

between the body and the arm, holding it, and then moving it to the dumping site.

This was done with a joystick. Even with a human mind used as a controller, it was

a difficult multi-step process. Efforts were made to implement this mode of digging

autonomously but were unsuccessful. Some clever feedback mechanism was needed.

Ants are masters at excavating and manipulating granular media.

6.1.2 Cotton Depositing

Once the robot was smart enough to autonomously pick up cotton and move it to

the end of the tunnel, a logistical problem was encountered. What do we do with

excavated cotton? The robot was first programmed to dispose of its excavated payload
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somewhere at the end of the simulated tunnel. The robot was set to continuously

dig and move the cotton to the end of the tunnel where it was randomly dropped. It

wasn’t long before a huge unorganized cotton mess was formed. The cotton would

cover the simulated pheromone trail which would interfere with the robot’s ability

to navigate. Loose cotton also inhibited locomotion, which will be discussed later.

Managing excavated cotton was left out of the scope of the project for now. This

is why excavated cotton is simply being dropped off the table so that it does not

interfear with robot’s locomotion and navigation. Ants must have a good system for

dealing with excavated granular media.

6.1.3 Locomotion

Moving on granular media is a challenge that many organisms perform well. Not

only can ants move on the granular media, but they can also run up and down the

tunnels made from granular media. Wheels were used to move the robot around on

a horizontal flat surface.

6.1.4 Navigation

The robot used a camera and an IMU to navigate. Real ant tunnels are dark, which

brings the questions of how ants perceive the environment around them without light,

what is the range of an ant’s perception, and how do they know which direction is up?

These are all interesting questions which could be studied. Our experimentation with

multiple active robots suggests that counting steps may not necessarily be a reliable

way for ants to navigate. We had encoders installed on a robot’s drive motors. An

encoder is a device which allows to measure the rotation of the wheel which can be

used to measure the distance traveled. When two robots collide or bump, they displace

and move each other introducing an error between the actual position and presumed

position. In the case of the robot, collisions and bumping interactions caused the

wheels to slip, leading to even more discrepancies. The simulated pheromone trail
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(along with a PID controller for motors) allowed the robot to get back on the right

track after a collision and get to the desired destination without a need to count steps.

This could be a hint why pheromone trails are so important to ants.

6.1.5 Agility

First attempts to make the robot dig straight tunnels, which are only two body

width in diameter, were unsuccessful. Initially, the robot would succeed in starting

the tunnel and then accidentally destroy it. One example of an accidental tunnel

destruction was a cotton ball getting stuck in the wheel and causing the wheel to jam.

This made the robot turn in place since the other wheel would be still driven. Next,

the robot’s body would hit the tunnel wall, making the tunnel deform or collapse.

Another example of an accidental tunnel destruction was a case where the robot

rammed the tunnel walls. This could happen if the sensors were too slow to react.

Likewise, the robot could run into the tunnel if the PID controller gave a sudden kick

to the motors which can happen if the camera, a sensor used in a controller’s feedback

loop, briefly lost sight of the pheromone trail. If more than one robot makes it to an

excavated tunnel, the interactions between them will more than likely result in the

tunnel’s destruction or collapse.

Observing the robots dig reveals that ants must be careful how they dig and

maneuver inside of the tunnel. In addition, the ants must be especially careful to

not destroy the walls when passing each other in the tunnel. Likewise, ants must be

careful not to injure themselves or others while passing each other. Once in a while,

we found a few loose bolts in a test bed after setting more than one robot to dig

tunnels overnight.

6.1.6 Processing Capability

Building robot ants bolstered the fact that ants are capable of processing a lot of

information. The bodies of ants must have a rich set of sensors and the means to
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process all of the information.

6.2 Results

Designing and building robots that could be programmed to emulate ant’s behavior

was achieved. Three robots in total were constructed and labeled as a A, B, and C.

The robot prototypes were tested and found to be able to operate for periods longer

than 3 days without failures. The robots were observed to autonomously find the

excavation site, excavate the simulated granular media, move the excavated payload

to the collection area and drop the payload into the collection bin. Furthermore,

the robots reported energy consumption at specified time intervals. Figure 44 shows

digging activity snapshots of one robot over time. The digging activity of a robot

was recorded with the overhead camera. As the time progressed, we observed that

the the tunnel became longer and wider. We also observed that the test bed became

messier. The number of cotton balls scattered around the test bed grew over time.

The robot occasionally picked up large payloads and some cotton balls would fall off

during the transportation from the excavation site to the collection site. Most of the

scattered cotton balls resulted from cotton balls sticking to and jamming the drive

system. This problem was not foreseen in the design stage but could be mitigated

with a better drive system design and better control algorithms.
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Figure 44: Snapshots of a single robot digging over time. The robot creates a tunnel

by removing cotton over time

Traffic jams were not observed in a test bed with two active robots. The robots

would occasionally collide but still manage to separate after the collision and move

around each other. An example of a two robot collision is shown in a Figure 45.

Figure 45 shows 14 snapshots recorded at two second intervals. The collision started

after one robot finished digging and was in the process of turning around to leave the

digging area. The robots pushed and brushed against each other during the collision

and eventually got out of each other’s way.
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Figure 45: Video snapshots showing an example of a two robot collision. The robots

spent 26 seconds to get around each other

A jamming effect was observed with three active robots. The three robots collided

and it took some time for them to get past each other. An example of a three robot

jam is shown in Figure 46. Figure 46 shows 33 snapshots recored at two second

intervals. The jam happened after a third robot entered the digging area and was

resolved after some pushing and shoving (t=64s). In the three robot experiment, the

jamming occurred more frequently and lasted for longer time periods compared to

the two robot experiment.
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Figure 46: Video snapshots showing an example of a three robot collision. The robots

spent 64 seconds to get around each other

The power consumption over time was comparable for all robots participating in

the one and two robot experiments. This was the case since none of the robots have

been subject to significant traffic jams. The power consumption of robots A, B, and

C robots involved in the first two experiments is illustrated in Figures 47–49. There

was no significant variation in current draw, battery voltage decay, and power for all

robots. This suggests that the robots were consistent and that one robot was not

better than the other performance-wise.
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Figure 47: Current consumption vs time before charging
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Figure 48: Battery voltage vs time before charging
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Figure 49: Power consumption vs time before charging

6.2.1 Preliminary Data

Three experiments were conducted. In the first experiment, a single robot was placed

in the test bed and was allowed to be active for one activity cycle. An activity cycle

starts when the robot enters the test bed with a fully charged battery and ends when

the robot drives to the charging station. The robot’s power consumption was logged

and its activity was recorded with an overhead camera. In the second experiment,

two robots were allowed to be active for one activity cycle. In the third experiment,

three robots were used.

Figure 50 shows that the robots in all three experiments were individually con-

suming approximately the same amount of energy over time. This is not surprising

since all robots were found to draw approximately the same amount of power over
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time. Consequentially, a system of two robots proportionally draws more energy

than a system of robots. Likewise, a system of three robots draws more energy than

a system of one robot. This result is illustrated in Figure 51.

Figure 50: Energy vs time, per robot. The plot shows that the robots approximately

draw the same amount of energy over time
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Figure 51: Energy vs time, per system. The plot shows that adding robots to the

system proportionally increases the amount of energy drawn by the system over time

To evaluate the efficiency of a one, two, and three robot system, a number of

cotton deposits will be considered. The amount of deposits made by the robots could

be roughly correlated to the excavation and tunnel propagation rates. A deposit is

defined as an instance where a robot in a system delivers some cotton to the collection

bin. Each successful deposit added from one to five cotton balls into the collection

bin. Figure 52 shows the number of deposits made by the one, two, and three

robot systems vs time. The figure shows that the speed of tunnel propagation is

proportional to the number of robots in a system. Two robots propagate the tunnel

faster than one robot and three robots propagate the tunnel faster than two robots.
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Figure 52: Deposits vs time. The plot shows that adding robots to the system

increases the excavation rate

The main preliminary result is illustrated in Figure 53 which is a plot of energy

vs the amount of deposits. The plot shows that increasing the number of robots

in a system causes an increase in the energy cost to propagate the tunnel forward.

The two robot system spent more energy than a one robot system to make the same

number of deposits. Likewise, the three robot system spent more energy than a two

robot system. The increase in the energy cost comes from the fact that multiple

robots collide into each other and create traffic jams.
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Figure 53: Energy per deposit. The plot shows that adding robots to the system

increases the energy cost to complete the same amount of deposits

The rate of change of the energy with respect to time dE/dt, as well as the

excavation rate dL/dt was computed. The excavation rate was considered to be a

rate at which the number of deposits changes over time. The energy rate of change

was obtained by fitting a y = mx line through the data in Figure 51. The slope

of the best fit line is the desired rate of change of energy. The excavation rate was

obtained in a similar fashion by fitting a best fit line through the data in Figure 52.

The results are shown in Figure 54. Figure 54 shows that adding a second robot to

the system speeds up excavation by approximately 21%, and the energy consumption

of the system goes up by approximately 144%. Adding an additional bumps up

excavation up to 32% at the energy consumption to 275% compared to a one robot

system. If we normalize the energy rate of the system by a number of the robots of

the system, we also notice that robots spend about 25% more energy when digging
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collectively comparing to digging alone.

Figure 54: Energy and excavation rates of change. The plot shows that adding robots

to the system increases both the excavation and the energy consumption rates

6.3 Conclusion and Future Work

This thesis achieved a design of a robotic ant which met all the set design constraints.

There robots were constructed and tested in a tabletop test bed. In summary, we

found that the robots have a fixed energy consumption rate. Most of the energy

consumption comes from the fact that the robots are switched on and are running.

Collisions do not cause a significant increase in the energy consumption. We also

found that the excavation rate increased as we increased the number of robots. This

was a benefit of a collective robotic excavation. The cost per deposit, however, also

increased as the number of robots was increased. The jamming effect in the multi

robot systems caused individual robots to take longer times to make the deposit.

Thus, the robots spend more energy to make the deposits because the robots spend

more time to make the deposit trips.

More experiments will be conducted with the one, two, and three robot systems.
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The robot’s behavior will be changed and the performance of the one, two, and three

robot systems will be re-evaluated. The robots will be programmed to engage in the

digging activity according to a specified probability (which would be obtained from

the experiments with real ants). This scheme will force some of the robots to be

lazy in a multi robot system. In doing so, we hope to observe a reduction in the

the number of traffic jams and thus an increase in the excavation efficiency. The

dimensions of the test bed could also be varied. For example, the width of the test

bed could be reduced making it harder for the robots to avoid contact and jamming.

The robots could be improved in several ways. The Arduino Due could be replaced

with a Linux based board, like a Raspberry Pi or BeagleBone to increase computa-

tional power. Doing so will pave the way for development of more complicated control

algorithms making the robot more intelligent and perhaps robust. The Arduino Due

still has plenty of unused RAM but additional RAM and flash storage and faster CPU

would be useful in the future.

Improvements to the locomotion could be made. The cotton balls made the wheels

jam occasionally. Several different wheels of different diameters and widths were

tested. All wheels tested were found to be prone to jamming. This jamming problem

could be addressed by installing stronger drive motors and redesigning power circuitry

so that an adequate amount of current could be supplied to the motors. Alternatively,

the wheels could be replaced with a platform involving legs.

Automation elements could be added to the test bed. For example, a system that

would clean the test bed and repack the simulated granular media could be added.

Programming robots to clean the test bed would be an ideal solution. Likewise, weight

scales could be installed to monitor the amount of excavated simulated granular media

over time. This would allow for a better measurement of excavation efficiency.
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APPENDIX A

PARTS DRAWINGS

82



83



84



85



86



87



88



89



APPENDIX B

MINIMUM PARTS LIST

Item Vendor Part # Qnty Price
Pixy Camera Amazon – 1 $ 69.00
IR Distance Sensors Sparkfun SEN-00242 2 $ 13.95
Analog Proximity Sensor Sparkfun ROB-09453 1 $ 2.95
Digital Proximity Sensor Sparkfun ROB-09454 1 $ 2.95
9 DOF IMU Sparkfun SEN-12636 1 $ 29.95
Mini Plastic Gearmotor,
D-Shaft

Pololu 1511 2 $ 5.49

HS-55 Servo Motor Servocity 31055S 1 $ 9.99
HS-A5076HB Servo Motor Servocity 35076S 1 $ 23.99
Micro Gripper Kit Servocity 637104 1 $ 6.99
3.3k Ohm Resistors (100 pack) Amazon – 1 $ 4.49
0.1µF Capacitors Sparkfun COM-08375 2 $ 0.25
470µF Capacitors (10 pack) Amazon – 2 $ 4.34
5V Step-Up Voltage Regulator Pololu 2115 2 $ 3.95
Current Sensor Pololu 1185 1 $ 9.95
Micro Contact Switches Pololu 1402 8 $ 0.75
3400mAH 3.6V Li-On Battery, 2
Pack

Amazon – 1 $ 26.95

LiPo Charger Sparkfun PRT-10401 1 $ 7.95
Dual Motor Driver Board Pololu 2135 1 $ 4.49
Solid State Relay DigiKey DMO063 1 $ 21.87
Toggle Switch Sparkfun COM-09276 2 $ 1.95
Xbee Radios ZB Series 2 - 2mW Adafruit 968 2 $ 22.95
Xbee Explorer Sparkfun WRL-11812 1 $ 24.95
Micro SD Card Reader Sparkfun BOB-1294 1 $ 9.95
Micro SD Card Amazon – 1 $ 4.95
Arduino FIO Sparkfun DEV-10116 1 $ 24.95
Arduino DUE Adafruit 1076 1 $ 49.95
Small Wheels Sparkfun ROB-08899 1 $ 6.95
Metal Ball Caster 3/8” Sparkfun ROB-08909 2 $ 2.95
FTDI Basic Breakout, 3.3V Sparkfun DEV-09873 1 $ 14.95

The grand total is $475.83. Additional miscellaneous items such as perforated

boards, hook up wires, connectors, cable ties, and fasteners may be useful.
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