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SUMMARY

Like most physical systems, the interaction characteristics among agents play an im-

portant role in active matter. For example, the extent of attraction can switch a collective

of particles from a homogeneous mixture to phase-separated clusters; particle concavity in

shape-changing active systems can change interactions from repulsive to attractive. The

way that the force transmits can also be important. While many interactions transmit

through direct or short-ranged contact (e.g., collisions or magnetic attraction), there are

interactions that require the full description of the force-generating field to describe mo-

tion. These interactions can bring interesting features such as time delays, the coexistence

of multiple length scales, and non-reciprocity, which are less common in short-ranged in-

teracting systems. In this thesis, I will use several examples from my Ph.D. work to show

the rich dynamics of active matter interacting through a field. Examples include active lo-

comotors mimicking motion in curved space-time when driving on an elastic membrane,

and resource-consuming agents driven by resource depletion that form different states of

matter. Through these studies, I will also show how the connection between field-mediated

interactions and classical fields allows us to explain and explore emergent phenomena in

active matter using inspiration and tools from field theory. In addition to the study of

field-mediated interactions, other studies of active matter with short-ranged interactions

are presented in the later chapters. These include shape-changing active matter, the role of

substrate curvature in active matter, and the analogy between attractive interaction in active

matter and surface tension.
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CHAPTER 1

INTRODUCTION

1.1 Active matter

Active matter is a kind of matter that has both internal energy input and dissipation. The

study of systems composed of internally driven agents has long been the domain of biology

[1, 2, 3] and robotics [4, 5, 6, 7] but it is coming into vogue in physics in the field of ac-

tive matter [8, 9, 10]. Individual active agents display novel dynamics with their persistent

motion [11] and control [12]. Active collectives display fascinating properties. For ex-

ample, collectives can exhibit phase transitions [13] and an individual consuming ambient

resource can drive itself through resource depletion [14]. Active matter is ubiquitous in our

everyday life. Since any object subjected to internal energy input and dissipation is con-

sidered active matter, all living systems are active matter. In addition, driven and damped

non-living systems, such as robots are also active matter as they take in energy to perform

tasks and dissipate energy due to friction. Given its ubiquity, active matter has attracted

interest in many fields.

Physics

Active matter attracts the attention of physicists due to its non-equilibrium feature. For

equilibrium systems, there are straightforward methodologies such as obtaining thermody-

namic properties from the partition function[15]. For non-equilibrium systems, the past

three decades have seen much progress. For examples, Jarzynski equality[16] has con-

nected free energy differences between two states with the work in irreversible process.

The low rattling principle[10] has provided an understanding of the probability of steady

states in non-equilibrium systems. Nonetheless, there has been no general principle like
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what we have for equilibrium systems yet. To probe the physics of non-equilibrium sys-

tems, active matter provides many good experiment platforms with relatively easy access.

Researchers can synthesize artificial active matter[17, 18], harness living systems[19, 20],

or even create more customized robotic active matter[21, 10] to query specific scientific

problems. In this way, active matter has helped us explore many non-equilibrium versions

of well-known phenomena equilibrium systems, such as topological defects[19], motility-

induced phase separation [18, 22], glassy state[20]. Additionally, active matter has enabled

exploration of phenomena not existed in equilibrium systems, such as nonreciprocal phase

transitions[13] and entropy production[23] (Figure 1.1).

0.1 mm

A B C 10 cm

time

Figure 1.1: Active matter extends the physics of passive systems. (A) Aggregation
of induced-charge electrophoretic self-propelled Janus colloids helps understand novel
phase separations[18]. (B) Bacteria swarms help understand how topological defects could
emerge from active motion. The white dashed lines encircle a +1/2 defect (left) and a
−1/2 defect (right) of the nematic cell alignment[19]. (C) Space-time diagram of ants in
a quasi-one-dimensional tunnel (see inset)[20]. The color represents the number density.
The long vertical bright streaks show long interaction time. The dynamics’ change with
this time resembles a glass transition.

Biology

While physicists would develop artificial active matter (such as Janus particles[29])

to pursue the theoretical interests in non-equilibrium physics, the more natural contribu-

tion from active matter study is in living systems. These range from cell migration[24] to
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Figure 1.2: All living systems, spanning many scales of size, are active matter. (A) Mi-
grating Madin-Darby canine kidney cells[24]. (B) Moving clusters of Bacillus subtilis with
bacteria in the same dynamic cluster shown in velocity arrow with the same color[25]. (C)
Initially homogeneous distributed T. tubifex show phase separation after 9.5 minutes[26].
(D) Painted S. invicta workers excavating a single tunnel along the wall of a transparent
container with 0.25-mm-diameter wet glass particles[9]. (E) A flock of starlings [27]. The
inset shows a tracked velocity distribution. (F) A typical “mosh pit” and the same image
with overlaid velocity field [28]. Picture credits by the cited journal articles listed after
each panel.
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bacteria swarms[25], to spontaneously formed clusters of animals[30], social behaviors of

animals[9] and even of humans[28] (Figure 1.2). For instance, coherent clusters of animals

are now understood as active agents following simple alignment with the neighbors[30].

Cellular automaton modeling of ants’ digging tunnels [9] has taught us that some idleness

of individuals and retreating are necessary for efficient motion in a limited space. Models

that reproduce the dynamic pattern in a crowd of congested humans [31, 28] could poten-

tially teach us how to avoid accidents when a crowd of people or animals panic. Designing

control and devices using the inspirations of these living systems (biomimicry) is also one

route to help swarm robotics.

Robotics

Besides using an active matter approach to study living systems to facilitate under-

standing in biology, roboticists can also benefit from active matter studies in the field of

robotics. For instance, principles in collective motion of active matter can help us de-

sign the control of individuals in robotic swarms to achieve desired tasks. For instance,

the neighbor-aligning model mentioned above[30] has inspired robotic swarms capable of

forming desired two-dimensional shapes on land [32] and various motion patterns in water

[33]. We will see more examples of how active matter concepts can be applied in robotics

in the work in chapter 4 and chapter 6 of this thesis.

There is no priority among the three threads above, and they are not independent of

each other, either. In fact, the results we learn from the physics of active matter could be

helpful for biology and robotics. The understanding of cell migration from the active matter

perspective can possibly help us understand wound healing [34] and cancer metastasis [35].

Besides the three threads mentioned above, the discoveries of active matter principles could

contribute to many more disciplines, such as chemistry [36, 37], economics, politics[38],

and sociology[39].
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A B

Figure 1.3: Active matter connects to the designs of swarm robotics. (A) By locating
the position with the hints from the neighbors, a robotic swarm (kilobots) is able to form a
desired shape [32]. By using a vision of the neighbors, fish-like robots are able to reproduce
the aggregating and swirling (blueswarms[33]) behavior of fish schools.

1.2 Environment and the interaction in active matter

Active collectives can interact via physical and social forces [28]. Researchers have ex-

tensively explored the aerodynamic [41], hydrodynamic [42], and even terradynamic [43,

44] interactions and have increasingly understood their effects on agent locomotion such

that we can build capable devices (like fast-moving robotic fish [45] and hawk-inspired

drone [46]) and create capable swarms [47, 48, 4, 5, 6]. From these examples above, we

have gained understanding of how the deformation of the environment would affect the

agents individually. However, in addition to the individual environment-agent coupling,

the environment can sometimes act as a medium to transmit inter-agent interactions. These

interactions between agents that move on an environment which is highly, but not neces-

sarily permanently, deformed by the agents are much less studied. In these systems, the
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Figure 1.4: Environment’s role in active matter systems in three regimes. I. When the
environment does not effect the active matter: (A) A school of fish is formed by the align-
ment of neighboring fish. (B) A nematic order is formed by the alignment due to the sterical
exclusion of rod-like particles (cut from 8-mm-diameter copper wires). II. When the envi-
ronment affects the active matter: (C) A wall of funnels leads to the different concentration
of bacteria on the two sides of the funnels[40]. III. When the environment shared by the ac-
tive matter link them together: (D) Pedestrians walking on the Millennium Bridge wobbled
the bridge by resonance. (E) The initially randomly-phased metronomes get synchronized
on a shared loose platform (known as the Kuramoto oscillator). (F) Active agents consum-
ing resources represented by LED light intensity and moving along the resource gradient
show different states of matter depending on the number density and resource replenishing
rate.

environmental deformation field plays an important role in the locomotion and non-contact

interactions.

To gain insight into how the environment plays a role in active matter systems, here

we do a brief survey by considering the interaction between the active matter and the en-

vironment in which it dwells. In an increasing order of the environment’s involvement in

6



active matter systems, Figure 1.4 shows three distinct regimes with several representative

examples. Although we want to show the effect of the environment, to have a systematic

understanding, we will start with the regime where the environment plays a nominal role

and see and go deeper into the unidirectional and, finally bidirectional case.

1.2.1 Scenario 1: Environment does not functionally affect active matter

In many active matter systems, there are no forces from the environment besides the forces

constraining the object in the space of interest. The environment does not play a functional

role on the active matter such that the agents only interact with themselves. While this case

seems to be simple, the agent-agent interaction, even typically only affecting the neigh-

boring objects, can create surprisingly rich phenomena. For instance, by visually aligning

with the neighbors, fish and birds can collectively move together in schools and flocks (Fig-

ure 1.4A); nematic alignment of active granular rods shows up due to the sterical exclusion

[49].

1.2.2 Scenario 2: Environment unidirectionally affects active matter

After reviewing the ‘null regime’, let us now consider a regime where the environment

plays some meaningful role. In this regime, the environment affects the active matter while

inversely the active matter is not strong enough to affect the environment. For instance,

bacteria swimming around a wall of funnels have little effect on the funnels while the fun-

nels can act as a ratchet to change the concentration of bacteria on the two sides [40, 50,

51] (Figure 1.4B). Other examples include snakes[52], propelled boats [53], and nematodes

[54] colliding on and passing through vertical posts. In addition to these hard interactions,

softer effects from the environment include active particles in electrical, magnetic, and

acoustic [55] fields where the external field exerts force on the active matter while the field
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is considered minimally disturbed. In these systems, the interaction is unidirectional in

the sense that the effect from the environmental is so dominant that we can explain the

phenomena by assuming the environment is static and the force from the environment acts

individually on the active matter.

1.2.3 Scenario 3: Environment and active matter affect each other

While there are plenty of rich dynamics in the previous two regimes, even more interesting

are situations where active agents modify their environment which in return modifies the

dynamics of another active agent. This occurs when the active matter is strong enough to

affect the environment reciprocally. For instance, when pedestrians were walking on the

original Millennium Bridge, a ‘wobbly’ bridge in London, aside from the sterical exclusion

between them that forbids penetration of pedestrians, additional forces were transmitted

between every two pedestrians. In this case, each pedestrian transferred momentum to the

bridge and the bridge back reacted to the other pedestrians given its mass was comparable to

that of the pedestrians[56, 57]. Another similar though not active system that is extensively

studied is the Kuramoto oscillator. In a Kuramoto oscillator, this coupling between the

substrate and the object on top of it can leads to automatic synchronization[58].

In addition to the two examples above where the response of the environment (substrate)

to the active matter is a simple motion as a rigid object without detailed structure, the

environment can also change spatial-temporally like a field. For instance, Figure 1.4F and

Figure 1.8B show a robophysical realization of mobile agents consuming virtual resources

represented by the light intensity of the substrate. In this system, the environment changes

over space and time, responds to the active agents as a result of consumption, and also

exerts repulsion to the agents with the regions where the resource has run out. From this

example, we can see that the spatio-temporally varying environment can act as a force field

that mediates long-ranged indirect interaction of the agents in addition to the short-ranged
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on-contact interactions, such as sterical exclusions (collisions between agents) mentioned

in the previous two regimes. This can potentially create a two stage phase transition because

there is more than one length scale. We will show an effect from this in chapter 3.

Resembling a more fundamental description of force that uses fields to transmit inter-

action in the microscopic world, systems in this third regime naturally possess the feature

of non-reciprocity that the forces between two objects do not necessarily have the same

magnitude and opposite signs as we have in Newton’s third law. In addition to its existence

in the microscopic world, non-reciprocal interaction also exists in many macroscopic sys-

tems. For instance, the speeds of the pursuer and the evader are different[59]; the phoretic

response of enzyme A to the chemical produced by enzyme B is different from the that of B

to the chemical produced by A[60]. Therefore, the interaction transmitted by the environ-

ment could be helpful to understand many emergent phenomena of macroscopic systems.

We will refer to this kind of interactions as field-mediated interaction and discuss its fea-

tures with more examples and in more detail in the next section.

1.3 Field-mediated interaction

1.3.1 Passive agents

Field-mediated interaction occurs in the agent-environment-coupled regime when the en-

vironment changes spatio-temporally with the agents moving above it. One of the most

accessible phenomena in everyday life with field-mediated interactions is the Cheerios ef-

fect[62, 63]. As shown in Figure 1.5A, solid objects of light weight floating on a liquid can

deform the liquid beneath and reciprocally the deformation could drive these floating ob-

jects together. As the deformation is made by all objects on the liquid surface collectively,

the substrate acts as a media that can transmit long-ranged force to attract them together.

Under this interplay between the objects (matter) and the substrate (space), the objects

merge dynamically. Besides Cheerios themselves and similar solid objects floating on liq-
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A

Figure 1.5: Field-mediated interaction induced by the agent-environment coupling.
(A) Cheerios floating on milk attract to each other due to long-ranged fluidic forces[61].
(B) A drop of fluid is able to walk on a vibrating fluid instead of merging with the fluid
beneath when the vibration frequency is higher than a threshold[11]. This fluidic droplet
interacts with the substrate reciprocally. (C) A configuration composed of three such active
droplets.

uid, many other scenarios with identical or similar underlying principles possess the same

feature, such as coins floating on fluid and liquid droplets floating on a liquid substrate.

1.3.2 Active agents

While the Cheerios effect exists regardless if the objects are active or not, it is more interest-

ing to investigate the cases where the objects are active agents. In these cases, locomotors

can modify their environment which in turn modifies the dynamics of the locomotor (or

another active agent). This is seen in organisms running on compliant membranes[64, 65],

water walking organisms near menisci [66], macroscopic robots and insects walking on wa-

ter surfaces [12, 67, 66, 68] and granular slopes [69], cellular motion on substrates [70, 71],

locomoting agents that compete to consume spatially distributed resources [14], and walk-

ing droplets [72, 11]. Dynamics in such systems can display surprising features. For exam-
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ple, in the walking droplet system the interaction of a droplet and its self-generated wave-

field yields a hydrodynamic analog of “pilot wave” models of quantum mechanics [73, 74].

The system has also spurred inquiry into the foundations of quantum mechanics (see [75]

for a recent review).

1.4 Perspective from field theory

1.4.1 Field description of active matter

In fluid mechanics, despite the fact that the fluid molecules have finite sizes, the Navier-

Stokes equation, a field equation for continuum, well captures the fluid dynamics. Sim-

ilarly, researchers have developed field theories for active matter with a finite size as

well. For instance, Toner and Tu [76] developed a field theory that uses a velocity vec-

tor and a number density to describe active agents locally aligning with neighbors (Viscek

model[30]). The Toner-Tu model provides theoretical support for the spontaneous forma-

tion of clusters with long temporal and spatial persistence in the Viscek model and explains

the functional role of the local coupling in the flocking of active agents, such as birds and

fish. Recently, by combining Toner-Tu’s theory and the Swift-Hohenberg for pattern for-

mation, researchers have formulated equations for a vector field to explain the different

phases in the suspension of active polar and nematic particles[77, 78]. In chapter 6, we will

see the Cahn-Hilliard equation, a field equation describing how surface tension gives rise

to phase separation, can capture the cluster growth of spinning active matter[79].

1.4.2 General relativity

In systems with interactions mediated by the environment, the environment acts as a field.

Therefore, a field description may help us understand the dynamics of active matter con-

nected by the environment. We note that the interplay between the active matter and the

environment recaps the famous aphorism on general relativity (GR) by Wheeler that ‘the

matter tells the spacetime how to curve and the spacetime tells the matter how to move.’
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Therefore, I would like to ask what I can borrow from general relativity to understand ac-

tive matter.

A

B

Figure 1.6: Conceptual idea of general relativity. The white mesh shows the spatial cur-
vature of the spacetime curved by a mass (yellow sphere) in the center. For a low-mass
particle at point A that does not further curve the spacetime, it will follow the geodesic (the
red solid line, as opposed to the straight line on flat surface in red dotted line) on the curved
spacetime to get to point B. The white mesh is a solution to the geodesic equation (Equa-
tion 1.2) and the red solid line is a solution to the Einstein field equation (Equation 1.3).
The figure is adapted from relativity curved space.jpg on physicsoftheuniverse.com.

Spacetime tells matter how to move

Unlike the Newtonian (Galilean) view of space and time, GR views the space and time

combined as a 4-dimensional continuum instead of separated coordinates. Mass moves

along the shortest path (geodesics) in this continuum. To characterize the spacetime, we

use the metric tensor, which describes how a line segment ds is composed of the spatial

and temporal segments dxµ:

ds2 = gµνdx
µdxν (1.1)

where the repeated indices denote summation (Einstein summation notation). For in-

stance, here Equation 1.1 means ds2 = ΣµΣνgµνdx
µdxν and µ, ν = 0, 1, 2, 3 where 0
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denote the time and 1, 2, 3 denote the three spatial coordinates. Throughout this thesis, we

will use the Einstein summation for convenience.

In the metric, the metric tensor gµ describes the curvature of spacetime. To understand

this, we can use the example of Euclidean space where gab = δab. From Equation 1.1 we

have ds2 = (dx1)2 + (dx2)2 + (dx3)2 = dx2 + dy2 + dz2. This is the familiar Pythagorean

law. Nonetheless, in general spacetime is not flat and metric tensors are functions of all 4

coordinates. In Figure 1.6, the relatively flat mesh in the region far from the center has the

spatial metric close to the gab = δab(a, b = 1, 2, 3) while the more curved part around the

center deviates from gab = δab. We will show a particular example of curved metric tensor

in the next subsection.

The equation for the geodesics, the shortest path between two points in the spacetime

reads

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 (1.2)

where the Christoffel symbol Γikl = 1
2
gim(∂gmk

∂xl
+ ∂gml

∂xk
− ∂gkl

∂xm
) takes in the information

of the spacetime curvature gµν and serves as the connection between different coordinates.

s is an affine parameter for the curve parameterization.

Matter tells the spacetime how to curve

Now that we know how the matter moves in a given curved spacetime, we would like

to ask how the spacetime is curved by the matter. The equation in GR describing this is the

Einstein field equation:

Gµν + Λgµν = κTµν (1.3)

On the left hand side, we have Gµν = Rµν − 1
2
Rgµν where Rµν , R are the Ricci cur-

vature and scalar curvature. Λ is the cosmological constant. On the right hand side, Tµν

is the stress-energy tensor and κ = 8πG/c4 is the gravitational constant. Gµν takes in the
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spacetime curvature and represents the feature of spacetime. It is simply proportional to

the stress-energy tensor if we neglect the comological term.

The spherically symmetric solution to this field equation with zero right hand side (Tµν),

the so-called Schwarzschild metric, gives the gravitational field outside a spherical mass

with zero electric charge of the mass, angular momentum of the mass:

ds2 = (1− rs
r

)c2dt2 − (1− rs
r

)−1dr2 − r2dθ2 − r2 sin2 θdϕ2 (1.4)

where rs = 2GM
c2

is referred to as the Schwarzschild radius. Here M is the central mass

and G is the gravitational constant.

This solution leads to an effective potential for a test particle with mass m orbiting

around the central mass

V (r) = −GMm

r
+

L2

2µr2
− G(M +m)L2

c2µr3
. (1.5)

Here L is the angular momentum and µ is the reduced mass. The first two terms are

the classical energies in Newtonian gravity. Now if we consider a tiny mass that insignif-

icantly curves the spacetime, GR can reproduce the orbit of a planet around a star seen in

Newtonian gravity (Figure 1.6).

Nonetheless, this picture assumes that the orbiting object has a very tiny mass so that

we can view it as a test particle. For a scenario like the black hole mergers [80] where the

objects deforming and traversing in the spacetime have comparable masses, one needs to

iteratively solve how the field is curved by the matters after the matters update their new

positions with the geodesic equation. This highly-coupled computation is typically very

expensive given that the field equation is composed of ten partial differential equations.
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1.4.3 Analog models

One may ask if it is possible to learn something by comparing the existing field theory and

systems analogous to them. In fact, researchers in the field of analog gravity have developed

diverse systems (fluid [81, 82], condensed matter [83], atomic, and optical [84, 85, 86]) to

explore GR questions [81, 82, 84]. For instance, researchers have found hydrodynamic

analog of damped resonances, which appears in the ringdown of black hole mergers, in

bathtub vortices. This could provide insights into problems not understood in black hole

mergers (Figure 1.7B).

A B

4 cm

Figure 1.7: Analog models of gravity. (A) Light rays in a Transformation Optics device
resemble tunneling through a wormhole. (B) Analogous to the ringdown spectrum that
reveals many properties of the black hole, the spectrum of vortices in bath tub provides
insights into rotating black holes.

In this thesis, we will explore the connections between active matter under field-mediated

interactions and other fields in physics, such as general relativity, to show that we can learn

something from different fields. For instance, we will show that we can benefit from the

spacetime interpretation of the active matter dynamics to help design control schemes and

alter the behaviors in robots and living systems. Additionally, considering the expensive nu-

merical computation of field-agent-coupled systems, we posit that the analog models have

the potential to provide insights into computationally-expensive problems. For instance, in

a case where two masses interact through a field, if we can map the analog systems to the

numerical results at the two extreme ends (very large and very small mass ratios), we could
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turn to the experiments of the analog system for qualitative insights at intermediate mass

ratio regime, which typically is the most challenging for computation.

1.5 Organization of the thesis

This thesis focuses on how field-mediated interactions lead to various phenomena in active

matter, including

• Chapter 2, which investigates how active locomotors are affected by interactions me-

diated by an elastic membrane beneath (Figure 1.8A),

• Chapter 3, which shows that mobile agents driven by resource depletion can interact

with each other through the mediation of the devoided resources (Figure 1.8B), and

• Chapter 4, which explores the collective behavior of shape-changing particles con-

fined in a moveable ring (Figure 1.8C) and the individual motion on a flat ground by utiliz-

ing the friction.

5 cmA B C

5 cm

Figure 1.8: Three field-mediated interactions presented in this thesis. (A) Active vehi-
cles moving on an elastic membrane are subjected to emergent attraction induced by the
membrane deformation. (B) Individual active robots consuming and hunting for the re-
source would drive themselves due to resource completion. A collective of them would
repel each other due to the depletion of the resource. (C) Shape-changing particles con-
fined in a moveable ring show either diffusive or drifting motion depending on the activity
homogeneity of the enclosed particles.

In addition to the field-mediated interactions, the latter chapters of this thesis explore

interesting topics in the first two regimes, including

• Chapter 5, which shows how active matter moving in non-flat space can translate

without conventionally defined forces, and
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• Chapter 6, which shows how the attraction force acts as a surface tension in the

clustering of active matter.

While the last two chapters are not directly related to field-mediated interaction, it will

be interesting to extend them to field-mediated systems in the future. Notably, for the

active matter moving in curved space (Chapter 5), the system would have field-mediated

interaction if the curvature field can be affected by the active matter. In addition, if we

could extend the short-ranged attractive force in Chapter 6 to a long-ranged field, it would

be interesting to see what new physics will chime in.
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CHAPTER 2

ACTIVE MOTION ON ELASTIC MEMBRANE

Systems consisting of spheres rolling on elastic membranes have been used as educational

tools to introduce a core conceptual idea of General Relativity (GR): how curvature guides

the movement of matter. However, previous studies have revealed that such schemes cannot

accurately represent relativistic dynamics in the laboratory. Dissipative forces cause the

initially GR-like dynamics to be transient and consequently restrict experimental study to

only the beginnings of trajectories; dominance of Earth’s gravity forbids the difference

between spatial and temporal spacetime curvatures. Motivated by this limitation, we are

curious to ask what will an active agent instead of a passive marble bring us with. Will it

make the exact mapping to GR possible? What can we learn from the mapping if it works?

This chapter is devoted to answer these two questions. In section 2.1, We first show that

one can extend the conventional passive pedagogical model with an active agent to map ex-

actly onto GR. Next, in section 2.2, we show the tools from GR can help us understand the

classical orbits and even manipulate the orbital feature of an individual agent on an elas-

tic membrane. Finally, in section 2.3, we show the model generalized from the individual

agent case can help us understand and control the collective behaviors of the active agents

interacting through the membrane’s mediation1.

2.1 Programming spacetime dynamics with active vehicle

2.1.1 A classical pedagogical tool to introduce general relativity

Systems consisting of spheres rolling on curved surfaces [87, 88] are a well known non-

hydrodynamic analog to gravity. In such readily accessible systems, researchers have made

1Part of this chapter is adapted from two arXiv preprints: ‘Robophysical modeling of spacetime dynamics’
(2202.04835) and ‘Field-mediated locomotor dynamics on highly deformable surfaces’ (2004.03549)
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Figure 2.1: A passive object versus an active object on a membrane. While a passive
marble is only subjected to friction and Earth’s gravity that leads to energy dissipation as
~F · ~v ∝ ~a · ~v < 0, an active object with an additional drive force can keep steady-state
motion with prescribed speed as ~a · ~v = 0.

intriguing connections to gravity such as Kepler-like laws, precession, and the stability of

orbits. However, their studies have also found that these systems do not exactly mimic

astrophysical gravity. For instance, the scaling between the period and radius is T ∝ r2/3

[89] instead of the T ∝ r3/2 in Kepler’s law. Additionally, the sphere on the elastic is

passive; as a result, not only do trajectories decay quickly, but also the tunable parameters

are limited to only the boundary conditions and the mass of the marble 2.

We hypothesized that making the object “active” – an internally driven robot – would

allow mechanical systems to better model GR in part because of the ability to study long

time steady states. We further reasoned that the programmability and sensory capabilities

of increasingly low-cost and powerful “robophysical” models [44, 90] could allow tuning

of parameters that lead to inexact mimics of GR in passive systems. Indeed, our recent work

2This section is adapted from a first-authored arXiv preprint ‘Robophysical modeling of spacetime dy-
namics’ (2202.04835)
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[91] built a framework to understand how the field-mediated dynamics of active agents on

flexible membranes demonstrate in the words of Wheeler’s famous aphorism: “matter tells

spacetime how to curve and spacetime tells matter how to move” [92] as we have mentioned

earlier. In particular, we show that the spacetime followed by an active object can be tuned

by varying system parameters such as the membrane elasticity and the speed of the object.

Here we amplify on and extend the scheme introduced in [91] and demonstrate how

the activity can lead to an exact mapping to GR. We first show how an active object with

prescribed speed on an elastic membrane produces longer and more controllable trajecto-

ries compared with a passive marble. We then deduce the spacetime it follows, and subse-

quently show one can program the spacetime with a Schwarzschild orbit as an example. We

posit that a future robot car controlled in the way we describe could mechanically mimic

black holes dynamics in the laboratory, at low cost and with strong pedagogical value.

2.1.2 Longer trajectories and more control brought by an active object

We first consider an active object prescribed with a constant speed on a circular elastic

membrane. Later, we will discuss the general case of time-varying speed. To prevent the

object from simply following a near-straight-line spatial geodesic with a spatial curvature

ds2 = Ψ2dr2 + r2dϕ2 (2.1)

where ds is a line segment on a curvature in a cylindrical coordinate system with radius,

azimuthal angle and height denoted as r, ϕ, and z. Here, Ψ2 = 1 + z′2 and prime denotes

the derivative with respect to r, we want the object to turn according to the instantaneous

local curvature. To do so, we propel a vehicle with a differential drive that drives the center

of mass of the vehicle with a prescribed speed while the speed difference between the two

wheels depends on the local slope.
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Figure 2.2: Trajectories of passive and active objects on an elastic membrane. (a)
Sample perspective views of an active vehicle and a passive marble moving on a Spandex
membrane. The time interval between two consecutive snapshots is 0.17 s. (b) The experi-
mental trajectories, radius evolution, and speed evolution of the active (red) and the passive
(blue) objects with the same mass (150 g) on the same membrane started from the same
initial position and velocity on the same membrane. (c) The simulation counterparts of (b).
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We first compare the trajectories of the active vehicle with those of a passive marble

having the same mass as the vehicle. We released them with the same velocity on the same

membrane individually. The speeds of the vehicle and marble are set by adjusting the volt-

age on the motor and the releasing height on the guiding track (Figure 2.2a) respectively.

The trajectories collected from experiments showed that the active vehicle produced tra-

jectories much more persistent (Figure 2.2c) than the passive marble which barely finished

the first revolution (Figure 2.2b).

To understand these orbits, we follow the models in [91, 93]. While a passive mar-

ble dissipates energy as ~a · ~v < 0 ( Figure 2.1), an active object can conserve its speed

when the driving force dynamically balances with the friction and exactly makes ~a · ~v = 0

(Figure 2.3a). Therefore, the acceleration for a constant-speed motion can be written as

aϕ
r

= ϕ̈+
2 ṙ ϕ̇

r
=
a

r
cos θ (2.2)

ar = r̈ − r ϕ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 = − a

Ψ
sin θ . (2.3)

where θ is the heading angle between the radial direction and the velocity on an isotropic

circular membrane.

Though the speed is constant, the change of the velocity (the scalar acceleration a)

depends on the local slope γ (Figure 2.1). Since γ varies with radius (position) r, a is

also a function of r. Additionally, a should also depend on velocity in general. However,

given that the velocity has constant magnitude as the speed is constant, this dependence

is reduced to one degree of freedom. For our convenience, we chose the direction of the

velocity, θ. If we consider an active object without chiral bias such that its trajectory has

a mirror symmetry, the dependence of a (thus aϕ) on θ should be anti-symmetric about

θ = 0, as otherwise the clockwise (θ(t = 0) = θ0) and counterclockwise (θ(t = 0) =

−θ0) trajectories (Figure 2.3b) will not be mirror reflections with each other. A first-order

approximation with this symmetry could be a ∝ k(r) sin θ where the k(r) is the radial
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Figure 2.3: Dynamics and symmetry of a non-chiral active vehicle. (a) The acceleration
of an active vehicle is perpendicular to its velocity ~v. (b) A non-chiral vehicle with a
mirror-reflected initial velocity P~v will produce a mirror-reflected trajectory.

dependence due to the local slope γ(r) that changes with radius. One could imagine k

increases with the local slope γ. The detail relation between k and γ would depend on

the mechanical structure of the active object, but one could always Taylor expand this

dependence. For preliminary study, here we assume linear dependence k = Cγ.

While an active object follows equations Equation A.30a, Equation A.30b, a passive

marble rolling on the membrane without slipping has a Lagrangian [93]

L =
7

10
m
(
(1 + z′(r)2)ṙ2 + r2ϕ̇2

)
−mgz(r). (2.4)

If we consider the dissipation function to be an effective Coulomb rolling friction D =

−fv (See Sec. A of the Appendix) where v =
√
ṙ2 + r2ϕ̇2 and f = µmg, we arrive at

a more realistic model by plugging the dissipation into the right hand side of the Euler-

Lagrange equation d
dt

(∂L
∂q̇

)− ∂L
∂q

= −∂D
∂q̇

where q are r and ϕ.

(1 + z′2)r̈ + z′z′′ṙ2 − rϕ̇2 +
5

7
gz′ = −5

7
µg
ṙ

v
(2.5)

r2ϕ̈+ 2rṙϕ̇ = −5

7
µg
r2ϕ̇

v
(2.6)

The left hand sides of the above equations are the same as the dynamical equations in
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[87] while the right hand sides correspond to the friction force.

Integration of the above models for the active vehicle and passive marble (Figure 2.2c)

shows qualitative agreement with the experiments. Figure 2.2c shows the integration of the

active dynamics Equation A.30a, Equation A.30b and the passive dynamics Equation 2.5,

Equation 2.6 on the same membrane measured from an experiment when the object started

from the same position and velocity. The physical parameters are measured from experi-

ments. The acceleration dependence on radius k for the active vehicle uses k = Cγ = C∂rz

where z(r) is measured from the height of the static vehicle placed at different radii r. The

proportionality C uses the ratio between acceleration and the gradient ∂rz at the radius

close to the edge of the elastic membrane. We probe the friction coefficient for the passive

marble by measuring the dissipation of mechanical energy in a designed experiment (See

Appendix section A.1).

2.1.3 A recipe for spacetime programming

To functionally understand the feature of the orbit of the active object so that we are able

to program it, the spacetime of these orbits could provide us with insights. If we recognize

similarity between the resultant spacetime metric and some known metrics, then we could

understand how the orbital features depend on the system parameters.

In principle, the orbital dynamics we wish to map could be described by a diversity of

metrics. But for simplicity, and to make the analogy with GR in the weak field limit, given

the axi-symmetry of the system, we propose a metric of the form

ds2 = −α2dt2 + Φ2(Ψ2dr2 + r2dϕ2) (2.7)

with α = α(r), Φ = Φ(r),Ψ2 = 1 + z′2. Here, the elements of the metric gαβ are zero

except gtt = −α2, grr = Φ2Ψ2 and gϕϕ = Φ2r2. Plug the gαβ into the Christoffel symbols
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Γµαβ in the geodesic equations ˚̊xµ + Γµαβx̊αx̊β = 0, we arrive at

˚̊t+
(α2)′

α2
t̊̊r =

1

α2

(
α2̊t
)◦

= 0 (2.8)

˚̊ϕ+
(Φ2 r2)′

Φ2 r2
ϕ̊r̊ =

1

Φ2 r2

(
Φ2 r2ϕ̊

)◦
= 0 (2.9)

˚̊r +
(α2)′

2Φ2Ψ2
t̊2 +

(Φ2Ψ2)′

2Φ2Ψ2
r̊2 − (Φ2r2)′

2Φ2Ψ2
ϕ̊2 = 0 (2.10)

with λ as an affine parameter and q̊ = dq/dλ, ˚̊q = d2q/dλ2. From Equation 2.8,Equation 2.9,

we have that

α2̊t = E = constant, (2.11)

Φ2r2ϕ̊ = L = constant, (2.12)

both a consequence that conservation of energy and angular momentum holds.

With the help of q̊ = (dq/dt)(dt/dλ) = t̊q̇ (see Appendix section A.2 for details), the

geodesic equations can be rewritten as

ϕ̈+
2ṙϕ̇

r
=

[
(α2)′

α2
− (Φ2)′

Φ2

]
ṙ ϕ̇ (2.13)

r̈ − rϕ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 =

[
(α2)′

α2
− (Φ2)′

Φ2

]
ṙ2

+
1

2 Φ2Ψ2

[
(Φ2)′v2 − (α2)′

]
(2.14)

where primes denoting differentiation with respect to r.

Notice that the left hand side of Equation 2.13,Equation 2.14 are the components of the

acceleration, aϕ and ar respectively, in Equation A.30a,Equation A.30b. When we plug

cos θ = ṙ/v, sin θ = rϕ̇/v and a = k sin θ into Equation A.30a,Equation A.30b, we have

ϕ̈+
2 ṙ ϕ̇

r
=

k

v2
ṙϕ̇ (2.15)

r̈ − r ϕ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 = − k

Ψ

r2ϕ̇2

v2
. (2.16)

25



Thus, comparing the right hand sides of Equation 2.13,Equation 2.14 and Equation A.30a,Equation A.30b

and noticing ṙ2 + r2ϕ̇2 = v2 in Equation 2.16 yield the following relationships between the

metric functions α and Φ in terms of the speed of the vehicle and k.

(α2)′

α2
=

kΨ

v2

[
Φ2v2

α2 − Φ2v2

]
(2.17)

(Φ2)′

Φ2
=

kΨ

v2

[
2Φ2v2 − α2

α2 − Φ2v2

]
. (2.18)

Integration of the above equations yields

α2 = − 1

C1v2
+ C2 · e−K/v

2

(2.19)

Φ2 =
α2

v2
+ C1(α2)2 (2.20)

where K = K(r) ≡
∫ r

0
k(s)Ψ(s)ds.

To determine the constants, we make use of the normalization condition and the fact

that the metric should be flat at k → 0.

The metric (Equation 2.7) gives us normalization condition −1 = −α2̊t2 + Φ2(Ψ2r̊2 +

r2ϕ̊2). To exploit this condition, we want to eliminate the d/dλ in r̊ like Equation 2.11,

Equation 2.12. Using q̊ = (dq/dt)(dt/dλ) = t̊q̇, Equation 2.11, Equation 2.12, and the fact

that v2 = r2ϕ̇2 + ṙ2, we have

r̊2 =

(
E

α2
ṙ

)2

=
E2

(α2)2

1

Ψ2
(v2 − r2ϕ̇2)

=
E2

(α2)2

1

Ψ2

[
v2 − r2

(
α2

E
ϕ̊

)2
]

=
E2

(α2)2

1

Ψ2

[
v2 − r2

(
α2

E

L

Φ2r2

)2
]
. (2.21)

Plug the t̊, r̊, ϕ̊ derived above into the normalization condition, we now have
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−1 = −E
2

α2
+

Φ2E2v2

(α2)2
. (2.22)

Plug in the α2 and Φ2 derived earlier (Equation 2.19,Equation 2.20), we have

− 1

E2
= C1v

2. (2.23)

Therefore C1 = − 1
v2E2 .

Another condition to determine the constants is that when k = 0, the metric is flat. In

fact, k(r) = 0 indicates K(r) =
∫ r
s=0

k(s)Ψ(s) = 0. We set the lower limit of the integral

to zero, without loss of generality, since otherwise the arbitrary constant will be absorbed

by C2. This limit reduces the metric to

α2
0 = − 1

C1v2
+ C2

Φ2
0 =

α2
0

v2
+ C1(α2

0)2

where α0 ≡ limk→0 α and Φ0 ≡ limk→0 Φ.

To satisfy the flatness that α0 = Φ0, we need

α2
0 =

α2
0

v2
+ C1(α2

0)2

1 =
1

v2
+ C1(− 1

C1v2
+ C2)

C1C2 = 1. (2.24)

Plug the conditions Equation 2.23,Equation 2.24 into the metric with undetermined

27



coefficients Equation 2.19,Equation 2.20, we finally arrive at

α2 = E2(1− v2e−K/v
2

) (2.25)

Φ2 = E2e−K/v
2

(1− v2e−K/v
2

). (2.26)

The quantity E is a constant of motion (energy) associated with the fact that the metric

is time-independent. The other constant of motion is L (angular momentum) associated

with the metric’s ϕ-symmetry.

Thus our formulation indeed reveals that the vehicle does not simply follow spatial

geodesics of the membrane but instead follows geodesics in an emergent spacetime gener-

ated by the global curvature, the local curvature, the active dynamics, and the differential

mechanism. The resultant dynamics can now be understood as those of a test particle in

a new spacetime where the active feature of the real particle, such as a persistently con-

trolled speed, generates a non-splittable effective spacetime for the test particle (i.e. gtt is

not constant). In the language of the work by Price [94], the effects of curvature are now

not restricted to space [95]. That is, in general, the metric function gtt could depend on

both the coordinate time (t) as well as the spatial coordinates. For a static metric (i.e., the

metric functions are independent of time), the spacetime becomes splittable when gtt does

not depend on the spatial coordinates. This leads to only spatial curvature. It was argued

in [94] that the spatial curvature is different from the spacetime curvature as it is devoid of

gravity, i.e., a free particle initially at rest will remain at rest.

The essential contribution from active drive is the persistent response to the local cur-

vature, here particularly enabled by the controlled constant speed unseen in passive sys-

tems. In fact, when the response of the turning to the local slope vanishes at the limit

v →∞ such that α2 = Φ2 = E2(1− v2), the metric Equation 2.7 with components Equa-

tion 2.25,Equation 2.26 reduces to a splittable (and flat) spacetime Equation 2.1. On the

other hand, when v is finite and controllable, the active locomotion provides more flexibility
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and programmability in fabricating the desired spacetime depicted by GR than the passive

agents studied in the previous works such as the dissipative marbles [93, 87] rolling on a

membrane. For instance, the conserved quantity directly led from the metric could show

that a k increasing with r makes an orbit have a precession with a sign opposite to the orbit

while a k decreasing with r makes an orbit have a precession with a sign same as the orbit

[96].

2.1.4 Programming a Schwarzschild blackhole

The metric Equation 2.25,Equation 2.26 has shown us how the parameters of the system

change the spacetime and thus the orbit. Now we want to see how we can do the inverse

problem to program the desired spacetime with the system parameters (e.g., k(r) and v(r)).

In metric Equation 2.25,Equation 2.26, we can tune the speed and membrane elasticity

to change the spacetime of the orbits. However, here the spatial and radial metric are not

completely disentangled yet. To have two degrees of freedom such that we can indeed

program the spacetime arbitrarily, one could introduce another degree of freedom. For

instance, if we allow the speed v to vary with the radius r (physical instantiation could

be achieved by inferring the radius from the instantaneous tilting angle γ), Equation 2.17,

Equation 2.18 with Ψ2 ≈ 1 give the requirement of mapping as

(α2)′

α2
− (Φ2)′

Φ2
=

v′

v
+
k

v2
(2.27)

(Φ2)′v2 − (α2)′

2Φ2
= −k. (2.28)

These two equations above give us the recipe to create desired spacetime by changing

the speed of the vehicle with radius. For a desired metric with spatial curvature Φ2(r) and

temporal curvature α2(r), we can solve for the required membrane elasticity and object
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speed by plugging in the curvatures into these to equations. The solution (see Appendix

section A.3 for details) is

v(r)2 =

(∫ r

r1

f(r′) · (α2)′(r′)

Φ2(r′)
dr′
)
/f(r) (2.29)

where

f(r) = −e
∫ r
r1
−2

(α2)′(r′)
α2(r′)

+
(Φ2)′(r′)

Φ2(r′)
dr′
. (2.30)

For instance, if we plug in the Schwarzschild metric in isotropic coordinates α2(r) =

1 − rs/r,Φ2(r) = (1 − rs/r)−1, we arrive at the prescription for the membrane elasticity

k(r) and active object speed v(r) as shown in Figure 2.4a. Analytically,

v(r)2 = rs
(r − rs)2

r3
+ C

(
r − rs
r

)3

(2.31)

k(r) =
rs(r − rs)(r + Cr + rs − Crs)

2r4
(2.32)

where

C =
v2

0r
3
0

(r0 − rs)3
− rs
r0 − rs

. (2.33)

Here, v0 is the vehicle speed at r0 as the boundary condition. One can use the inner

radius as r0 for instance.

Simulations using this prescription show features of Schwarzschild orbit such as the lin-

ear dependence of precession angle in terms of the inverse latus rectum. For Schwarzschild
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Figure 2.4: Creating Schwarzschild orbit with speed varying particle. (a) The speed
and membrane elasticity’s dependence on radius to create an Schwarzschild blackhole with
rs = 3.1 mm. The inset shows a precessing orbit withA = 0.3 m by using this prescription.
(b) Precession angle |∆ϕprec| as a function of inverse latus rectum. (c) The relation between
the orbital period T and the semi major-axisA follows the Keplar’s law as T ∝ A3/2. Insets
in (b) and (c) show the trajectories around the data points.
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orbits with small precession, the precession angle increases with the inverse latus rectum

as ∆ϕprec = 6πG2M/(c2l) = 3πrs`
−1 where G is the gravitational constant, M is the

mass of the star, c is the speed of light, and ` ≡ A (1 − e2) is the latus rectum. We eval-

uate the semi major-axis A and the eccentricity e using the minimum and maximum radii:

A = (rmax + rmin)/2, e = (rmax − rmin)/(rmax + rmin). Figure 2.4b shows the preces-

sion angle ∆ϕprec as function of the inverse of the latus rectum `−1 from simulations given

v0 = v(r0 = 0.05m) = 0.225 m/s and rs = 0.0031 m. The curve qualitatively follows the

linear relationship, with small deviation from the theory due to the large precession angle.

By changing (r0, v0), we can get larger angular momenta and thus larger orbits around the

same blackhole. These orbits show a relation between period T and semi major-axis A

following the Keplar’s law (Figure 2.4c).

To achieve this in experiments, a vehicle must actively vary its speed with radius and a

membrane must have a radial dependence of its elastic modulus. One possible solution for

the vehicle is to attach a tilt sensor to infer the radius and change the speed. To program

the membrane with radially varying profile k(r) = Cg|∂rz|, here we consider a membrane

with linear elasticity following the Poisson Equation∇·E∇z = P where P is the unit load

from the membrane gravity. One possible way is to obtain the desired k(r) is to create an

elastic material with a radially varying thickness P = P (r). Another option is to fabricate

a membrane with a radially varying modulus E = E(r).

By developing a mapping between dynamics of a wheeled vehicle on a spandex mem-

brane, we demonstrate that an active object that can prescribe its speed can not only obtain

steady-state orbits, but also use the additional parameters such as speed to tune the orbits

towards relativistic dynamics. Our mapping demonstrates how activity mixes space and

time in a metric, shows how active particles do not necessarily follow geodesics in the real

space but instead follow geodesics in a fiducial spacetime. The mapping further reveals

how parameters such as the membrane elasticity and instantaneous speed allow program-

ming a desired spacetime such as the Schwarzschild metric near a non-rotating black hole.
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Given the flexibility in construction and programming vehicles, our system makes for

an attractive target to push toward a mechanical analog GR system; while superficially

our system resembles the educational tool used to motivate Einstein’s view of spacetime

curvature influencing matter trajectories [89, 93, 87], unlike such systems which are not

good analogs of GR, the activity allows the dynamics of the vehicle to be dictated by the

curvature of “spacetime”, not just the curvature of space as in splittable spacetimes (gtt

is constant) [94]. Thus we posit that mechanical analog “robophysical” [44, 97] systems

can complement existing fluid [81, 82], condensed matter [83], atomic, and optical [84,

85, 86] analog gravity systems [98] given the ability to create infinite types of spacetimes.

Further, we might even generate analogies to wave-like systems [72, 11, 99]; for example,

one could increase the speed of the vehicle to be comparable to disturbance propagation

(such that the membrane would follow the wave equation).

Beyond its role as a mechanical analog for GR, this framework could also provide a

new perspective to understand active matter undergoing field-mediated interactions [14,

96]. Our mapping and framework point the way to the possibility to create a robophysical

analog gravity system in the laboratory at low cost and provide insights into active matter

in deformable environments and robot exploration in complex landscapes. For instance,

the spacetime metric of the agents’ motion can both guide our choice of parameter values

to alter orbital features like the precession sign and influence our design of control schemes

that accomplish tasks like helping multiple agents avoid mergers on the membrane [96].

2.2 Dynamics of an individual agent

The previous section shows us the theoretical and preliminary support of the possibility

to systematically understand and control the dynamics of an active agent on an elastic

membrane. Now we try to see how this framework works for a systematic examination of

the orbits3.
3This section is adapted from a co-first-authored arXiv preprint ‘Field-mediated locomotor dynamics on

highly deformable surfaces’ (2004.03549)
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To avoid the time and space-dependent complexity of hydrodynamic and complex ter-

radynamic surfaces (e.g. splashing and permanent deformation respectively), we chose the

same model as the previous section. Specifically, we study the locomotion and field inter-

action of vehicles on highly deformable elastic environments via the study of two cases:

a single vehicle in the presence of a fixed obstacle and multiple vehicles influencing each

other. We find that the dynamics of even a single vehicle are interesting when influenced by

a non-moving boundary via membrane curvature alone. Despite possessing neither sens-

ing nor control, the vehicle orbits, collides with the center, or escapes from the membrane,

analogous to how bodies orbit stars. In the next section, we will base on this model for

individual agent and show how multiple vehicles generically display a substrate-mediated

cohesion whose collision timescale depends on vehicle mass, which is reminiscent of the

Cheerios effect [62].

2.2.1 Basic vehicle dynamics

We study the dynamics of a differential driven vehicle self-propelling on a deformable

curved surface. The vehicle (Figure 2.5a,b) takes inspiration from many active matter

experiments [100, 25, 101] and simulations [30, 102, 101] in that it moves straight in

the absence of interaction with the other agents. Further, its mechanics are key elements

of modern wheeled vehicles, which are deployed in diverse terradynamic scenarios, from

paved roads to Martian landscapes [103, 104, 105]. The vehicle has two rear wheels and

one front spherical caster for stability. A critical feature of the vehicle is a differential [106]

which allows independent rotation of the wheels upon different load conditions by main-

taining constant speed governed by motor rotation rate. If the load of the two wheels is

equal, e.g. the vehicle is on level ground, both wheels turn at the same rate and the vehicle

goes straight. If the load of one of the wheels increases (i.e. vehicle tilts) the correspond-

ing wheel slows down and the opposite wheel speeds up, which results in turning motion

around the slow wheel. While we have used a particular robot to perform the study, we note
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Figure 2.5: Interaction induced by elastic substrate deformation. (a) One vehicle tran-
siting around a central depression. (b) Side view of the differential driven vehicle and side
view of the drive mechanism; see also Figure 2.9a for more details. (c) Cross section of the
experimental set-up with a depression D (z axis of the membrane is linearly stretched for
visual clarity). The red dashed line denotes the measurement of the membrane shape in the
absence of the vehicle, the red open dots show the contact positions of the vehicle with the
membrane when it is placed at different radii. The vehicle’s vertical position z relative to
the confining outer membrane ring is approximated by the average of the membrane height
Z around it: z(r) ≈ 〈Z(r′)〉|r′−r|=Rv where r and r′ are the horizontal positions of the ve-
hicle and the membrane around it. In the axi-symmetric case shown here, it can be further
approximated by z(r) ≈ (Z(r −Rv) + Z(r +Rv))/2.

that constant speed motion is a convenient starting point to study more general dynamics

in such active systems.

Experiments were performed on a four-way stretchable spandex fabric (that stretches

and recovers both width- and lengthwise) affixed unstretched to a circular metal frame (see

Materials and Methods) with a radius ofR = 1.2 m. In the first situation with a fixed center,
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a linear actuator attached to the center of the membrane warps the fabric from underneath

to allow adjustable central depression of depth D with a cap (radius R0 = 5 cm) fastening

the actuator to the fabric. A diagram of the experimental setup is given in Figure 2.5c. The

membrane has a measured axi-symmetry such that the standard deviation of the membrane

height at each radius is less than 5% of the central depression magnitude D (see Figure A.7

in the appendix).

Three aspects are important to understand the dynamics of the vehicle on the mem-

brane. The first is that the vehicle dynamics are highly damped and inertia plays a minimal

role: if the motor stops, the vehicle rapidly comes to rest (within a second). That is, there

is no “rolling downhill”. The second aspect is that the differential in the vehicle allows it

to turn dynamically according to the local curvature instead of simply following the spatial

geodesics of the membrane, which leads to almost straight trajectories given the shallow

depressions of the membrane. The third important aspect is that, while the global shape

of the membrane without the vehicle is important, due to the vehicle’s mass, its local en-

vironment deviates from the unloaded shape of the membrane, introducing an additional

local deformation of the membrane. This results in a vehicle tilting to an angle γ (between

the normal of the vehicle surface and ẑ) depending on the vehicle’s radial position in mem-

brane as depicted in Figure 2.5c.

2.2.2 Precession dynamics

For simplicity, we first study the dynamics of a single vehicle moving at constant speed on

the membrane (set by constant motor rotation rate and enforced by the differential mecha-

nism). Experiments were conducted by setting the initial radius r (the distance between the

center of the vehicle and the actuator) and heading angle θ (the angle between the radial

direction and the velocity of the vehicle, Figure 2.6b). The trajectories of the vehicle were

recorded for 2 minutes by a high-speed motion capture system (Optitrack, 120 Hz) posi-
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Figure 2.6: Examples of bound vehicle trajectories. An example (a) circular orbit and
(b) eccentric orbit for the central depression D = 13.9 cm. In (b) the angle θ denotes the
heading angle andϕ denotes the azimuthal angle. The corresponding evolution of the radius
over time are shown below. The eccentric orbit exhibits a precession of |∆ϕprec| ≈ π/3
evaluated from consecutive apoapsis or periapsis (peaks or valleys on the r − t plots). (c)
Precession angle’s dependence on initial condition. The initial condition of the circular
orbit (a) is indicated by a red circle. Any points on the trajectory of (b) can be considered
as an initial condition of it. Two orbits of (b) are shown in a red curve. The inset shows the
prediction from theory using (Equation A.30a) and (Equation A.30b); axes ranges are the
same as those in main figure.
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tioned above the membrane. Certain initial conditions (a particular radius r0 = rc ≈ 0.6m

and heading θ0 ≈ 90◦) developed immediate circular orbits (Figure 2.6a). However, sim-

ilar to orbiting droplets on a liquid surface curved by their weight [107], for a majority

of (r0, θ0), we observed trajectories consisting of retrograde precessing ellipse-like orbits

(Figure 2.6b) about the central depression, i.e. the maximum radius of the orbit does not

return to the same azimuthal position but rather lags behind after an orbit.

The precessing dynamics can persist for many orbits until the vehicle’s orbit either

slowly increases or decreases its eccentricity. In the former case, the vehicle ultimately

collides with the central cap or escapes to the boundary. In the latter case, the precession

decays into an approximately circular orbit with a critical rc radius depending on the central

depression D. From analysis of the vehicle mechanism and dynamics (see section A.4 in

the appendix), we attribute these behaviors to slight mechanical imperfections in the mass

distribution in the vehicle, such as the deviation of the center of mass from the center-line,

∆B. The eccentricity evolves over orbits with a factor e−εϕ/2 where ε = −∆B/Lc; the

precessing dynamics can observed over longer timescales as the magnitude of imperfection

decreases. Here Lc is the distance between the wheel axle and the center of mass, and Rv

is the radius of the vehicle. Ideally, a perfect vehicle with ∆B = 0 makes e−εϕ/2 remain at

1 and the orbit stays in the steady-state forever. The half-life (2 log 2)/ε characterizes how

steady an orbit is; the sign of ∆B determines if the eccentricity will expand or decay.

Besides the slight chirality characterized by ∆B, the slight anisotropy of the membrane

could be another contribution to the variability of trajectories by generating a perturbation

with period 2π in the azimuthal angle. This has a larger effect on lighter vehicle since

smaller mass is more susceptible to the same perturbation from anisotropy. Given the

precession angle is ∆ϕprec, the azimuthal angle that the orbit sweeps across in one pre-

cession is ∆ϕ(1) = 2π − ∆ϕprec. After N precessions, the angle swept by the orbit is

∆ϕ(N) = N(2π−∆ϕprec). The smallest positive integer N that makes ∆ϕ(N) an integer

multiple of 2π so that the car will return to the same position is N = 2π/∆ϕprec. This
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gives ∆ϕ(N) = 2π(N − 1). Fig.Figure 2.7 shows two examples with N = 4 and 5 that

verify this argument.

membrane

(a)

0 120

1.2
0

1.2

0

0

-1

1

0

-1

1

0
   

   
 

6
0

   
   

   
   

1
2

0
 s

-1 1 0      4          8    12   16

8.006 𝜋

5.997 𝜋6.071 𝜋

𝜑 𝜋𝑡 𝑠
600

𝑚

𝑚

(b)

(c)

𝑟
𝑚

Figure 2.7: Effect from membrane defects. (a) When the membrane does not have a
perfect axial symmetry, the orbit of a steady precession is not a perfect contour in the r− θ
plane. Instead, it is an annulus with finite width. The period of the modulation is therefore
2π/∆φprec precessions. Trajectories with N -fold symmetry has a modulation period of
2(N − 1)π. (b) experimental trajectory with N = 5. (c) experimental trajectory with
N = 4.

Incorporating the transient decay from the chiral bias and the modulation from the , we

can evaluate the precession, half life and other quantities using the model
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rmodel(ϕ; rc, A1, ϕ1, A2, ϕ2, ωprec) (2.34)

= rc + e−ϕ/τ (A1 cos (ϕ+ ϕ1) + A2 cos (ωprecϕ+ ϕ2)) (2.35)

0    time(s)   120

Figure 2.8: An example of model fitting. Experiment 25per b1 r20 a80 3 with azimuthal
period Tϕ = 312.28◦ (therefore ∆ϕprec = 360 − 312.28 = 47.72◦), precession amplitude
A2 = 31.0 cm and anisotropy defect amplitude A1 = 4.6 cm, and half-life τ = 17.9
revolutions. The blue curve shows the experimental data and the red curve shows the fit.
The two dashed lines show the rmax and rmin evaluated as the median of the peaks in the
experiment curve.

This model incorporates the precession (A2 cos (ωprecϕ+ ϕ2)), the transient feature

(e−ϕ/τ , cause shown in section A.5), and the membrane defect (A1 cos (ϕ+ ϕ1)), which

has a period 2π. For a perfect trajectory made by a perfect vehicle, τ = ∞, A1 = 0.A

figure of an experimental trajectory is shown in Fig.Figure 2.8.

We use fminsearch in MATLAB to find the best (rc, A1, ϕ1, A2, ϕ2, ωprec) that mini-

mizes the least square error between the model and experiment data.

To gain insight into the precessing dynamics, for bounded steady-state trajectories
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with half-lives of eccentricity longer than 5 revolutions, we measured average precession

|∆ϕprec| as a function of initial conditions (r0, θ0) by evaluating the change in angular lo-

cation of consecutive apoapsides or periapsides (e.g. between periapsis 1 and 2 in Fig-

ure 2.6b). A map of this is shown in Figure 2.6c in the r− θ space. We choose the heading

angle θ rather than the azimuthal angle ϕ to reduce the redundant counting of the same

trajectories shifted by just an azimuthal angle due to the axi-symmetry. We find the preces-

sion angle to be constant throughout the trajectory, therefore all the points sampled from

a trajectory share a constant precession angle and each point’s (r, θ) along this trajectory

can be regarded as an effective initial condition in the trajectory r − θ space. Including

these initial conditions, the map reveals that the precession is minimal when the vehicle is

initiated at a particular radius rc (≈ 0.6 m when the central depression D = 13.9 cm) and

heading of 90◦; |∆ϕprec| increased as initial conditions deviated from this region. However,

r0 is restricted to the range 0.2 m ≤ r0 ≤ 1.1 m to exclude the central cap in the membrane

and to avoid starting the vehicle too close (less than 10 cm) to the outer ring. Initial head-

ings which pointed approximately towards or away from central depression did not achieve

a stable orbit. While the range of θ0 that starts stable orbits varies with r0, we approxi-

mated the boundary of stable orbits with uniform bounds of θ0. That is, in experiments,

for θ0 < 30◦ the vehicle collided with the outer boundary, and for θ0 > 150◦ the vehicle

crashed into the central cap.

2.2.3 Understanding precession with differential geometry

To gain insight into how vehicle orbital dynamics emerge solely due to interaction with the

curvature field generated by both the central depression and the vehicle’s local depression

field (Figure 2.5a), rather than solving a coupled membrane-vehicle interaction system of

equations, we instead construct a minimal model which gives physical insight into how

a such deformation fields influence the vehicle’s dynamics. Since the vehicle moves at a
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constant speed, this model requires that the acceleration is perpendicular to the velocity

such that Ψ2arvr + aϕvϕ = 0 where the projected components of acceleration in r and ϕ

directions are ar = −a vϕ/(Ψ v), aϕ = aΨvr/v. Here Ψ2 ≡ 1 + z′2 with z′ ≡ ∂z/∂r as

the gradient of the vehicle’s height z measured from the frame holding the spandex sheet.

With the help of cos θ = Ψ vr/v = Ψ ṙ/v and sin θ = vϕ/v = rϕ̇/v, we have

aϕ
r

= ϕ̈+
2 ṙ ϕ̇

r
=
a

r
cos θ (2.36)

ar = r̈ − r ϕ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 = − a

Ψ
sin θ . (2.37)

with a = [Ψ2(ar)
2 + (aϕ)2]1/2. Dots and primes denote differentiation with respect to t and

r respectively. Our experiments reveal that, to a good approximation, the dependence of

the vehicle’s acceleration on the radius and heading is given by

a = k sin θ (2.38)

where k (referred to as the acceleration strength below) is a function of r only (Fig-

ure 2.9c). We want to point out the form of k sin θ can be regarded as the first order expan-

sion of any a(r, θ) for any vehicles. Having a ∝ sin θ implies that, in this axi-symmetric

case, the magnitude of the acceleration is proportional to that of the cross product between

the velocity and the gradient of the terrain since the gradient of the terrain is aligned with

the radial direction. We will later show that a ∝ |v × ∇z| also holds for surfaces with

arbitrary shapes.

We treat the vehicle with tilt angle γ from its level orientation as driving on a local

incline with slope γ. From a theoretical analysis of how the constant-speed differentially

driven vehicle pivots on a slope (Figure 2.9b, see appendix section A.4 for derivations),

we found that the acceleration strength k = C g sin γ cos γ ≈ C g |∇z| with g Earth’s

gravity. The prefactor C is a mechanical constant related to the structure of the vehicle as
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Figure 2.9: Vehicle dynamics. (a) Schematic of a vehicle moving on a piece of membrane
and its force diagram. The dashed line on the incline shows the radial direction. The fric-
tions on the wheels and the caster are shown in black and the component of Earth gravity
along the slope is shown in red. (b) Magnitude of the acceleration a (yellow), and its com-
ponents ar (blue) and aϕ (red) as a function of the heading angle θ evaluated at r = 0.3 m
(central depression D = 9.6 cm) obtained from 238 experiments. Black lines correspond
to a = k(0.3m) · sin θ, ar = −(a/Ψ) sin θ, and aϕ = a cos θ with Ψ ≈ 1. The gray shaded
regions indicate extreme headings that do not have steady trajectories. Data at other radii
can be found in section A.4 of the appendix. (c) The acceleration strength k and vehicle tilt
γ as a function of the radius r for θ = 90◦ with the solid blue line and shading denoting the
mean and standard deviation of k obtained from 238 experiments. The red markers show
the vehicle tilt γ measured from the experiment on two different azimuths separated by 90◦

with open circles and pluses respectively. Inset shows the relation between k and γ using
the k data (mean) from the main figure and the theoretical curve k = 0.074 g sin γ cos γ.

C = L2
c/(L

2
c + 1

2
R2
v) where Lc ≈ 1 cm is the distance between the wheel axle and the

center of mass (see appendix section A.4), and Rv = 5 cm is the radius of the vehicle. The

theoretical value for C from the model is approximately 0.074, while the experimental fit
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(Figure 2.9c inset) gives a value of 0.073± 0.001 (see appendix section A.4).

The model as described by (Equation A.30a) and (Equation A.30b) yields good agree-

ment with experiments over a range of v = 0.20 − 0.32 m/s. The essential ingredient of

the model is that the differential mechanism ensures torque balance on both wheels. In ad-

dition, the rolling friction on the caster is negligible compared to other contact forces (see

Figure 2.9a for force diagram). The model indicates k = a/ sin θ should be the same for any

θ for a balanced vehicle. The experimentally measured result shows a slight dependence

on heading angle θ (appendix section A.5) that can be understood as weight imbalance,

characterized by ∆B. Introduction of this bias into the analysis returns a correction in the

form of abias/ sin θ = k · (∆B/Lc) cot θ. It vanishes when θ = π/2 or ∆B = 0 (perfectly

balanced vehicle). Integration of (Equation A.30a) and (Equation A.30b) yields precession

dynamics that quantitatively matches with the experiments for all different depressions (

Figure 2.6c,Figure 2.11b).

An important aspect of the dynamics which is revealed by the model is that unexpect-

edly the vehicle does not follow spatial geodesics of the membrane (as in the museum

demos of GR [108]) given by curves on curvatures with metric ds2 = Ψ2dr2 + r2dϕ2.

These spatial-only geodesics are nearly straight lines in our setup (Figure 2.10).

We will later show that the essential ingredients that generate this difference are the

deformation of membrane by the vehicle, and the active nature of the system shown in the

vehicle’s ability to change the direction of motion as a consequence of the local tilt of the

vehicle. These two aspects are reflected respectively in the acceleration strength k governed

by membrane deformation and θ, the heading angle of the vehicle.

To understand aspects of the system’s dynamics (e.g. how substrate parameters can

alter orbital properties of the active locomotor), we sought to obtain conserved quantities

including an effective potential. While there are many ways to obtain these quantities,

inspired by features of the dynamics resembling those found in astrophysical systems, we

chose to use techniques from differential geometry, the mathematics relevant to situations
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Figure 2.10: Turning with the slope makes the trajectory deviate from the spatial-
only geodesics. Left: the top and bottom views of the vehicle. Middle: Comparison of the
trajectories of the vehicle on the membrane when differential mechanism is applied and dis-
abled. To disable the differential mechanism so that the two wheels are rigidly connected,
the gears in the differential are glued. Right: top view of the differential mechanism.

described by Einstein’s theory of General Relativity (GR). In a separate paper [109] we

further expand on the connections of our robophysical system to GR.

Our scheme proceeds in analogy to GR: recall that in GR, test particles move in re-

sponse to the curvature of spacetime by following the locally length-minimizing curves

(i.e., geodesics). Thus, we must first obtain the “metric” of the effective spacetime, which

describes the spacetime curvature. Following the metric and applying the variational prin-

ciple, one could obtain the equation of motion for the test particles [e.g., 110]. For in-

stance, the Minkowski metric in the flat spacetime is defined by the diagonal matrix ηαβ =

{−1, 1, 1, 1} in Cartesian coordinates. This specifies that the distances between close points

in spacetime can be calculated as the following: ds2 = −dt2 + dx2 + dy2 + dz2, and leads

to the equation of motion d2xα/dt2 = 0 for test particles. By matching the geodesics equa-

tions of the metric with the equations of motion (Equation A.30a) and (Equation A.30b),

one can find that the metric is

ds2 = −α2dt2 + Φ2(Ψ2dr2 + r2dϕ2) (2.39)
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where the curvatures are α2 = E2(1 − v2e−K/v
2
) and Φ2 = E2e−K/v

2
(1 − v2e−K/v

2
).

Here, K = K(r) ≡
∫ r

0
k(s)Ψ(s)ds and E is a constant of motion. The metric provides us

with

1 =
Φ2

α2
Ψ2ṙ2 +

1

r2

α2

Φ2

L2

E2
+
α2

E2
(2.40)

where L is another constant of motion. The details of derivation can be found in sec-

tion A.6 of the appendix.

(Equation 2.40) can be rewritten in the following suggestive form: E = 1
2
m ṙ2 + V ,

with E = 1/2, m = Φ2Ψ2/α2 the effective mass, and V = [α2 `2/(Φ2r2) + α2/E2]/2 the

effective potential, where we have defined ` ≡ L/E. Plugging in the α2 and Φ2 derived

above, we finally arrive at the effective potential

V =
1

2

(
`2

r2
eK/v

2

+ 1− v2e−K/v
2

)
. (2.41)

Note that the energy and angular momentum enter through the ratio ` = L/E, which

can be calculated from the initial conditions since ` = Φ2r2ϕ̇/α2. Figure 2.11a shows

examples of the potential V for different values of ` with `max = v rc exp (−K(rc)/v
2)

(see section A.6 of the appendix). The dashed line at 1/2 denotes E , and the turning points

where ṙ changes sign when the potential energy reaches the maximum amount are given by

the solution to r± = ` eK±/v
2
/v, where we use the subscript ± to denote a quantity evalu-

ated at the turning points. Circular orbits occur when the minimum of the potential matches

E . The minimum is found from V ′ = 0 and is located at rc = v2/kc where kc ≡ k(rc).

With the effective potential discovered from the mapping scheme, we can now explain

the dependence of orbital precession on initial conditions and system parameters. To begin,

we introduce the definitions of E and L to eliminate ṙ in E = 1
2
m ṙ2 +V in favor of dr/dϕ.
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Figure 2.11: The effective potential governing the orbital dynamics. (a) Simulation data
of V is shown for different values of ` with D = 9.6 cm. Black dots denote the minimum
point of a given potential curve, and rc = v2/kc labels the case of a circular orbits when
E = Vc. The corresponding trajectories in the r-θ space are shown in the inset. (b) Preces-
sion angle |∆ϕprec| as a function of the effective initial radius r0 for θ0 = π/2 and central
depressions D = 13.9 cm (vermilion), 9.6 cm (green), and 5.3 cm (blue). Experimental
data are open circles and plus signs. Solid lines are theoretical prediction using (Equa-
tion A.30a) and (Equation A.30b), or equivalently (Equation 2.42). The open dots show
the r− and the pluses show the r+. The insets below the curves show the trajectories at
different radii for D = 9.6 cm. Experimental observation of precession angle matches the
theoretical value (from the solid lines in panel a) with a R2 of 0.87.

This results in

`2

r2

[
1

r2

(
dr

dϕ

)2

+ 1

]
= v2 e−2K/v2

. (2.42)
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Next, we apply the change of variable u = `/r, and differentiate with respect to ϕ and

get

d2u

dϕ2
+ u =

k `

u2
e−2K/v2

. (2.43)

As noted above, for circular orbits rc = v2/kc, or equivalently uc = kc `/v
2. Perturbing

(Equation 2.43) about a circular orbit, i.e. u = uc + δu, we get

d2δu

dϕ2
+

(
1 +

k′c
kc
rc

)
δu = 0 . (2.44)

Thus, δu ∝ cos (ω ϕ) with ω2 ≡ 1 + rc k
′
c/kc where k′c ≡ k′(rc), and the perturbative solu-

tion to (Equation 2.43) is then given by u = uc[1 + e cos (ω ϕ)] where e is the eccentricity

of the orbit. Notice from this solution that one radial cycle takes place over a 2π/ω angular

cycle. Therefore, the precession angle is given by ∆ϕprec = 2π/ωc − 2π ≈ −π rc k′c/kc.

Since kc > 0, the sign of ∆ϕprec, namely the direction of the precession, is given by the

sign of k′c . If k′c > 0, we have ∆ϕprec < 0, retrograde precession, with prograde precession

if k′c < 0. From Figure 2.9c, we have that k′c > 0, which explains the observed retrograde

precession. Further, the dependence of ∆ϕprec with rc is consistent with our observation

that the magnitude of the apsidal precession (∆ϕprec < 0) decreases as the radius of the

orbits approaches the radius of the circular orbit rc.

We now reexamine the dependence of precession angle ∆ϕprec on initial conditions

(Figure 2.6c) in the mapping framework. We now can see that contours of constant color

correspond to trajectories with the same angular momentum `. And notably, the precession

angle decreases as the orbits become more circular, with ∆ϕprec = −π rc k′c/kc for the

circular orbit. Figure 2.11b shows ∆ϕprec as a function of r0 for initial heading angle θ0 =

90◦ with both the experimental data and the solution to (Equation 2.42). The minimum

precession angle occurs for circular orbits.
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Figure 2.12: (a) The heavy (m ≈ 160 g) vehicle and the light vehicle (m ≈ 45 g). (b)
Different k(r) functions for prograde (light blue) and retrograde (dark blue) precession
measured from experiments. The light vehicle has a negative k′ at rc (the intersect of
k(r)/v2 and 1/r) while the heavy vehicle has a positive k′ at such an intersect. The de-
creasing k has the same trend as the measured tilt angle γ(r) (black stars). (c) Clockwise
trajectories with retrograde (left) and prograde (right) precessions from experiments. Peri-
helia are marked in order. The prograde precession is made by a lightweight vehicle on the
membrane with D = 17 cm central depression, for initial conditions r0 = 20 cm, θ0 = 90◦.
The periapsides numbered in blue show a clockwise order while the orbit is precessing in
the same direction. The magnitude of the precession for this trial is ∆ϕprec = 51◦.
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2.2.4 Manipulating precession

As a consequence of k′ > 0, our system generates retrograde orbits such that the vehi-

cle’s precession is opposite to that of GR in common situations. With our mapping, it is

straightforward to understand how to obtain more GR-like prograde precession (like that

of Mercury [111, 112])): we must change the sign of the slope of k so that k′ < 0 over a

significant range of the vehicle trajectory. Because k is connected to the tilting angle γ, we

can achieve the desired change by increasing the tension of the membrane or decreasing

the mass of the vehicle to enable the vehicle to more closely track the imposed membrane

shape.

We chose to change the mass of the vehicle and constructed a smaller, lighter vehicle

with mass 45 g (Figure 2.12a), approximately one quarter that of the original vehicle in

Figure 2.5, a radius of 4 cm, and a speed v = 0.11 m/s. The vehicle produced trajectories

(Figure 2.12c) demonstrating prograde precession over all sampled initial conditions (65 to-

tal experiments). For a particular initial condition (r0 = 69 cm, θ0 = 90◦), four out of five

trials produced precessing orbits with significant eccentricity; here ∆ϕprec = +22◦ ± 16◦.

The theoretical prediction – with k(r) (Figure 2.12b) deduced from such trajectories –

∆ϕprec = +33◦ ± 7◦ mostly overlaps with the experimental range. For a given initial con-

dition, the lightweight vehicle showed greater trajectory variability than that of the heavier

vehicle. We posit such variability is related to the slight membrane anisotropy, which makes

the dynamics of the lightweight vehicle sensitive to initial conditions. Here the change of

precession sign with the vehicle’s mass demonstrates how the matter reciprocally tells the

local spacetime how to curve and influences its global dynamical properties.
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2.3 Dynamics of multiple agents

2.3.1 Generalized dynamics

Thus far we have studied the interactions between a single vehicle and a central depression

(which generates a time-independent imposed background) and have shown how we can

understand the field-mediated orbital dynamics by mapping them to a “spacetime” using

techniques from study of relativistically orbiting bodies. There are situations in which the

deformation field experienced by a vehicle could be time-dependent; we have observed

that a robot can be “guided” without contact via local deformation of the membrane alone.

Further, in the case of swarms of vehicles moving on a curvature field, this sets up interest-

ing dynamics such that (in the case of two robots for example) each robot carries its own

depression field and affects another robot via this field alone, which could then affect the

initial robot.

Therefore we next sought to develop a theory for the interaction of two agents via fields

alone. The first element of the theory requires that we develop an equation of motion

for the dynamics of a single vehicle experiencing an imposed deformation field that is

not necessarily at the center of the membrane (the spacetime telling matter how to move

component of the Wheeler encapsulation of the mechanics of GR). Thus, we need to first

generalize the equations of motion (Equation A.30a,Equation A.30b) to a vehicle on an

arbitrary terrain. The axi-symmetric model can be generalized for an arbitrary substrate by

noticing that a = k sin θ where θ is the angle between the velocity and the gradient of the

slope and k is the magnitude of the gradient multiplied by a mechanical constant. In the

symmetric case, the gradient is always along the radial direction so that only the magnitude

of the gradient k = C g sin γ cos γ ≈ C g |∇z| is needed. In the general case, noticing the

sin θ is the cross product of the unit vectors of the arbitrary terrain gradient d = −∇z and

the vehicle velocity, the generalized equation of motion (see section A.7 of the appendix
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for derivation) is

ẍ = C g ẏ (dxẏ − dyẋ)/v2 (2.45)

ÿ = −C g ẋ (dxẏ − dyẋ)/v2 , (2.46)

Conceptually, this is our “F = ma” with d playing the role of “F ” (recall di = −∇iz with

i = x, y).

To complete the field-mediated interaction picture, since a moving vehicle presents to

another vehicle a time dependent deformation field, we require an equation to describe how

a vehicle (the “matter”) deforms the membrane curvature.

To characterize how the membrane responds to local perturbations, we use the wave

equation, the simplest equation for a membrane assuming linear elasticity:

Z̈ − v2
m∆Z = −P . (2.47)

where vm is the speed of propagation of disturbances in the membrane and P = P0 (1 +

P̃ ) with P0(> 0) the force load from the membrane and P̃ the additional load from the

vehicles, which is the area density of the vehicles normalized by the area density of the

membrane. Since P0 is the stationary force load when the membrane is only deformed

by its weight, the time dependence in the source in (Equation 2.47) arises from P̃ due to

the moving vehicles. Experiments examining the membrane elasticity have found that the

shape of a free stationary membrane where P̃ = 0 and Z̈ = 0 follows the Poisson equation

reasonably well (subsection A.8.3 of the appendix).

The speed of propagation for the membrane in our experiment is vm ≈ 400 cm/s, which

is significantly larger than the typical speed of our vehicles (v ≈ 20 cm/s). Therefore,

we neglect time derivatives in (Equation 2.47) and solve instead the Poisson equation

∆Z = P/v2
m.

Therefore, the evolution of the system proceeds as follows (Figure 2.13a): given the
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Figure 2.13: Reciprocal interaction between the vehicle dynamics and curvature field.
(a) A sketch of the simulation procedure: (i) First, the shape of the membrane is solved from
the Poisson equation with the load indicated in the bottom: gray disk for the membrane and
two colored posts for the two vehicles in this example. (ii) Then, the height profile of the
vehicle is evaluated at its position. (iii) Afterwards, the terrain gradient d is evaluated
from the height profile of the vehicle. (iv) Finally, the acceleration determined by d using
Equation 2.45,Equation 2.46 is integrated to update the new positions of the vehicles and
the computation goes back to the first step again. (b) Theory and simulation predict larger
leader mass ratio (m21 ≡ m2/m1 = 1.5) fosters a merger better than a smaller one (m21 =
1.0).

location of the vehicles, one first constructs the source P and solves ∆Z = P/v2
m to obtain

the membrane profile functionZ (Figure 2.14c). AfterZ is obtained, naively one would use

Z(r) as the height of the vehicle z(r). However, for a vehicle with a finite size, the actual

physical contacts between the wheels and the membrane occur near the circumference of

the disk. Thus, the vehicle height z(r) can be approximated by the average membrane
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height Z(r) around the disk circumference (z(r) ≈ 〈Z(r′)〉|r′−r|=Rv , see Figure 2.5c and

subsection A.8.3 of the appendix). On our circular membrane, the analytical solution to Z

evaluated in z yields the vertical position zi for vehicle i with mass mi as:

2πλzi =
π

2
(|ri|2 −R2) +

mi

σ
log

(
RvR

R2 − |ri|2

)
+

1

σ

∑
j 6=i

mj

(
log
|ri − rj|
|ri − r′j|

− log
|rj|
R

)
, (2.48)

where ri, r′i = (R/|ri|)2ri are the planar position of the ith vehicle and its image charge

[113], R and Rv are the radii of the membrane and the vehicle, σ is the area density of the

membrane and λ = v2
m/P0 is a membrane constant. The three terms in the solution show

respectively the contributions of the vehicle height field from the membrane, the weight

of the vehicle of interest, and the other vehicles respectively. The last term conceptually

acts as an attractive potential (like the Newtonian gravitational potential), whose gradient

generates a pairwise attractive force between the vehicles.

With z and therefore the acceleration as a function of the terrain gradient −∇z at hand,

one obtains the new position of the vehicles by integrating (Equation 2.45,Equation 2.46).

While a full systematic study of interaction dynamics for arbitrary initial conditions

of the two vehicles is beyond the scope of the work, integration of the above multi-body

dynamical model reveals that surprisingly the simulation does not predict strong attraction

between two vehicles with the same mass at the same speed (Figure 2.13b) unless they

are started facing each other; experimental measurements of robot interaction are in ac-

cord with this prediction (see Figure 2.14b,c) such that two equally massed vehicles will

undergo many transits around the membrane without cohering. This is analogous to the ec-

centric Kozai-Lidov mechanism, where the eccentricity excitation reduces when the masses

become equal to each other and decreases the merger rate [Naoz16]. In contrast, the simu-

lation predicts that in a situation where one vehicle trails another ( Figure 2.14), increasing

the mass of the leading vehicle can increase the attraction ( Figure 2.13) and lead to vehicle
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Figure 2.14: Substrate deformation induced cohesion. (a) Two vehicles moving on the
elastic membrane merge due to the substrate-mediated attraction. The initial azimuth angle
between the vehicles is 45◦. (b) Example trajectories of the two interacting vehicles with
different mass ratio (m2

m1
= m21 = 1.00 and 1.37) for a duration of 30 sec. (c) The evolution

of the relative distance between the two interacting vehicles (solid) compared to the non-
interacting case (dashed) where two vehicles with m21 = 1.30 were released individually
from the same initial condition. The time to merge is shortened by the increased masses of
the leading vehicle (vehicle 2, m2). On the contrary, the distance between two independent
vehicles from the same initial condition is non-decaying. The inset has the same axis ranges
as the main figure. (d) Simulation shows the distance at 30 s between the two vehicles
decays with the mass ratio m21. Experiment results from (c) are shown in diamonds.
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merger (cohesion).

To test the hypothesized merger enhancement with the increase of the leading vehicle’s

mass, we experimentally increased the mass of the leading mass vehicle (small weights

were attached to the top of the vehicle without changing the center of mass), m2, relative

to the trailing vehicle, m1 (characterized by the mass ratio m21 = m2/m1). For each

experiment, both vehicles were placed at a radial distance of 60 cm from the center with

azimuthal separation ψ = 45◦ and both with a heading of θ = 90◦. Before each experiment,

we set the speed of the two vehicles to 0.2 m/s by manually adjusting voltage of the motors.

Due to the finite voltage, the speed slightly drops (< 10 %) as the separation between the

two vehicles decreases. Figure 2.14b shows how the dynamics depend on the mass ratio.

When m21 = 1, both vehicles execute nearly-circular orbits (left panel) and generally do

not merge in a short time (see section A.9 of the appendix). Asm21 is increased to 1.37, the

trailing vehicle eventually becomes ‘captured’ by the leading vehicle leading to an effective

cohesion such that the vehicles collide and then continue to move together for the duration

of the experiment (right panel).

To quantify the attraction and cohesion dynamics, we measured the Euclidean distance

between the vehicles projected onto the horizontal plane, |r1 − r2|, as a function of time.

We find that the time to capture is reduced as the mass of the leading vehicle increases

(Figure 2.14c). For instance, when m21 = 1.30, it took around 25 s for the trailing vehicle

to become captured (i.e., the vehicles collide when |r1 − r2| = 2Rv). When m21 = 1.37,

this capture occurred significantly faster, with the vehicles colliding in about 12 s. The cou-

pling effects are highlighted by contrasting to the dynamics from independently conducted

single-vehicle experiments, one with the initial conditions of the “leading” vehicle and the

other with the initial conditions of the “trailing” vehicle. The distance evaluated from these

two independent trajectories shows a non-decaying trend that differs from the cases with

both vehicles on the membrane (dashed lines in Figure 2.14c). Simulations using the same

setup as the experiments show qualitative match with the experiments and the distance be-
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tween the two vehicles decreases with the mass ratio m21 (Figure 2.14d). We posit that the

slight difference between simulation and experiment results from dynamic weight redis-

tribution of the three contacts between the vehicle and membrane during locomotion; the

simulation assumes the weight is always evenly distributed among contacts.

2.3.2 Speed feedback control to mitigate mergers

Given that unequal mass cars typically collide and cohere after some time, we next sought

how we could actively mitigate such attraction. As demonstrated above, reducing vehicle

mass can lessen the local deformation field to reduce cohesion, but active variation in this

parameter is challenging. Intuitively, one could also control the vehicle to increase speed

when it nears a high curvature region, thereby allowing the robot to accelerate out of such

a region. We note that such a strategy is interesting because the robots could avoid (or

potentially enhance) aggregation solely via local field measurements alone. Such dynamics

could be useful for future swarms of sensory challenged robots [79] moving on highly

deformable environments.

To test this cohesion mitigation strategy, we recall from the above section that as the dis-

tance between the two vehicles decreases, each ‘feels’ the membrane-induced deformation

of the other more strongly and the tilt of both vehicles increases. To measure local tilt angle

γ we added an IMU (Internal Measurement Unit) to the leading vehicle (Figure 2.15a) and

implemented an adaptive speed controller that increased the speed of the leading vehicle

as γ, the angle of inclination from the gravity vector measured by the IMU, increased in

response to larger substrate deformations. Specifically, the speed of the leading vehicle was

designated to be (vIMU − v0)/v0 = A · (γ − γ0)/γ0, where the tilt sensitivity A, sets the

strength of the coupling between the leading vehicle and the local membrane deformation

(Figure 2.15b).

The speed of the vehicle changes more quickly in response to the tilt when A is larger.

We varied A from 0 (no control; constant speed) to 8 (speed sensitive to tilt angle) to
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Figure 2.15: Speed based on local tilt reduces substrate deformation induced cohesion.
(a) A controller, IMU and DC motor driver are mounted on the speed-controlled vehicle
(m ≈ 180 g) that changes speed according to the current tilt angle (right) with the same
mechanics of the uncontrolled vehicle. (b) Control scheme of the controlled vehicle. The
speed v increases with the tilt angle γ to avoid collision. The control parameter A increases
from 0 (black, no control) to 8 (purple). (c) shows the trajectories of the controlled vehicle
(solid line) and the uncontrolled vehicle (dashed line) when different magnitudes of control
are applied. The relative angle between two vehicles upon collision (dotted line) increases
withA. (d) shows the evolution of the speed and tilt of the controlled vehicle corresponding
to panel c. The shaded regions denote the collisions. (e) shows the trajectories of the
IMU-controlled vehicle in the frame of the uncontrolled vehicle. The geometric exclusion
zone has a radius twice the radius of a vehicle. In an increasing order of tilt sensitivity
A = 0, 2, 4, 8, the trajectories gets further and further away from the uncontrolled vehicle
with an increasing margin b. (f) Mean and standard deviation of b/2Rv over 3 trials for
different A values. The vehicle eventually avoids the collision when b/2Rv > 1.
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probe the effects of the speed-tilt coupling strength on potential collisions with the trailing

vehicle. Figure 2.15c shows the trajectories of the vehicles starting from the same initial

conditions (rIMU(0) = 0.6 m, rpassive(0) = 0.4 m, θIMU(0) = θpassive(0) = 90◦, vpassive = 0.11

m/s, vIMU(0) = 0.15 m/s, and γ0 = 15◦) for different A. From the recorded vehicle 3D

position and orientation, we measured the speed and the tilt angle of the leading vehicle as

a function of time; these measurements revealed that the controller generated the desired

speed variation with tilt (Figure 2.15d).

The robot’s strategy, based solely on local curvature, leads to an ability to avoid col-

lisions without knowing the location of the other vehicle. We observed that when A was

sufficiently large (≥ 4), the leading vehicle was able to successfully avoid collision. Fig-

ure 2.15e shows the relative trajectories of the controlled (leading) vehicle in the frame of

the uncontrolled (trailing) vehicle (rIMU − r0). The geometric exclusion zone (with radius

equal to 2Rv) around the uncontrolled vehicle identifies the collision area. If the controlled

vehicle enters this area, then a collision with the uncontrolled vehicle has occurred. As A

increased, the margin b (i.e., the shortest distance between the controlled vehicle trajectory

and the center of the uncontrolled vehicle) increased and eventually became larger than

2Rv, indicating that the vehicles escaped the collision (Figure 2.15f). We note that the tra-

jectory of the uncontrolled vehicle ended prematurely when a collision occurred; therefore,

we fit it with an ellipse centered at the uncontrolled vehicle to extrapolate the margin b.

Inspired by the response of the vehicle to curvature, we developed controllers which can

help avoid such cohesion via local measurements of tilt thus indeed generating global con-

trol over local forcing. We posit that the reciprocal coupling of the robot and the deformable

substrate analyzed in detail here could be useful as a starting point for understanding field

mediated locomotor dynamics in more complex environments.

We next sought to discover if the tilt-based speed control scheme could be effective in

merger mitigation in a system consisting of a larger number of agents. Using the same ve-

hicle (m ≈ 180 g) and membrane as in the previous experiments, simulations of 5 vehicles
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Figure 2.16: Increasing speed with tilt helps to avoid mergers in swarms. (a) The initial
condition used for simulations of 5 vehicles shown in (b) and (c). The convex hull of the
vehicles (shown by the dotted lines) is used to characterize the proximity of vehicles over
time. (b) Without speed control, the vehicles attract and align with each other in a short
time (t < 10 s) regardless of their different headings and positions at t = 0. (c) When the
speed control is applied, the vehicles dynamically avoid each other. The snapshot of the
vehicles’ status at the same time as (b) show no mergers or alignment of headings. The
red tails show the trajectories of the last 5 s. (d) The evolution of the convex-hull area
of n = 5 vehicles. The evolution with vehicles under speed control is shown in orange.
The response of the speed to the tilt angle is shown in the inset. The convex area Aconv is
normalized by the total area of the n vehicles, each with an area of A0. The orange dashed
line shows the time-average of Aconv/nA0 at steady-state for a single trial. A simulations
of 5 vehicles without speed control is shown in blue.
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without the tilt-based speed control ( Figure 2.16) resulted in rapid collisions and mergers.

However, if the speed of the vehicle responds rapidly to its tilt as in Figure 2.15, vehicles

can dynamically avoid each other.

To characterize the dynamical cohesion among the vehicles, we tracked the convex-hull

area ( Figure 2.16a) of the collective. In the case with no speed-control, this area decreased

to a value close to zero and maintained this value as the vehicles remained stuck to each

other ( Figure 2.16b,d). However, when sufficient control (tilt sensitivity ∆v/∆γ) was

applied, vehicles starting from the same initial condition as the case with no control ( Fig-

ure 2.16a) increased their speed when approaching each other, resulting in time dependent

convex area with a larger average mean ( Figure 2.16c,d). The average area increased with

tilt sensitivity ∆v/∆γ as shown in Figure 2.17a.

A full theory incorporating the interplay between the multi-body interactions and the

vehicle’s response to them would be useful in understanding the functional role of this

mechanism, but is beyond the scope of this paper. However we can gain qualitative in-

sight by analyzing a special but representative case. Here we consider the stable orbit of

n bodies on a perfect ring (inset of Figure 2.17b). The vehicles can achieve this special

mode due to the symmetry of the configuration. The black dashed line in Figure 2.17a

shows that the convex-hull area of this characteristic mode Aring mode
conv = πr2

ring captures

the simulation result qualitatively well. Here, the radius of the stable ring rring follows

k(rring) = v(γ(rring))
2/rring where γ = |∇z|. Therefore, rring is determined by the intersec-

tion between the central attraction k(r) and the centripetal acceleration ac(r) = v(γ(r))2/r.

When there is no speed control scheme, one of two undesirable outcomes arises: either (1)

ac(r) does not intersect with k(r) and the vehicles cannot exhibit a stable ring orbit for any

r or (2) ac(r) intersects with k(r) within the geometric exclusion zone. One can find the

critical tilt sensitivity A ∝ ∆v/∆γ by making these two curved lines intersect outside the

geometric exclusion zone. This minimal model thus rationalizes why tilt-based scheme can

be used in systems with larger numbers of agents.
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Figure 2.17: Speed control and collective merger avoidance. (a) Average convex area of
the simulated 5 vehicle collective increases with the tilt sensitivity (see Figure 2.16); each
point shows the average and standard deviation for 20 different random initial conditions.
(b) A special mode, the ring mode in which all vehicles move on a circle at a steady state, is
used to understand how the characteristic distance depends on the speed-control. The black
thick line shows the attraction induced by membrane deformation, Cg|∇z|, and the colored
lines show the centripetal acceleration ac(r) = v(γ(r))2/r required to access the ring mode
for cases with control (orange) and without control (blue). The radius of the ring which is
given by the intersect of the black thick line and a colored line gives the characteristic area
in panel (a) in a dotted line. The gray shade shade shows the geometric exclusion zone
within which the vehicles collide with each other.

We can also interpret the speed control from the metric framework perspective. We first

generalize the axi-symmetric substrate to a substrate with general landscape z such that a

vehicle moving on top of it follows Equation 2.45, Equation 2.46 to obtain the temporal and

spatial curvature of the metric α2 = E2(1−v2e−Cgz/v
2
),Φ2 = E2e−Cgz/v

2
(1−v2e−Cgz/v

2
).
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The metric above reveals that the increase of speed v makes the metric approach (confor-

mal) flatness since the ratio between the temporal curvature α2 and spatial curvature Φ2

approaches unity with a higher speed. The flatter spacetime implies smaller interaction be-

tween the vehicles. Thus our adopted strategy can be viewed as reduction of interaction by

manipulating the effective spacetime metric. A fruitful future direction could be to use such

insights to develop controllers for agents to mitigate effects of unexpected environmental

perturbations.

2.3.3 Non-rigid body with internal structure and tidal effect

Besides the rigid active agents studied in the previous sections, more realistic cases could

involve nonrigid (shape-changing) bodies. As we have learned earlier that the force emer-

gent from the membrane varies with space, inspired by the tidal effect, we wonder have the

gradient of the force would deform a non-rigid body. To gain insights into how a body with

inner structure responds to the substrate-mediated interaction, we probed the dynamics of

a nonrigid body composed of two rigid bodies on the elastic membrane 4.

To make this nonrigid body (vehicle pair), we connect the two vehicles which we have

used in the previous sections with a spring (Figure 2.19AB). To avoid the transverse bend-

ing, we insert a metal rod inside of the spring to confine the spring on one dimension.

Before systematically running experiments to explore the tidal force, we needed to

know what speed we should set for the two vehicles. Experiments and simulations (Fig-

ure 2.18) reveal three types of trajectories as we vary relative car speeds. The simulation

uses the same setup as in Figure 2.13 except that we have included the spring force (spring

constant k ∼ 1 N/m) measured from experiments. To characterize the orbit, we looked

at the spin angle, which is the winding angle of the two cars about their center of mass,

and the orbital angle, which is the winding angle of the two cars about the center of the

membrane.
4This is an unpublished work done with Hussain Gynai.
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It is the direction of spin qualitatively distinguishes these orbits. It can be zero or with

the same or opposite direction as the orbit. We refer them to the tidally locked regime, the

prograde regimes and the retrograde regime.

Retrograde

Tidally Locked

Prograde

Tidally 
Locked

Retrograde

Prograde

Orbit

Spin

spin

inner
outer

Figure 2.18: Typical orbits of a vehicle pair depending on the vehicle speeds. The orbit
type depends on the speed of the inner and outer vehicle speeds (see the upper-left inset).
Starting from the same initial condition, here we characterize the orbit by the self spin angle
(see the lower-right inset) over different inner and outer speeds. When the two are close
to each other, the spin does not grow systematically and two vehicles are tidally locked.
When the two are quite different from each other, the spin has a trend to grow with the
direction determined by the vehicle with higher speed. The colored solid dots in the main
plot and the inset trajectories are from experiments.

We decided to further explore the tidally locked regime due to its similarity to the

single vehicle which we have extensively studied in the previous sections so that we will

see how a small change (the nonrigidity) could change the dynamics of an active agent on a

deformable surface. In experiments, the distance between the two vehicles oscillates on the

magnitude of several millimeters to several centimeters. To understand the effect from the

force gradient, we measured the tilt angles of the two vehicles (Figure 2.19B) and evaluated

their difference. The separation turns out to be positively correlated to this difference and

therefore infers a tidal effect.
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Figure 2.19: Tidal effect from force gradient. (A) A pair of vehicle connected moving
on the elastic membrane with a central depression. (B) The top and side views of the
vehicle pair. (C) The separation between the two vehicles and the tilt (γ1, γ2) difference,
which infers the force gradient ( shown in (B)) evolves with time. (D) That the separation
increases with the tilt difference suggests the tidal effect.

Further, considering that the substrate is subjected to disturbance from external sources

or other agents, we try to see how a time-varying substrate would alter the dynamics. To

generate the external field, we oscillate the center of the membrane with an amplitude of 2

cm and a period TG = 2π/ωG to be determined in different experiments. We posited the

vehicle pair might be excited when the center oscillates at periods close to the important

time scales, such as the natural frequency from the spring and the orbital period of the

vehicle pair. To characterize how much an orbit is resonated, we fit the evolution of radius

to

r(t) = R0 + ∆R cos (ωGt+ φ) exp (τ−1t) (2.49)

where τ−1 will be referred to as the pumping rate and used as the metric for resonance.
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The larger τ−1 is, the more resonated the vehicle-pair is. Surprisingly, it turned out the

orbital period is easier to be excited. As we oscillate the center of the substrate vertically,

we find the case with zero spin responds to this field drive most and the orbit resonates with

the field at the orbital period (Figure 2.20D).
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Figure 2.20: Vehicles resonated by the central vibration. (A) The central depression
moves up and down with a prescribed oscillation period with an amplitude of 2 cm. (B) A
typical evolution of the separation and the center-of-mass radius over time for a vehicle pair.
(C) The upper and lower diagrams show a sketch of (A) and the single vehicle experiment
respectively. (D) The characteristic pumping rate τ−1 by fitting the radius with model (ref)
shows that both a vehicle pair and a single vehicle is resonated by the central oscillation at
the orbital period, which is around 10 s.

If one looks at the motion’s projection on the radial direction (Figure 2.20C) and re-

gards the composite (vehicle pair) holistically, one might ask if a single vehicle also gets

resonated. In the single vehicle experiments, we did find the vehicle resonated at a similar

period (or frequency), but with smaller amplitude (Figure 2.20).
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2.3.4 Conclusion

In this chapter, we performed the first study (to the best of our knowledge) of the locomo-

tion dynamics of active agents on an elastic substrate with interactions mediated solely by

local and global deformation (curvature fields). Experimentally, we studied the dynamics

of a single vehicle on a centrally curved elastic surface, revealing nearly ubiquitous retro-

grade precessing orbits. Guided by the theoretical model based on experimental data, we

observed that a reduction in vehicle weight leads to prograde precession. To further test our

understanding of the vehicle dynamics and the emergent interactions, we next studied the

interaction of two vehicles on a relatively flat membrane (without central depression) with

the feature that the time-dependent curvature fields of the vehicle reciprocally govern the

robot’s trajectories. We observed how increasing the mass ratio between the vehicles led

to increased curvature-field-mediated cohesion. We then developed a control scheme for

the multibody system which mitigated cohesion by using only local sensing and interaction

with the environment without knowing the positions of the robots on the membrane. The

controller changes the vehicle’s speed according to the vehicle’s local tilt (indirect mea-

surements of the local curvature field) without knowing the positions of the robots on the

membrane. Extending the scheme to multiple vehicles interacting with each other on an

arbitrary substrate revealed that our framework and control scheme could be generalized to

active matter systems that consist of a larger number of agents.

Theoretically, to understand the single vehicle orbital dynamics, we constructed a min-

imal mechanical model which agreed well with the experimental results and revealed that

the vehicle did not simply follow geodesics of the membrane. Inspired by the resemblance

of dynamics in our system to those in General Relativity (GR), we wondered if a differential

geometry framework could be of use to better understand features of the system. The active

nature of the self-propelled robot allowed us to recast the robot’s locomotion dynamics as

geodesics of a test particle in an effective spacetime metric. This framework revealed how

aspects of the system (e.g. retrograde precessing orbits) were related to system parameters
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and allowed us to modify the vehicle mass to change orbital precession from retrograde to

prograde; we explore the connections of our robophysical experiments to GR in more depth

in [109]. To understand the reciprocal curvature-field-mediated interaction in a two-robot

system, we first generalized the mapping to understand how individual vehicles responded

to arbitrary curvature fields. We developed an equation for how the vehicles generated cur-

vature by showing that the Poisson equation could approximate the shape of the membrane

deformed by the masses on it. Solving the Poisson equation analytically demonstrated the

origin of forces on the vehicles. Combining the equation of motion for a vehicle on a

generalized deformed surface revealed the role of vehicle mass in attraction.

We posit that individuals and swarms of locomoting robots could benefit from discovery

and utilization of principles by which agents can interact and communicate by exploiting

environmental dynamics [62, 114]. Although our system is relatively simple compared to

other locomotion and swarm situations in which agents experience field-mediated interac-

tions, the simplicity (such as the linear elasticity in the Poisson equation for the membrane

and the acceleration’s linear dependence on the local gradient) could make our work serve

as a starting point for other terrestrial (and even surface aquatic) systems with more com-

plex rheological responses (e.g. media with viscous, plastic, and elastic responses). Study

of active systems on elastic fields and the differential geometry framework could thus func-

tion as a model system and provide tools to robotic studies [115, 116, 117, 118, 119] of

a broader class of physical[120, 72] systems. For instance, the local curvature could be

used as an input in addition to other information such as vision [121, 122, 123] and stress

sensing [124, 79, 14] in swarm robotics. Curvature field information could be exploited by

robots with limited sensing and control, for example in lightweight water-walking robots

[125, 118] or self-propelled microrobots [126] swarming on fluid membranes [37]. Finally,

we note that our study is another example of the rich and under-exploited intersection of

physics and robotics, adding to the list of tools and ideas– e.g. gauge theory [127, 128],

diffraction and scattering [52, 129, 130], statistical mechanics [131, 79]. We expect that
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such robophysical study can help transition robots and swarms from the factory floor into

complex natural environments.
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CHAPTER 3

ACTIVE AGENTS DRIVEN AND CONNECTED BY MUTUALLY CONSUMED

RESOURCE

3.1 Field changing with speed similar to the active matter

In the previous chapter, the elastic substrate mediates the interaction between the active

agents almost instantaneously, given the speed of the agents (∼ 30 cm/s) is much smaller

than the speed of the disturbance propagation (wave speed ∼ 400 cm/s). One would be

curious to ask what will happen if these two speed are comparable in cases either the agents

move faster or the substrate disturbance decays slower. In this chapter, we will explore this

regime with an example reminiscent to ecology and show the richness of dynamics not seen

in the previous chapter.

In this example, we investigate a unique form of active matter based on a combination

of biological ecology [132] and robophysics [133, 91]. As autonomous robots become

increasingly more adaptive, it is interesting to ask if adaptive robot swarms can achieve

complex/dynamic behavior [48, 134].We present here a robot swarm that emulates natu-

ral collective ensembles in that they change their environment by their very presence, and

observe collective state changes as a consequence of their ability to self-modify their envi-

ronment and respond to that self-modification 1.

This ecology-inspired robot swarm rooted from more conventional active matter sys-

tems [135] move over a 4.0 meter by 4.0 meter light-emitting diode (LED) light board.

Each robot can determine the local light intensities I(x, y), which represents the amount of

the local resource, and the gradient of the resource ∇I(x, y) ( Figure 3.1). Positions here

are given conveniently in terms of pixel coordinates, and speeds are given in pixels/second.

1This and the next section are adapted from a co-authored journal article ‘Emergent field-driven robot
swarm states,’ Physical review letters, 2021, 126(10) where I contributed to the phase characterization.
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Figure 3.1: Robots and the interactive LED light board environment. (a) Each robot
has one micro-controller. A robot base, of diameter of 65mm, has four RGB sensors for
detection of light color from the LED light board. The movement of each robot is controlled
by two independent pulse-width modulated gear motors. (b) The four RGB sensors are
used to co-detect gradient vectors from the underneath resource landscape; (c) The LED
light board of dimension 4.0m × 4.0m and 2.5mm pitch supplies complex and dynamic
environment for the robot communities. (d) The rules and parameters that control landscape
resource and agents consumption property. courtesy by Gao Wang and Trung Van Phan.

Each robot moves in response to the light intensity gradient ∇I(x, y) at their positions

on the light board such that

~vj =
dxj
dt
x̂+

dyj
dt
ŷ = κ∇I(xj, yj; t) , (3.1)

for robot j where x̂, ŷ are unit-vectors and κ is the robotic sensitivity to the landscape’s

local resource gradient.

Gradients in the intensity emerge from depletion (dimming) of the local intensity of the
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Figure 3.2: Robotic field-drive emergent motion. (a1)-(a2) Each robot consumes (dims)
the light in a Gaussian circle around its position. (a3) Fluctuations give rise to transient
intensity gradients which spontaneously give rise to a random velocity direction (a4). (b)
Self-drive of a robot over an initially smooth resource field. courtesy by Trung Van Phan.

resource landscape by the robots. To achieve this resource consumption effect, an overhead

camera is used to recognize the position of the robots and passes the dimming instruction

to the LED board. A swarm of many field-driven robots creates an emergent complex

resource field I(x, y; t) which can be extremely time and space dependent. The presence

of many robots {j} at positions {(xj, yj)} on the light board gives rise to a time dependent

2D light intensity landscape I(x, y; t) across the light board:

∂tI =
1

τR

(
Ĩ − I

)
−
∑
j

kEe
−

(x−xj)2+(y−yj)2

2σ2 Θ(I) (3.2)

where τR is the recovery time of a pixel intensity to the robot-free intensity Ĩ , kE is the

characteristic resource consumption rate of a robot, σ is the radius of resource consumption,

and Θ(ζ) is a Heaviside unit-step function Θ(ζ > 0) = 1 , Θ(ζ ≤ 0) = 0 .

Symmetry in the depletion hole of the local intensity I(x, y) created by a stationary
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robot is spontaneously broken by digitization errors in the intensity detectors. This noise

then bootstraps up an emergent field-drive motion. Each pixel of the local resource field

shadow generated by the presence of a robot recovers with an exponential time constant

τR once the robot moves away. The smaller τR is, the quicker the local resource shadow

recovers. Figure 3.2 describes this field-drive of the robots and the decaying resource

shadows they leave behind. In the realistic experiments, there is heterogeneity in the robot

field drive sensitivity to mimic biological heterogeneity.

3.2 Emergent phases of matter on a single-type resource

The simplest resource landscape is a circle of light of radius R and a single resource color,

namely ”white” (IR = IG = IB). In order to study how the robot swarm behavior changed

with density we decreased the radius R(t) linearly with time t:

R(t) = Ro(1− αt) (3.3)

In order to provide gradients at the circle perimeter the perimeter is softened by a fixed

Gaussian width σo � Ro.

The fundamental sign of the robot-robot field interaction is negative (repulsive) due

to resource competition between two nearby robots as shown in Figure 3.3(a1). At rela-

tively low robot densities the robots act like a gas of self-avoiding objects of finite size

[ Figure 3.3(a2)]. Familiar collective patterns emerge with increasing density, such as

phenomenon related to phase transitions in soft-matter physics [136]. Figure 3.3(b1)-

Figure 3.3(d1) shows that as the density increases, varieties of interaction modes emerge

among the localized robots, thus leading to crystal, liquid and jammed states in sequence

in overall community [ Figure 3.3(b2)-Figure 3.3(d2)].

As the robot density increases, the resource landscape gets smoother since the average

local consumption rate of resources increases with robot density, but the recovery rate
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Figure 3.3: The basic robot spatial distribution and the resource landscape field dy-
namic as the light environment radius shrinks. Row (a1-e1) outlines how field drive
results in robot different localized states, and row (a2-e2) shows snapshots of robot posi-
tions in five different phases. Row (a3-e3) shows the spatial Fourier transformation of the
robot positions in row (a2-e2). courtesy by Gao Wang and Trung Van Phan.
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per pixel does not. Figure 3.3(a3)-Figure 3.3(e3) shows the density dependent structure

function S(kx, ky) [137] we get from spatial Fourier transformation of robot positions as a

function of robot density.

Since we can track individual robots, it is possible to quantitatively measure the posi-

tion and velocity of each robot during a compression process. We use two different order

parameters to characterize the emergent phases, ψ6 for spatial ordering and τ ∗ for time

ordering:

(1) ψ6: Since circles close-pack to a hexagonal array [138], a natural order parameter

to characterize the initial ordering of the robots with compression is the 6-fold index ψ6

[139]:

ψ6 =

〈
1

Nj

∑
j′

ei6θjj′

〉
bulk

. (3.4)

The value ψ6j is the local bond-orientation order parameter, where the summation j′ runs

over all Nj nearest neighbor of robot j. θjj′ is the angle between the vector connecting

robots j to j′ and an arbitrary fixed reference axis. 〈·〉bulk denotes averaging over all robots

excluding ones near the boundary of the environment. We use Voronoi tessellation [140] to

define the nearness to the boundary.

(2) τ∗: The time-correlated spatial dynamics of the robots, as distinct from their time-

independent spatial correlations ψ6, can be captured by both the histogram of the robot

kinetic energies 〈~v2
j 〉 and the dynamic 4-point susceptibility order parameter χ4 [141, 142].

χ4 is calculated by first determining the dynamical overlap function Q(t, τ ; a):

Q(t, τ ; a) =
1

N

N∑
j=1

Θ
(
a− |~rj(t+ τ)− ~rj(t)|

)
, (3.5)

where the vector position of robot j at time t is given by

~rj(t) = xj(t)x̂+ yj(t)ŷ (3.6)
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and a is a characteristic length which is usually chosen as the radius of an agent [143]. The

function χ4(τ ; a) is then computed as the variance of Q(t, τ ; a) over the quasi steady-state

time interval:

χ4(τ ; a) = N Vart
(
Q(t, τ ; a)

)
(3.7)

Figure 3.4(c) shows the variance of Q(t,τ ,a), i.e. χ4, for an experiment. τ∗, as shown in

Figure 3.4(c), can be intuitively viewed as the mean trapping time of a robot around a given

position.

Figure 3.4: Demonstration of the spatial and temporal characterization. (a) Demon-
stration for ψ6 calculation. (b) Demonstration for χ4 calculation. (c) An example of char-
acteristic time τ ∗ evaluated from the peak-position of χ4(τ, a).

There are three parameters which control the robot swarm field-drive matter states: the

areal density of the robots σ and the two field relaxation processes: the shrinking rate of

the light circle α in pixels/s and the environmental recovery time τR in seconds. If τR is set

too slow and/or α is set too fast, the robots simply deplete (blacken) the resources and all

motion freezes out. This phenomena that we call void freezing is a new form of glass-like

state, showing in Figure 3.3(e2). Remarkably, even the gas state can directly transit to the

void glass state if τR is sufficiently slow, something that does not occur in any other forms

of active matter that we are aware of.
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With decreasing values of τR for a fixed α different phases of the field-drive matter

emerge, other robot phases emerge. With increasing compression, the robots first freeze

into a hexagonal crystalline state, with high ψ6, high τ ∗ and lowered 〈~v2
j 〉. Note that this

crystalline state is at relatively low robot densities and is not a jamming transition [144]

because the robots are not in contact with each other.

Figure 3.5: Phase diagrams with respect to the density and resource recovery rate.
(a) ψ6 as a function of robot density and resource recovery rate 1/τR. (b) Robot kinetic
energy density ~v2

j as a function of robot density for a fixed resource recovery time of τR =
5 time-steps. (c) τ∗ as a function of robot density and resource recovery rate 1/τR.

The transition from a gas to a crystal state, not seen in inertially-driven systems [145],

emerges since our robots have no physical inertia but rather a field-driven motion. By “no

physical inertia”, we mean that field drive (gradient searching of resources) gives the robots

motility. In the absence of a gradient, they do not and cannot move. If we suddenly remove

the gradient, the moving robots immediately stop by the next time step iteration. In that

sense they have no physical inertial at all.

Due to the decreasing resource landscape roughness with increasing robot density, the

crystalline state pressure melts into a liquid state, with a decrease in ψ6, decrease in τ ∗ and

increase in 〈~v2
j 〉. Melting from a crystalline to a liquid state requires robot escape from

local resource minima due to their ability in the field-drive mechanism to move against
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a sufficiently weak resource gradient. Finally, the liquid state freezes in a jammed glass

as the robot field drive moves the robots into contact with each other so that the state is

incompressible, and the field again becomes depleted (black). The jammed state is however

much different than the void glass freeze, the void glass state is due to the robots falling out

of steady-state equilibrium. Figure 3.5(a), Figure 3.5(b) these results for the spatial order

parameter ψ6 and Figure 3.5(c) presents the dynamical order parameter χ4 mean value τ ∗.

Information on 〈~v2
j 〉 with different τR.

Since this biologically inspired robot swarm active matter does not have a well-defined

temperature, it is difficult to draw the usual phase diagram to show the states. A plot of the

states versus the ψ6 oriental order parameter and the susceptibility characteristic timescale

τ ∗ [143]:

χ4(τ ∗; a) = Maxτ
(
χ4(τ ; a)

)
(3.8)

is seen in Figure 3.4(c).

Our robot field-drive and emergent states present a biologically inspired active matter.

The robots remodel a resource landscape and that remodeled landscape guides the robots’

locomotion, even against resource gradients. The field drive also generates a field-analog

multi-body interaction between the robots[146, 147]. We view robots as tools for a third

way of modeling dynamical systems, complementing theoretical ideas, digital computation

and now robophysical approaches. Thus robots (and robophysics [133]) provides another

way to develop models of phenomena which can lead to insights in biological systems

(locomotion, resource landscape utilization) as well as systems to explore interesting dy-

namics in physics (e.g. dynamical systems, active matter), and engineers in principle can

take the robophysics insights and turn them into more interesting robots.
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3.3 Evolution of active matter on multiple types of resource

In the previous section, though the LED screen is composed of red, green, and blue LEDs,

we have constrained the resource to be effectively ’monochromatic’ by enforcing the inten-

sity of the three components equivalent to each other for every spatial point. One natural

next step would be to explore the case where the three colors of the LEDs representing

three different types of resources.2.

Similar to the setup in the previous section, the robots move in response to local re-

source gradient created at their position on the light board, which together with the resource

dynamics create a complex field-drive locomotion mechanism [148]. The many-body as-

pect of the resource landscape gradients are extremely dynamic since the robots locally

deplete the resources, the result is that the gradients are a strong functions of both external

drivers and the local density of the robots [149]. Figure 3.6 presents the basic flow of the

robot swarm on the landscape.

The consumption of each of the three resources by the robots is also similar to the case

in the previous section that the light intensity (resource) [S] follows a relaxation dynamics:

∂t[S] = −1

τ
[S] +

robots∑
C , (3.9)

where C is the consumption rate of each robot central around its position, τ is the fixed re-

covery rate of a resource. In our experiments, τ is a fixed value. The resource value is given

by I = IBG − [S] so that when a robot consumes resources and leaves, the environment

will slowly recover to the set background IBG.

To exploit the feature of different resource types, we make the robots have different

phenotype determined by a 6-byte diploid genome: (R1,G1,B1) and (R2,G2,B2). Each

byte (gene) consists of 8 bits: 1 bit is reserved to flag if it is dominant (1:active) or recessive

2This section is adapted from a co-authored journal article ‘Robots as models of evolving systems,’ Pro-
ceedings of the National Academy of Sciences of the United States of America, 2022, 119(12) where I
contributed to the entropic interpretation of the phenotype.
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Figure 3.6: Depiction of the robots. (A) Depiction of the complex interactions of the
robots. Ribbon: The robots move via self-generated field-drive on a resource landscape
generated by an underlying LED light board, which the robots sense. Field drive is the
self-generated movement of the robots in response to local resource depletion. (B) The
4.16 meter by 4.16 meter LED light board with robots across an RGB nested set of land-
scapes. (C) The hardware of a robot. Upper left: Infrared LEDs and sensors are used
for gene exchange. Upper right: 2 wheels driven by independent motors move the robot
over the LED light board, while 4 RGB downward looking sensors measure local light-
board intensities. Lower left: RGB LEDs display the state of the 6-byte genome to an
over-head camera. Lower right: Basic information flow: the downward looking sensors
control while movement, the IR LEDs/sensors control gene exchange, the upward trans-
mitting RGB LEDs sent genome state to the overhead camera. (D) The information logic
flow for a given robot to determine resource consumption. The up-ward transmitting RGB
LEDs are read by an overhead camera, which then sends information to a computer which
dims the appropriate resource color(s) due to the dominate gene(s), and controls resource
recovery. (E) Hard-wired computation of resource gradients by a robot. (F) The basic hard-
wired manner in which a robot moves in response to resource gradients (field-drive). (G)
The recovering resource “shadow” generated by a moving robot on a white homogeneous
landscape due to field drive. (H) The basic repulsive interaction due to field-drive between
2 robots. (I) Soft resource driven “collision” between two field-drive robots on a white
landscape. courtesy by Gao Wang and Trung Van Phan.

80



(0:non-responsive), as is shown in Figure 3.7. Only dominant genes can exhibit sensitivity

to the corresponding resource gradients.

The remaining 7 bits (0000000 - 1111111) determine the sensitivity to the color asso-

ciated with that gene and hence the velocity (a 2D vector) with which they climb out of

a resource hole following resource gradients. The quantitative relationship between genes

and robot velocities is as follows: three pairs of genomes respectively control robot sensi-

tivity to three different resource (R/G/B), which are represented by Rgene, Ggene, Bgene :

Rgene =
R

(flag)
1 R

(value)
1 +R

(flag)
2 R

(value)
2

2× 127
,

Ggene =
G

(flag)
1 G

(value)
1 +G

(flag)
2 G

(value)
2

2× 127
,

Bgene =
B

(flag)
1 B

(value)
1 +B

(flag)
2 B

(value)
2

2× 127
.

(3.10)

Here the quantities with superscript (flag) take value 0 for recessive gene and value 1

for dominant gene, the quantities with superscript (value) take the value of the remaining 7

bits, ranging 0 - 127 in decimal.

The vector velocity is determined then by the genotype and localized resource gradient:

~V =
Vmax

3
×

(Rgene∇Ired +Ggene∇Igreen +Bgene∇Iblue) .
(3.11)

Like the heterogeneity in the robot field drive in the system introduced in the previous

section, there is an unexpected pleiotropy (one gene-multiple phenotypes) in our robot

response. The pleiotropy in our genomes results from the finite spectral linewidths of

the RGB LEDs in the light board which result in the RGB detectors in the robot base

responding not only to the primary color (for example, red detector seeing only red but also

blue and green).
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Figure 3.7: Depiction of the robot genetic rules. (A) Genes of the robots. Left: car-
toon of the 6-byte genome and analogy to diploid human chromosomes. Right: The 6-byte
genome. The first bit determines dominance or recessive nature, while the remaining 7
bits determine sensitivity to the underlying color on the LED light board. The transla-
tional speed of the robot is proportional to the 7-bit number times the state of the domi-
nance/recessive flag. (B) Left: green resources untouched by a recessive green gene are
consumed once a mutation makes the green gene dominant, giving rise to a black resource
hole. Right: Mutation rates increase with lower levels of resources. (C) Pictorial gene
exchange diagram as a dead robot (left) meets an active robot and haploid gene delivery
occurs. (D) Images of the rebirth of a dead robot (center) due to 2 subsequent haploid gene
deliveries. Courtesy by Gao Wang and Trung Van Phan.
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There is no predetermined software algorithm to our robot phenotype [150]. Rather, the

phenotype is collective, emergent and hardware driven, yet can be characterized as partly

selfish and partly a form of altruism.

The selfish aspect is to exploit (consume) resources where you are, and move to find

more resources as you deplete the ones you found by following the positive gradients of

resources created by the robot and other nearby robots [148]. Robots which cannot escape

from a resource hole die and lose their genes.

The altruism aspect is that if a living robot finds a dead robot, it copies 1/2 your genome

to the dead robot. Two successive donations from non-identical robots gives rise to a re-

birthed daughter robot. The altruism here is the survival of the robot species. Since our

robots cannot unfortunately reconstruct themselves from basic materials [151], rebirth is

our way to prevent inevitable extinction as Figure 3.7 shows. The re-birthed robot is thus

genetically related to its parents. It is absolutely possible for us to design different repro-

duction modes, including asexual rebirth (one cell simply gives genes to a dead one), or

just exchange genes between two alive robots, or any combination of these.

We correlate resource stress with mutation rates [152]: more resource stress gives rise

to more mutations/time. Thus the stability of a gene in the robot is connected with the

resource level: the dimmer the color intensity, the higher the mutation rate of the gene

which is associated with that color. This allows a robot to escape in principle from a

low resource dim region even if the 7 bit binary number associated with that color is low

and hence there is a low sensitivity to light gradients: the enhanced mutation rate and the

already low value of the gene implies a greater probability of drawing a high value and

escaping. Likewise, a robot in a bright area will have a low mutation rate, in effect a robot

with low sensitivity (low 7 bit binary number) is rewarded by being more likely to stay in

that region until the inevitable depletion of resources happens. Then, there is always the

risk of death.

The effective “metabolic” rate of resource consumption by the robots for a given color

83



is fixed to a level proportional to the local intensity of that color but is independent of the

sensitivity of the robot to that color in terms of field drive. In principle only a robot with

all “pure” recessive genes(rr,gg,bb) cannot consume any resource. It will stay still either

mutate to a dominate gene, or it will die after 5 seconds. This is the reason why a robot

with all recessive genes will die even in a white environment. They have no sensitivity to

any resource, so they simply sit in one place, fatally. Thus a robot with more dominant

genes will consume more resource, and it will move faster than a one with fewer dominant

genes. A robot with only recessive genes will consume nothing, remain stationary, and die.

As we noted there is color leakage (pleiotropy) in this system: the RGB LEDs are not

pure monochromatic light sources, so that for example a blue sensor on the robot will detect

some fraction of the green light board even if no blue light is present: the net result is that

robots do not necessarily die in an inappropriate environment. The biological equivalent

for this is that recessive genes are not necessarily entirely recessive [153, 154].

Of course, if all the robots die, the population becomes extinct. Hence, breeding to

produce an alive robot is essential. The genes of a reborn robot must come from two

different alive robots (every robot has a unique ID).

We have carried out three different landscape evolution experiments to test to what

extent our robot community is able to evolve and adapt to externally driven stresses.

1: No external time dynamics to resources. A white landscape with equal resources of

red green and blue landscapes. This is the simplest possible landscape, with no explicit

time -dependent external drive to the ecology, like the Earth’s equatorial climate. How-

ever, with time the landscape will become spatially and temporally complex due to the

heterogeneous nature of the robot genotypes, their motile resource exploitation, and their

interactions, which result in locally preferential depletion of different resources.

Figure 3.8A shows the evolution of a survival landscape as a function of time for a

fixed (white) landscape. As the theoretical guide predicted, there exists a mutational rate

which leads to minimal survival and close to extinction of the robot community as time
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progresses. Although some level of mutations are necessary for a population to evolve,

presumably living systems would be driven to minimize mutation rates to the extent it is

possible to avoid the mutational risk of extinction in a low-stress environment that occurs

with increasing mutations [155].

Figure 3.8: Surviving rate in homogeneous and white landscapes. (A) Surviving
robot number versus time for a homogeneous white landscape which has no external time
changes. (B) Images of robot positions for a periodically changing resource landscape: red
- green - blue. (C) Surviving robot number versus time and mutation rate for a periodically
changing environment. Courtesy by Gao Wang and Trung Van Phan.

2: Spatially Uniform but periodically changing landscape Here we drive the resource

landscape with monotonically changing colors, representing in effect a well-mixed imposed

landscape chemostat evolution experiment [156], but different from the classic chemostat

experiment in that the initially homogeneous landscape can be locally modified by the

robots. A fixed diameter circle of light homogeneously changes color from red to green

to blue. The resource circle changed color with a 4320 time steps period for each color

change, see Figure 3.8B.

As we have noted, it is only when robots have both mutations and gene exchange that

a robust robot population can exist within a simple harmonically changing well-mixed
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landscape. The robot’s adaption to dynamic environment is revealed by the phenotypes

responding to the detail RGB ingredients of the resource landscape. However, since the

environment is changing with time, stress now opens up the mutational melt-down narrow

valley and widens it.

Figure 3.9: Surviving rate in stochastic landscapes. (A) Images of robot positions for
a stochastic landscape which changes pattern randomly with time. (B) Surviving robot
number versus time and mutation rate for a stochastic landscape with a stochastic time
dependence.

3: Stochastic Spatial and Time Dependent Landscapes. To explore truly complex robot

resource dynamics, unlike a typical biological laboratory well-mixed scenario, we created

a stochastic, spatially fragmented complex landscape.

Figure 3.9 shows the number of surviving robots versus time on a stochastic, frag-

mented landscape. Clearly, as the stress imposed on the robots gets increasingly harder to

predict versus time, it becomes increasingly harder for the robots to evolve. The valley of

death increases dramatically in width as a function of mutation rate.

As we show in in Figure 3.9 for the case of pleiotropic genes P0 = 0 is actually the sole

optimum survival point in a stochastic environment with the parameters chosen. Pleiotropy

inhibits chasing moving resources which vanish, but it can also result in a fragmented land-
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scape in leaving robots isolated for too long a time and failing to undergo gene exchange,

which is critical for survival.

In our toy robot organisms, the three genes are all equivalent in terms of phenotype,

just respond basically to different colors. Yet the system evolves, so what is different in

surviving populations that makes them successful since the phenotypes cannot evolve? We

assumed that the evolutionary diversity must be in the relative numbers of bits set high

within the genes. A useful metric for this kind of genetic diversity is the Shannon entropy

of the dominant genes S [157, 158]:

S(t) = −
phenotype∑

i

pi(t) ln[pi(t)] (3.12)

where pi(t) is the time dependent probability of finding one of the 23 - 1 = 7 possible living

phenotypes (red, green, blue, red + green = yellow, green + blue = cyan, red + blue =

magenta, red + green + blue = white) as the landscape changes. If all the dominant genes

in a collection of N robots are exclusively ”green” eventually for example, then the final

Shannon entropy is 0 and there is no dominant gene diversity on the resource landscape.

The time dependence of the Shannon entropy is closely related to the Fisher information,

since the Fisher information is basically the variance of the Shannon entropy [157]. We fit

the measured time dependence of S(t) to a logistic equation in Figure 3.10A. We choose

the logistic equation primarily because of its close connection to ecological population

dynamics, namely the role of the population growth rate R and carrying capacity K of an

ecology [159], possibly related to our robot genome rate of change and limiting genomic

diversity.

Under then the assumption that with time the initial Shannon genetic entropy S(0) will

evolve to a limiting entropy S(∞), we determined by curve fitting the Shannon genetic
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Figure 3.10: Relation between genetic diversity and survival rate. (A) Example of the
logistic curve fit of the Shannon genetic entropy S(t) versus time for Po = 0.1. (B) Surviv-
ing robot population (red) and logistic curve fit of the total Shannon entropy change (black)
∆S as a function of basal mutation rate Po for a stochastic landscape. (C) Correlation be-
tween Shannon entropy change S(t) and robot survival for 3 different landscape dynamics,
as a function of different intrinsic mutation rate Po.
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entropy change ∆S = S(∞)− S(0)

S(t) =
S(0)× S(∞)

S(0) + ∆S × e−t/τ
(3.13)

where τ is the relaxation time of S(t). Figure 3.10 presents the results primarily for the

stochastic system. Note that, as would be expected, in the absence of mutations the Shan-

non entropy does not change.

Our evolution analysis indicates two important and surprising points connected to mu-

tation rates: (1) the lower the final Shannon entropy, that is, the lower the genetic diversity,

the lower is the survival probability of the robot population. (2) Static or periodically

changing environments basically see no net change in genomic diversity with time even

with changing intrinsic mutation rates Po, but a stochastically changing environment drives

genetic diversity down with time.

Our results suggest the basic hypothesis that while it is key for robots to mutate, ex-

change genes and breed to avoid extinction, high mutation rates can be a extinction driver

in a sufficiently stochastic ecology. The numbers of robots is large (Ntot = 50) but not infi-

nite, finite rather than infinite numbers of agents in biology is a meaningful and extremely

important constraint in biology [160], especially in fragmented landscapes.

We have attempted to explore complicated bio-inspired resource dynamics with real

physical robots instead of a more conventional digital approach (agent-based computer

simulations), such as was used in the pioneering Sugarscape simulation [161, 162]. There

are fundamental differences between these two methodologies, such as the overwhelming

combinatoric load (at what point does the number of robots and their interactions become

impossible to simulate?) [163], the distinctions between smooth analog time and discrete

time in the flow of differential equations [164], and the general breakdown of algorithms

in the presence of noise [165]. A concrete example is chronological ambiguity in digital

operations, because combination of rules to represent simultaneous processes in discrete
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time are intrinsically problematic: there usually is a specific order (non-parallel) to how

the update of variable values is done. This results in the unsolved replication problem

encountered in agent-based simulations, where observations cannot always be faithfully

recreated based on just the physical analog description alone [166, 167].

From the success landscape, we conjecture that absorbing phase transitions [168] play

an important role in the emergent behavior of this robotic system. In the extinction swamp,

the system has crossed an absorbing phase transition boundary where the mutation-driven

fluctuating state of some “alive” robots is no longer stable and get absorbed into the state

of “dead” robots. Absorbing phase transitions are usually associated with strongly non-

Gaussian behavior and diverging time scales [169, 170, 171], and there is of course room

for more exploration here beyond the scope of this paper.

There is a potential clinical aspect to this work based upon our surprising results from

stochastic landscapes. From the start of the design of this technology, we viewed our robots

as cancer cells, and that the resource landscape over which they move represents changing

nutrients and that chemotherapy is represented by changing the resource landscape in such

a way that the cells, although they are capable of mutation and reproduction, cannot sustain

a viable population.

From our results, we predict that a stochastic time and multiple-chemical chemotherapy

rather than a periodic time and mono-drug course would target the high mutation rates of

cancer cells [172] and be less punishing to cells that have the normal very low mutation

rates that natural selection favors in the absence of high stress. At present this is based

on a rather abstract stochastic resource landscape as is clear from Figure 3.9. Clearly,

we will have to design our resource landscape to more closely resemble a solid tumor,

with gradients in stress from an outside perimeter, and time-clocked flow of high stress

chemotherapy at the perimeter.
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CHAPTER 4

SHAPE-CHANGING ACTIVE PARTICLES

The previous two chapters are concerned with active matter in which agents interact with

each other through a field with two spatial dimensions. In fact, active matter could also

interact with each other through a one-dimensional substrate. Such substrate can be an

elastic ring made of plastic [21] or paper[173]. This chapter introduces a type of shape-

changing active particle that they can interact with each other through a confining moveable

elastic ring. Most results have been published in a journal article [21] I have co-authored.

Figure 4.1: Smarticle robot dynamics. (A) Top view of a smarticle. (B) Clockwise square
gait, with key configurations enumerated. (C) Drift of a single smarticle on a flat surface,
executing a square gait over 38. (D) Tracked trajectory of a smarticle within an ensemble
of other self-deforming smarticles; color gradient (blue to red) represents passage of time
47τ , with τ = 1.6 s. Reproduced from [21].
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4.1 Smarticle, a shape-changing active particle

Inspired by the entanglement of staples[174], William Savoie, a former Ph.D. student in

Goldman’s group has created a new type of active matter: smarticle, a customized robot

that can change its shape between convex and concave configurations. This three-link

centimeter-scale robotic object can be pre-programmed so that it will change shape with a

particular sequence of maneuvers (gait) as we desire (Figure 4.1B). Bearing the feature of

time-depending entanglement, it can move through the interaction with another smarticle,

but an individual cannot translate on its own meaningfully(Figure 4.1C).

4.2 Supersmarticle, a collective of shape-changing active particles

To exploit the feature of entanglement, we investigated the behavior of a larger active sys-

tem composed of these smaller active matter. Having observed that a collective of smar-

ticles would typically disengage with each other after some time (though interesting long-

lived pairs may show up depending on initial condition [175, 176]), we tried to use a move-

able ring to enclose a few of them to make the interaction sustaining (Figure 4.2A). This

ensemble diffuses when all smarticle execute the same gait.

Tracking the supersmarticle’s motion for a ring of mass m = 68 g revealed no correla-

tion between final angular position between trials (Figure 4.2D). The mean square displace-

ment (MSD) of the ring, σ2(t) = 〈x2(t)〉−〈x(t)〉2 ∝ tγ and γ specifies the type of diffusion

the system undergoes. The supersmarticle exhibited different types of diffusion—normal

(0 < γ ≤ 1), superdiffusive (1 < γ < 2), and even approximately ballistic (γ ≥ 2) —

depending on the time scale observed. The short time scale regime was consistent with

γ = 1 (Figure 4.2E), indicating normal diffusive motion. The long time scale regimes were

best fit with γ ≈ 1.45 representing directionally invariant superdiffusive motion.

Inspired by how cells composed of organelles and tissues composed of cells function,

the way individual active matter work together as an ensemble could provide insights into
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Figure 4.2: Collective confined diffusion. (A) Supersmarticle top view; ring inner radius
is 9.6 cm. The four gray spheres were used to track the motion of the ring. (B) Granular
temperature of five active smarticles confined in a ring; black line is raw data over 10
trials, and blue is a moving window mean with a window size of 1. (C) Trajectories, from
an experiment, of a smarticle inside the ring (purple), and the ring’s center of geometry
(blue). (D) Experimental tracks of ring trajectory for 50 trials; mring = 68 g. The black
circle represents the size and initial position of the ring. (E) MSD averaged over 50 and 80
trials, for the active and inactive systems, respectively, all lasting 75τ . The inset shows the
average change of for active (black) and inactive (blue) systems. The oscillation seen in
both the MSD and is related to the gait period τ (where τ = 1.6 s). Reproduced from [21].
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interesting biological questions such as how the robustness of living systems is achieved

when some of the individual malfunction.

Interestingly, when one of the smarticles in the supersmarticle is turned off (inactive),

the symmetry breaking leads to a drift of the ensemble. To understand the cause and the

feature of this drift, such as how we can vary this drift by tuning the system parameters, I

noticed two types of interaction fundamental in this system, being active→inactive→ring

(type 1) and active→ring→inactive (type 2) Figure 4.3B.

Δ𝑥𝑆 = Δ𝑥𝑆(𝑚1, 𝑚2)

𝑚1 𝑚2

𝑚𝐼

𝑚𝑅

Δ𝑥1 = Δ𝑥𝑆(𝑚𝐼 , 𝑚𝑅)

𝑚𝐼 𝑚𝑅 𝑚𝐼 𝑚𝑅

Collision type 1 Collision type 2

Δ𝑥2 = −Δ𝑥𝑆(𝑚𝑅 , 𝑚𝐼)

A

B

Figure 4.3: Two basic collision types. (A) Assume a system composed of three masses
will move ∆xS after a collision and ∆xS is a function of the two masses ahead: m1 and
m2. (B) shows the two basic types of collision. In type 1, the crowd of active smarticles
(orange) first hit the inactive smarticle (blue) and then the inactive smarticle hits the ring
(green) on the right side. In type 2, the active smarticles first hits the ring on the left side
and then the right side of the ring hits the inactive smarticle to the left. The insets below
show the corresponding abstract representations and the amount of the system displacement
using the assumption in (A).

Before we investigate the interplay of these two types of collision, let us consider a

mass M colliding onto two masses m1 and m2 in order and denoting the displacement of
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the system, for instance denoted by the displacement of M , as ∆xS . Suppose ∆xS only

depends onm1 andm2 for a particularM that ∆xS = ∆xS(m1,m2), then the displacement

of the system for a type 1 collision is ∆1 = ∆xS(mI ,mR) and that of a type 2 collision is

∆2 = −∆xS(mR,mI). Assuming these two types of collisions alternate with a frequency

of f , the net velocity would be

vdrift = f · (∆1 + ∆2) (4.1)

= f · (∆xS(mI ,mR)−∆xS(mR,mI)) (4.2)

vdrift(mI ,mR) is anti-symmetric with respect to mI and mR such that vdrift(ma,mb) =

−vdrift(mb,ma). Therefore, a reversion of the inactive particle mass and the ring mass will

cause a flip in the direction of the drift velocity.

Motivated by this, we found this to be true in an experiment with a very light ring,

which was a regime we never touched when we first started the experiments with one

inactive smarticle due to the manufacturing difficulty by then. This light ring carefully

made by foam later proved my conjecture to be true[21].

When trajectories were examined in the frame of the inactive smarticle (Figure 4.4B),

the bias in drift toward the inactive smarticle became clear. In Figure 4.4C, the cumulative

displacements are shown in the continuously rotating frame attached to the center link of

the inactive smarticle such that S‖ = Σt
t=0∆~s i · R̂i

‖ and S⊥ = Σt
t=0∆~s i · R̂i

⊥ where ∆~s i

denotes the vector connecting the center of the ring at consecutive instants in time, and

R̂i
‖, R̂

i
⊥ are the unit vectors specifying the local frame (Figure 4.4B). As with the fully active

supersmarticle, the dynamics of the supersmarticle containing an inactive smarticle were

superdiffusive and, at short time scales, approximately ballistic, as indicated by γ ≈ 2.

Besides the conceptual model introduced above, a detailed statistical model has shown

quantitative match with the experiments.

Inspired by the drift caused by the inactive smarticle, we wondered if we can let the su-

95



Figure 4.4: Biasing supersmarticle transport. (A) Supersmarticle schematic, with the
inactive smarticle in red. (B) Supersmarticle trajectory frame transformation from labora-
tory to inactive smarticle frame. (C) Supersmarticle trajectories rotated into the laboratory
frame, where axes are now the perpendicular and parallel components to the frame of the
inactive particle. Reproduced from [21].

Figure 4.5: Endogenous supersmarticle phototaxis. Trajectory from an experiment of
a self-directed (endogenously forced) photophilic supersmarticle tracking a static light
source). Inset: Schematic showing how a smarticle in the straight configuration can oc-
clude light from smarticle behind it. Reproduced from [21].
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persmarticle respond to an external stimuli. In fact, without an external stimuli, the angular

position of the inactive smarticle with respect to the ring, which also dictates the direction

of the drift, typically migrate over time. Though this happens slowly, the drift direction

does change over time without an external control. Therefore, we programmed smarticles

to inactivate when light detected from its photosensor exceeded a threshold. When illu-

minated at low angles (i.e., in the plane of the smarticle light sensors), photoinactivated

smarticles occlude light from neighbors further from the source (Figure 4.5A, inset). The

inactivated smarticle occludes the light from its neighbors: The straightening and resulting

occlusion of light serves as a decentralized and stigmergic directive. The inactive smarti-

cle is affecting the motion of the ring by affecting the motion of the remaining smarticles.

This decentralized strategy has been used in previous swarm robotic collectives to generate

group movement and transport without requiring explicit communication between agents

[177, 178].

4.3 Crawler

Although a single smarticle cannot translate when the two arms are perpendicular to the

ground, by placing a single smarticle on its side, the sliding interaction with the ground

caused by the shape change can enable locomotion as well1.

We refer to a smarticle moving in this mode a crawler. Figure 4.6A shows the experi-

ment setup where a crawler is constrained to move in only one direction. Figure 4.6 shows

the simulation snapshots of a crawler locomoting on a flat ground. In the simulation, forces

and torques are evaluated from normal forces, gravity, and frictions (both static and sliding)

as the shape of the crawler is updated with the prescribed gait. The model for normal force

uses a spring-dash model where the coefficients for the spring and dash are phenomenon-

logically chosen such that the coefficient of restitution is on the magnitude of 10−4 as seen

in the actual smarticles dropped to the ground. The mass of the center piece of a smarticle
1This section and the next section show unpublished works done by William Savoie and me where Will

contributed to the experiments and I contributed to the simulation and theory.
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Figure 4.6: A smarticle can craw when it sits on its side. (A) A photo of the experiment
setup. (B) The crawler moves to the left when executing a clockwise square gait and moves
to the right with the same speed when executing a counterclockwise square gait as shown
in (C). (D) Snapshots of a simulation where the crawler executes a square gait. T denotes
the gait period.

is 24 g; the mass of arm is 3.6 g. The gait period is 1.7 s. The friction coefficient is 0.37.

Different gaits give the crawler different speeds and even different directions of loco-

motion. For instance, a counterclockwise square gait makes the crawler move to the left

while a clockwise gait with the same shape would make it move to the right with the same

speed (Figure 4.6B,C). To functionally understand how a gait dictates the locomotion, the

framework of Geometric Mechanics (GM) could give us insights[128].

GM is a theory that assumes linear dependence of the body velocity on the velocities in

shape space and gives a guidance for optimal trajectory in shape space for the body motion.

For instance, in the crawler’s case, I have found the body velocity in x direction, ξx, linearly

depends on the angular speeds of the arms θ̇1, θ̇2 that ξx = A(α)α̇ where α = (θ1, θ2, 0)T

and A is the local connection (i.e. matrix) between the velocities in shape space and real
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Figure 4.7: Geometric mechanics of the crawler. Left: The amount of displacement for
a gait ∂D equals to the line integral along the gait on the local connection field A, which
is the linear coefficient between the body velocity ξx and shape velocities θ̇1, θ̇2. Right: By
using Stokes’ theorem, the line integral equals to the surface integral of the curl of the local
connection field. This can guide one design optimal gaits by enclosing the domain with
high curvature.

space. From simulations, I have found this linearity holds up until θ̇i ≈ 1 rad/s, which is

considerably higher than the typical angular speed of θ1, θ2. The displacement of the body,

which is the line integral along the gait ∂D in the connection field can be converted to the

surface integral of the curl using Stokes’ theorem:

∫
∂D

ξxdt =

∫
∂D

A(α)α̇dt =

∫
∂D

A(α)dα =

∫∫
D

(∇×A)zda (4.3)

Here, ξxdt is the infinitesimal displacement in x direction. Due to the fact that the body

velocity in x direction ξx linearly depends on the shape velocity α̇ = (θ̇1, θ̇2, 0)T so that

ξx = A(α)α̇, we have the first equal sign in the equation above. The third equal sign holds

due to the Stokes theorem where da = dθ1dθ2 is the infinitesimal area in the shape space.
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Figure 4.7 shows the connection field and the curl field (also referred to as the ’curva-

ture’) for the crawler. We see some high negative curvature concentrates on a diagonal in

the third quadrant and high positive curvature somewhat perpendicular to it. The theoreti-

cal explanation to these can be found in section B.1 of the appendix. This kind of curvature

field is commonly seen in locomotors that change contact states and one can optimized

the locomotion using the curvature field with a potential field. See [179] which I have

co-authored for details.
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Figure 4.8: Crawler with realistic finite torque. (A) Theoretical prediction from GM
or simulation (blue) is higher than the experiment results for diamonds gait with different
gait sizes. A simulation with a motor having finite torques (kP = 240kP0, kD = 100kD0)
matches better with the experiments. (B) The blue line shows an example diamond gait.
The orange line shows the actually executed gait with a ’soft’ motor using gain parameters
kP = 10kP0, kD = 5kD0 where kP0 and kD0 gives the amount of torque that is just able to
make the crawler lift itself. (C) The left shows the stance of a crawler when the motor is
strong (kP = 240kP0, kD = 100kD0). The right shows the stance of crawler at the same
moment when the motor is weak (kP = 10kP0, kD = 5kD0).

The blue line in Figure 4.8 shows the theoretical prediction of a diamond gait using

the curl field in Figure 4.7 for various of gait size (size of the diamond gait). We then did

experiments and found the performance is worse than the simulation and later realized the
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finite torque might have played a role. To achieve this in simulation, I implemented a PD

(proportional, differential) control for the crawler that the shape angles θi has

Iθ̈i = τcontroller + τground (4.4)

where

τcontroller = kP (Θi − θi) + kD
d(Θi − θi)

dt
(4.5)

Here, Θi is the desired position prescribed by the gait for the ith joint and varies with

time, whereas θi is the actually executed joint angle. τground includes all the torques from

the ground when we introduce the simulation at the beginning of this section.

When we choose the gain parameters (kP and kD) small, the crawler looks ‘softer’ (see

the right figure of Figure 4.8C) than in the case where the gain parameters are larger. For

some fitted gain parameters (kP = 240kP0, kD = 100kD0), the simulation can reproduce

what we observe in experiments (Figure 4.8).

4.4 Smarticle train

In the early stage to find a simple model for supersmarticle, Will and I developed a one-

dimensional mechanical model to study the motion of a moveable confinement enclosing

shape-changing active particles. The model, i.e., the smarticle train, is composed of two

shape-changing particles that can slide freely in a long linear moveable rectangular frame

(Figure 4.9A, B). Each active particle inside the frame is a block with a harmonically-

oscillating shaft, and we will refer them to the oscillators later. Although these active

particles are not exactly the smarticle, this model might give us some intuition about a

confinement with shape-changing particles inside.

In experiments, to restrict the motion only in one dimension, we used a ruler to confine

the rectangular frame. One of the most interesting parameters in this system is the phase
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Figure 4.9: Smarticle train. (A) A sketch of the smarticle train (top view). (B) The
smarticle train for experiment (top view). (C) The drift velocity as a function of the phase
difference between the two oscillators ∆φ = φ1 − φ2 where the inset shows the phase φ of
an individual oscillator. Credits to William Savoie for panels A and B.

difference between the two physically identical oscillators. The harmonic oscillation of the

shaft on each oscillator is realized by the circular motion of a knob on a motor (Figure 4.9A

and C inset). Therefore we use the rotation angle φ of the knob as the phase. We are curious

how the motion of the smarticle train depends on the phase lag between the two phases

∆φ = φ1 − φ2. From the symmetry point of view, the rectangular frame should have no

net motion since the two oscillators are moving symmetrically.

We also use this case as a calibration method in experiments to ensure there is no

significant systematic error so that any drift for other ∆φ will be convincing. We calibrated

the system such that ∆φ = 0 will give us zero motion. We found that there were indeed

net motions for general phase lags from experiments. The motion is antisymmetric about

∆φ = 0 and is zeros for ∆φ = −π, π, which are modes where the two oscillators move in

phase.

To obtain some preliminary understanding, I performed simulations by integrating the

interactions, including the oscillator-oscillator contact force, oscillator-frame contact force,

and the ground-oscillator friction. The physical parameters were directly measured from

experiments: The mass of each oscillator is 124 ± 2 g. The static and kinetic friction

coefficients are 0.433±0.018 and 0.374±0.008, respectively. I used the spring-dash model
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for the contact forces. The coefficients for the spring and dash are phenomenological that

the coefficient of restitution is on the magnitude of 10−4, and we posit the result should be

largely irrelevant to the details of the contact model. The result matches the experiments

(Figure 4.9C).

The result of the motion’s dependence on phase is interesting in many aspects. First,

this complements our study of supersmarticle in section 4.2 where all particles are started

with the same phase. This complementary result on phase poses interesting questions such

as if there are collective behavior emerging from some particular phase configuration and

if we can utilize it. Secondly, considering the fact that an object cannot locomote when

the friction is isotropic[180, 179], that the smarticle train can translate should be caused by

the inertia effect. It will be interesting to see how the speed would qualitatively change the

ability to move for an ensemble composed of shape-changing particles.
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CHAPTER 5

LOCOMOTION OF SHAPE-CHANGING ACTIVE MATTER IN CURVED SPACE

5.1 Locomotion in flat and curved spaces

Curved surfaces are ubiquitous in physics, biology, engineering and mathematics but are

defined by features that defy intuitions derived from flat space. For example, on a spherical

surface the square of the hypotenuse is not the sum of the squares of the legs and “parallel”

lines meet at the poles and the sum of the interior angles of a triangle grows with the

triangle’s area. Recently, the inability to form periodic crystals on spherical surfaces [181,

182] has given rise to lively dynamics of essential crystalline defects [183, 184]. And, of

course, gravitational interactions themselves are derived from the fundamental curvature of

four-dimensional spacetime [185] leading to explanations of dynamics such as precessing

orbit of Mercury and gravitational lensing of light 1.

Less well known is the fact that curved surfaces permit locomotors embedded within

them to self propel via translation without exchanging momentum with an environment [186,

187, 188] (as is done in swimming, flying and running in typical environments). How

can this be? Consider, in particular, the prototypical swimmer confined to (or embedded

within) the spherical surface depicted in Figure 5.1(a). By propelling masses along the

vertical arms, the component of the moment of inertia that relates torque and momentum

about the longitudinal axis can be altered, analogous to a process in flat space that some-

how altered the mass of an object. By propelling an additional mass along the latitudinal

arm on the sphere, angular momentum may be exchanged between this mass and the others

during periods in which the robot has different moments of inertia. By pushing itself in

one direction when it has low moment of inertia and the other when it has high, the robot

1This subsection is adapted from a co-first-authored arXiv preprint ‘Locomotion without force, and im-
pulse via dissipation: Robotic swimming in curved space via geometric phase’ (2112.09740)
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may attain a net movement in the first direction, even as the total robot structure maintains

zero angular momentum. This is analogous to a falling cat, which instinctively exchanges

angular momentum between different parts of its body while contorting itself to alter its

moment of inertia.

This process relates to fundamental geometric properties: Whereas a flat plane is in-

variant under two translations and a rotation, leading to a two-dimensional conserved lin-

ear momentum and a one-dimensional conserved angular momentum, a spherical surface

is invariant under the three rigid-body rotations of SO(3), leading to a conserved three-

dimensional angular momentum. Crucially, these motions, which may be thought of as

translations along the sphere, do not commute with each other as do translations in flat

space. Consequently, when a robot changes its shape on a sphere as shown in Figure 5.1(a),

it induces a series of incommensurate motions, so that a closed cycle of shapes induces a

net displacement along the sphere, analogous to the rotation achieved by a falling cat.

This behavior is an example of a broader phenomenon in physics, in which dynami-

cally varying patterns can induce a physical transformation known as a geometric phase.

Geometric phase plays a crucial role in modern physics, from the general-relativistic cur-

vature of spacetime that establishes closed orbits of planets around stars to the Berry cur-

vature that underlies quantum-mechanical effects in graphene, topological insulators and

cyclotron motion. And geometric phase even appears in locomotion. As pointed out by

Shapere and Wilczek [189] and developed and applied over the past decades [190, 191,

128, 192, 193, 194] geometric phase describes how a self-deforming body locomotes in

response to drag forces from viscous and frictional fluids to dry friction.

Here we demonstrate experimentally for the first time geometric phase driving dynam-

ics solely induced by the curvature of space, resulting in self-propulsion without environ-

mental force exchange. We do this by converting the abstract picture of the ideal spherical

surface swimmer mentioned above to a precision robophysical model. The device’s self-

propulsion is determined by the geometrical phase induced by its shape changes as it slides
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Figure 5.1: Self-propulsion without reaction forces. (a) A robot confined to a spherical
surface executes a cyclic change of shape to generate net position change. (b) The cyclic
change of shape described by the angles θh, θv of motorized weights (black dots) follows
an order indicated by the gait diagram below. Due to the variable moment of inertia and
the non-commutivity of these operations, this leads to a net change in the robot’s position,
represented by the rotation φ(t) applied to the coordinate axes in position space, even in
the absence of momentum or external forces. The plot below shows the time evolution of
φ(t) from each stroke of the gait shown in the same color as the gait diagram.

motorized masses along curved tracks. Further, under complex dissipative coupling to the

environment, this geometric propulsion couples to friction in surprising ways, preventing

decay into energy minima and capturing a finite-momentum state in a fixed position.

5.2 Ideal swimming

Testing the idea that self propulsion can occur in curved environments without forces re-

quires confining the robophysical model to a curved surface while achieving control over

its environmental coupling. While experiments often occur in flat planes whose dynamics

approximate that of an ideal Euclidean plane, capturing the essence of a sphere is more

challenging. In particular, no widely available method exists for placing particles on a
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Figure 5.2: Robophysical curved space swimmer. (a) The experimental apparatus, ren-
dered here schematically, confines the robot’s active masses to a geometric (but not ma-
terial) spherical surface of radius 46 cm via 3D-printed curved tracks along which servo
motors (116 g for each of the four motors) propel masses of themselves and the tracks
(388 g). The robot is free to rotate about a central pivot with a low-friction air bearing and
mounted on a kinematically adjustable base used to minimize the torque induced by gravity.
In contrast, the upper-right inset depicts a robot that, due to the straight arms, is confined to
a cylindrical surface along which no corresponding motion can be induced via swimming.
The lower-left inset shows the coupling between a motor and a curved track. (b) A phase
difference ϕd between the robot’s horizontal and vertical strokes breaks time-reversal and
spatial inversion symmetry, as required for forward swimming. (c) The displacement of the
robot per stroke, in the absence of external forces, is obtained as an integral of geometric
phase over the shaded regions enclosed by the gaits in shape space. Credits to Tianyu Wang
and Velin H. Kojouharov.

solid spherical shell while simultaneously minimizing both the effect of gravity (which

would drive particles towards the bottom of the sphere) and friction (which would prevent
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Figure 5.3: Chronological snapshots of the spherical swimmer and the cylindrical
‘swimmer’. These snapshots show the swimming of the former is significant while the
latter is vanishingly small. See the red trajectory in Figure 5.4, Figure 5.8(a) for the dis-
placement over time.

us from isolating the novel curvature-induced motion from more conventional effects). In-

stead, we opt for a solution in which we attach the robot to a rigid boom arm free only to

rotate about the vertical axis shown in Figure 5.2(a).

Masses are robotically propelled along curved tracks whose radius coincides with the

length of the boom arm, ensuring that the robot’s mass is confined to a spherical surface.

The constraint of the boom arm ensures that all forces/torques would move the robot verti-

cally or radially are negated, while freely permitting horizontal direction along the spherical

surface. Consequently, the dynamics of the apparatus is well-described by that of an ideal

sphere. Notably, the robot’s ability to move does not violate the usual rule against move-

ment without forces in three-dimensional space because the full three-dimensional dynam-

ics in fact include normal forces on the robot supplied by the boom arm that confines it to

the sphere.
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This arrangement is achieved via precision servo motors connected to gears that move

without slipping on the robot’s 3D-printed toothed tracks that can be generated with arbi-

trary curvature profile. The tracks are connected to the central shaft, which rotates in air

bushings with low friction. The base of the system is fixed on the hard ground via kinematic

mount, which constrains motion of the base.

We control the motors’ positions on the tracks to prescribe a “gait”: a closed path in

shape space parameterized by the position of the motor positions in horizontal (θh) and

vertical (θv) directions, as shown in Figure 5.1(b). The swimmer is constrained to move

angularly by the beam arm [ Figure 5.2(a)]. This design can minimize environmental forces

due to friction and gravity, although we also demonstrate that these couple to the geometric

phase to generate additional exotic phenomena.

We test whether self-deformation in the presence of curvature can generate locomotion

without significant environmental forces. We place the robot on the equator of the sphere

and, for simplicity, restrict ourselves to shapes that are symmetrical under reflections across

the equator. Such shape changes, combined with the apparatus design, constrain the robot

to translate along the equator—i.e. to rotate about the north pole. The smooth trajectory

through shape space, designed to minimize jerks and maximize motion, is shown in Fig-

ure 5.1(b).

In our primary result, as predicted by Wisdom [186] and indicated in Figure 5.1(a), the

persistent cycling through shape space shown in Figure 5.2(b,c) leads the robot to translate

back and forth, yet the effect of Gaussian (intrinsic) curvature permits a relatively small

net motion [ Figure 5.4(b)] which depends on the direction of the cycle in the configu-

ration space. And, as predicted, because force-free propulsion relies on this curvature of

the doubly-curved sphere, a robot confined to a singly-curved cylindrical surface [inset of

Figure 5.2(a)] does not exhibit this propulsion [ Figure 5.4(b) and Figure 5.8(a) inset].

Further, in contrast to Wisdom’s force-free model, the robotic swimmer’s motion saturates

at a finite displacement, per Figure 5.8(a)’s main panel.
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Figure 5.4: Self propulsion via geometric phase. (a) The robot, initially at rest, swims
forward with an average initial angular velocity ωi = ˙̄φ over the course of several strokes.
The black thick line shows the time-averaged position φ̄. (b) The observed initial veloci-
ties match those predicted from the geometric phase, ωg, (dashed lines) with variable gait
controlling the speed and direction of the robot swimming on the sphere, in contrast to the
robot on the cylinder, which cannot achieve significant net movement.

5.3 Realistic swimming

While we have now realized force-free swimming, as occurs over short times in Fig-

ure 5.4(a), the robophysical testing reveal more complex phenomena resulting from the

interplay between this geometric phase and environmental effects, as in Figure 5.8(a).

5.3.1 Friction

To characterize and measure the friction, we tracked the decay rate of angular velocity as

shown in Figure 5.5a. Figure 5.5b, an example of such experiment, shows the instanta-

neous decay rate aC as a function of the angular velocity φ̇. We note that it is reasonably

anti-symmetric about zero, giving a symmetric friction status such that the possible ratchet
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effect, which could introduce unwanted swimming, is nominal. When reporting the friction

in the main text, we use the acceleration evaluated for the range of angular velocity between

0.175 rad/s and 0.035 rad/s, which is the typical range of angular velocity in the swimmer’s

experiments. To average out the possible slight gravity residue effect, we performed ex-

periments at 5 different azimuthal positions evenly spaced in (0, 2π). To avoid the ratchet

effect, we only performed swimmer experiments when the discrepancy of friction between

the clockwise and counterclockwise value is less than 10 %.

−ത𝑎𝐶

a b

−ത𝑎𝐶

ത𝑎𝐶

−

Figure 5.5: Friction characterization. (a) The decay of angular velocity φ̇ over time in
experiment. (b) Angular acceleration over φ̇. The orange dots show the raw data. The blue
error bars show the median and the middle quartiles of the binned data.

To convert the acceleration to the torque from friction τC , we multiply the average

acceleration magnitude āC by the total moment of inertia of the swimmer I0 = msR
2

where ms, R are the mass and the radius of the swimmer, respectively.

5.3.2 Residual potential

Since the gravity potential well from the slight tilting of the equator is so shallow that direct

measurement from devices such as bubble meter or optic tracking does not have sufficient

resolution due to possible error from the mounting of trackers, we infer its depth using the

long oscillation period resulted from it.
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Particularly, we perform a very long null gait in which only the horizontal motor moves.

The averaged φ (i.e., the envelope φ̄) is given by Eq. (4) in the main text as

〈I(0)〉 ¨̄φ = −4τC〈I(0)〉
T |α̈|

[
˙̄φ− ωg

]
− τgφ̄. (5.1)

where ωg = 0 since there is no geometric phase enclosed. Given that the moment of inertia

is fixed as I0 = msR
2 in the null gait and α = 2mvR

2θh, the equation for the long-time

envelope is, therefore

I0
¨̄φ = − 2τCms

Tmv |θ̈h|
˙̄φ− τgφ̄. (5.2)

When τC is relatively small, the oscillation period of φ̄, Tenv, is approximately (2π/Tenv)
2 =

τg/I0 where τg = msgR sin θg and I0 = msR
2. This implies

θg ≈ sin θg =
R

g

(
2π

Tenv

)2

. (5.3)
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Figure 5.6: Inferring the gravity residue. The residual gravity angle is inferred from the
long-time envelope of a null gait experiment with small friction (τ = 0.003 kg m2 s−2).

With R = 0.46 m, from an experiment with null gait and small friction τ = 0.003
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kg m2 s−2, we can see the period of the envelope Tenv is about 120 s and thus inferring a

residual gravity of θg = 1.2× 10−4 rad.

5.3.3 Dynamics at long-time scale

We now develop an analytical theory and use numerical simulation to rationalize these

results.

The total angular momentum of the swimmer is composed of three parts: the contribu-

tion from the vertical motors, the horizontal motors, and the track system supporting the

motors together with the supporting rod.

L = Lvertical + Lhorizontal + Ltrack (5.4)

= 2mvR
2 cos2 θvφ̇+ 2mhR

2(θ̇h + φ̇) + Itrackφ̇ (5.5)

If we collect the terms with φ̇ together, we have (following the “shape dynamics” sec-

tion of the Methods)

L = Iφ̇+ α̇ (5.6)

where now

I(t) = 2mvR
2 cos2 θv(t) + 2mhR

2 + ItrackR
2, (5.7)

α(t) = 2mhR
2θh(t). (5.8)

The torque that changes the angular momentum is composed of two parts, being the
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contribution from the slight residual gravity and Coulomb friction.

dL

dt
= τ = Ag + AC (5.9)

The force from the residual gravity is caused by the mass of the swimmer on the equa-

tor, which normal slightly misaligns with the direction of Earth’s gravity with an angle of

θg. The residual gravity potential contributed by the two horizontal motors, two vertical

motors, and the track compose a total residual potential energy of V = −(2mv + 2mh +

mtrack)gR sin θg cos (φ− φ0). This leads to a torque of

Ag = −∂V/∂φ = −(2mv + 2mh +mtrack)gR sin θg sin (φ− φ0) (5.10)

where φ0 is the azimuthal position with the lowest potential energy. Without loss of gener-

ality, we set φ0 = 0 so the torque from gravity and assume φ is small and finally arrive at

Ag = −τgφ where τg = msgR sin θg where ms = 2mv + 2mh +mtrack.

The torque from friction has a constant magnitude τC and a direction opposite to the

angular velocity so

MC = −τCsgn(φ̇) (5.11)

Piecing all above, we have the equation of motion as

L = Iφ̇+ α̇ (5.12)

L̇ = −τCsgnφ̇− τgφ (5.13)

where τg = (2mv + 2mh +mtrack)gR sin θg.

After some simplification, we have the simplified equation for the equatorial spherical
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Figure 5.7: Setup of the swimmer. The swimmer with two horizontal motors (each with
mass mh) and two vertical motors (each with mass mv) rotates about ns, the normal of
the equator shown as the light purple plate. The position of the swimmer, φ, the azimuthal
angle of the beam arm connecting the center and the curved track arms, evolves as the
positions of the motors (θh, θv) move. Ideally, the normal of the equator ns should be
aligned with the opposite direction of gravity −g. In realistic experiment, we characterize
the small residual gravity by the angle θg (∼ 10−4 rad) between ns and −g. We denote the
minimal position of the gravity potential as φ0.

swimmer to the scalar associations between the angular velocity, angular momentum and

torque about the vertical axis:

φ̇(t) =
L(t)− α̇(t)

I(t)
, (5.14a)

L̇(t) = τ(φ, φ̇) = −τC sgnφ̇− τgφ. (5.14b)

The moment of inertia I(t) and the internal effective angular momentum α̇(t) (the an-

gular momentum induced by the shape change that the robot would have for φ̇ = 0) both

depend on time with period T via the shape-change gait. The torques due to friction and

gravity are measured, rather than left as free model parameters, in additional experiments
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as described in Secs. 4,5 of the Supplementary Information.

As a consequence of the dynamics of Eq. (Equation 5.14), even when angular momen-

tum and torque vanish, the robot’s gait causes it to advance at an average angular velocity

ωg =
∆φ

T
= − 1

T

∫ T

0

I−1(t)α̇(t)dt = − 1

T

∮
dα

I
. (5.15)

The final expression reflects the geometric nature of this movement as a Berry phase that

depends on the path through shape space but not on the rate at which it is traversed.

As posited in Figure 5.1 and shown in Figure 5.4(a), in the absence of additional

forces, a robot initially at rest would, upon initiating a particular series of shape changes,

rotate around the equator of its spherical universe at a rate described by Eq. (Equation 5.15),

a behavior analogous to the general-relativistic formulation of Wisdom [186]. Instead, we

address the complex coupling between this geometrical phase and the robot’s coupling to

its environment reflected in the torques of Eq. (Equation 5.14).

Perhaps surprisingly, while the geometric phase is evaluated via a nonlinear numeri-

cal integration and the Coulomb friction is highly nonlinear, the interplay between the two

can be treated analytically. This process, shown in the ‘Two diverging friction models’

section of the Methods section is done in the rotating wave approximation in which, draw-

ing inspiration from techniques developed in optical physics [195] we decouple the rapid

oscillations of the robot from the weaker influences of external torques:

〈I(0)〉 ¨̄φ = −4τC〈I(0)〉
T |α̈|

[
˙̄φ− ωg

]
− τgφ̄. (5.16)

L̇ = − 4τC

T |α̈|
L− τgφ̄. (5.17)

Here, φ̄(t) is the time-averaged position, removing the rapid, high-amplitude oscillations
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due to the gait motion, as shown in Figs. Figure 5.4(a), Figure 5.8. 〈I(0)〉 is the inverse of

the time-averaging of the inverse moment of inertia. α̈ is the rate of change of the internal

angular momentum at the time in the gait at which it vanishes. This linear approximation

relies on the smallness of the external angular momentum L relative to the internal angular

momentum α̇ For larger angular momenta, higher-order terms become relevant.

We thus arrive at the effective dynamics of the curvature swimmer. Provided that the

external torque does not vary significantly within a single stroke and the system remains

in the linear force regime, the system attains an emergent form of the viscously damped

linear harmonic oscillation, despite the nonlinearity of the Coulomb friction. The most

striking feature is the uniform force field, proportional to both the geometric phase and the

Coulomb friction. The periodic shape changes are reminiscent of a Floquet theory, yet the

combination of a time-dependent force with a time-dependent inertia permits net forward

motion.

The low-torque regime occurs when the swimmer, initially at the bottom of a shallow

energy well engaged in a neutral swimming motion (which does not lead to self propulsion

but maintains continuous self-deformation to prevent static friction), shifts into a forward

swimming motion, as shown in Figure 5.8(a). The robot’s motors drive its masses around

the spherical surface in the trajectory shown in Figure 5.2(b). The parameter ϕd controls

the offset between the motions of the horizontal and vertical arms, which is crucial to break

time-reversal and spatial-inversion symmetries, as is necessary for a swimming gait. Here

we refer to a gait with nonzero ϕd and thus nonzero swimming as a swimming gait and refer

to a gait with zero ϕd as a null gait. The geometric phase ωg is shown in Figure 5.4. Over

short periods, the forces effect only a small change in the swimmer’s momentum while the

swimmer nevertheless advances at a measured initial angular rate ωi = ˙̄φ(0). As seen in

Figure 5.4(b), the rate predicted (dashed line) by the calculated geometric phase ωg (i.e.,

ωi = ωg) is in agreement with the observed initial rate, providing strong validation of the

geometric theory.
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Figure 5.8: Geometric swimming in the presence of environmental effects. (a) Evolu-
tion of φ(t) of curved swimmer and cylindrical non-swimmer (inset) for Coulomb friction
τC = 3.4 × 10−3 kg m2/s2 and different ϕd’s. There are two trials for each ϕd. (b) The
steady-state plateau φss as a function of τC. The dots with error bars, solid lines show the ex-
periment and simulation [Eq. (Equation 5.14)] respectively. To understand how the plateau
increases with small friction (τC < |α̈|), we show the first-order theory (Eq.Equation 5.18)
with dashed lines until around the predicted cutoff friction (τC = |α̈|).

Over longer times, additional vibrations, resonances and nonlinearities preclude quanti-

tative agreement between experiment and theory, yet qualitative agreement is nevertheless
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observed throughout the trajectory in Figure 5.8(a). These trajectories contain a surprising

feature: unlike the typical behavior of dissipative systems in flat space, the curvature drives

the swimmer to plateau at a finite offset from the bottom of its potential well. The geomet-

ric theory of Eq. (Equation 5.16) predicts τ(φ̄ss) = 4τC〈I(0)〉
T |α̈| ωg and leads to a steady-state

plateau of

φ̄ss =
4τC〈I(0)〉
τgT |α̈|

ωg. (5.18)

This prediction of linear dependence between plateau height and friction strength is ob-

served at low friction strength, as shown in Figure 5.8(b) and levels off at approximately

the amount friction strength predicted by theory, which is |α̈|.

The trajectory in Figure 5.8(a) naively suggests that the swimmer begins with a finite

momentum that falls to zero as its position plateaues. As our analysis reveals, the reverse

is true: at the beginning of the swimmer’s journey, when its velocity is greatest, it lacks

momentum. In contrast, once its average velocity in one direction vanishes, the momentum

is maximal and points in the opposite direction. Because the swimmer advances without

momentum the dissipative forces that arrest the swimmer’s forward progress also impart

an impulse that leaves it with nonzero momentum. To illustrate this, in Figure 5.8(a), Fig-

ure 5.9, we suspend the swimmer’s forward stroke, replacing it with a null gait to prevent

static friction. At this moment, normal classical physics, in which momentum and velocity

are in proportion to one another, reasserts itself and the swimmer’s negative momentum

causes it to swing backwards towards its origin. We emphasize that this is not due to ex-

ternal forces: gravity is weak and friction opposes this motion. This is due purely to the

momentum concealed by and compensated for in the swimmer’s gait. The curvature swim-

mer thus displays the exotic behavior of using dissipative (frictional) forces to increase the

magnitude of its momentum in the rest frame of its environment. This relationship between
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Figure 5.9: Negative momentum in the steady state via environmental effects. (a) Si-
multaneous evolution of φ and L for low and high friction (τC = 0.0023, 0.0089 kg m2

s−2) for a swimmer conducting a swimming gait sandwiched by two null gaits. Note that
the steady-state plateau φss and angular momentum Lss have opposite signs. (b) The ratio
between the φss and Lss for various torques of friction τC . The black line shows the theory
−φss/Lss = 4τC/(T |α̈|τg) with all parameters measured from experiments. The blue line
shows the simulation result.

steady-state displacement and momentum remains in qualitative agreement with simulation

and theory (without free parameters) as friction is varied.

5.4 Conclusion and future work

In summary, we have experimentally realized and theoretically characterized the move-

ment of a robot through a curved (spherical) space without relying on any momentum or

reliance on environmental forces to translate, in contrast with all other observed systems.

We demonstrated that this purely geometric effect couples to both conservative and dis-

sipative forces present in real environments. In particular, we have shown how coupling

between Coulomb friction and the geometric phase generates an effective force on the robot
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that imparts an impulse that reduces its velocity while increasing its momentum in the op-

posite direction. This behavior sheds light both on Wisdom’s proposed locomotion via

spacetime curvature [186] and, more immediately, on a geometric effect always present

when robots move on curved surfaces. As shown here, this effect can become dominant

when the robot’s body is comparable to the inverse curvature of the surface, which appears

to extend to gravitational curvature of spacetime as well [186].

Further, the apparatus presented here can function as a test-bed for additional exotic be-

havior on curved surfaces, related to more complex and variable swimming gaits, nonlinear

effects and collective behavior.
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CHAPTER 6

CLUSTERING DYNAMICS OF ROBOTIC ACTIVE MATTER UNDER

ATTRACTION

Self-organizing collective behaviors are found throughout nature, including shoals of fish

aggregating to intimidate predators [196], fire ants forming rafts to survive floods [197],

and bacteria forming biofilms to share nutrients when they are metabolically stressed [198].

Inspired by such systems, researchers in swarm robotics and programmable active matter

have used many approaches towards enabling ensembles of simple, independent units to

cooperatively accomplish complex tasks [199, 200, 201]. Both control theoretic and dis-

tributed computing approaches have achieved some success, but often rely critically on

robots computing and communicating complex state information, requiring relatively so-

phisticated hardware that can be prohibitive at small scales [202, 203]. Alternatively, sta-

tistical physics approaches model swarms as systems being driven away from thermal equi-

librium by robot interactions and movements (see, e.g., [124, 204]). Tools from statistical

physics such as the Langevin and Fokker-Planck equations can then be used to analyze the

mesoscopic and macroscopic system behaviors [205]. Current approaches present inherent

tradeoffs, especially as individual robots become smaller and have limited functional capa-

bilities [206, 207] or approach the thermodynamic limits of computing and power [208]1.

To apply to a general class of micro- or nano-scale devices with limited capabilities, we

focus on systems of autonomous, self-actuated entities that utilize strictly local interactions

to induce macroscale behaviors. Two behaviors of interest are dynamic free aggregation,

where agents gather together without preference for a specific aggregation site (see Section

3.2.1 of [200]), and dispersion, its inverse. These problems are widely studied, but most

1This chapter is adapted from a co-first-authored journal article ‘Programming active cohesive granular
matter with mechanically induced phase changes,’ Science Advances, 2021, 7(17)
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work either considers robots or models with relatively powerful capabilities — e.g., persis-

tent memory for complex state information [209, 210] or long-range communication and

sensing [211, 212, 213] — or lack rigorous mathematical foundations explaining the gener-

ality and limitations of their results as sizes scale [214, 215, 216]. Recent studies on active

interacting particles [217] and inertial, self-organizing robots [218] employ physical mod-

els to treat aggregation and clustering behaviors, but neither prove behavior guarantees that

scale with system size and volume. Supersmarticle ensembles [21] are significantly more

complex, exhibiting many transient behavioral patterns stemming from their many degrees

of freedom and chaotic interactions, making them less amenable to rigorous algorithmic

analysis.

Here we take a two-pronged approach to understanding the fundamental principles of

programming task-oriented matter that can be implemented across scales without requiring

sophisticated hardware or traditional computation that leverages the physics of local inter-

actions. Motivated by a theoretical abstraction of self-organizing particle systems (SOPS,

see section 6.2), we build a new system of deliberately rudimentary active “cohesive granu-

lar robots” (which, to honor granular physics pioneer Robert Behringer, we call “BOBbots”

for Behaving, Organizing, Buzzing robots)

We will show that the interaction between the BOBbots qualitatively and quantitatively

resembles that of the SOPS where we can design and rigorously analyze simple distributed

algorithms to accomplish specific goals that are flexible and robust to errors. Remarkably,

the lattice based equilibrium model quantitatively captures the aggregation dynamics of the

robots.

With a provable algorithmic model and even simpler BOBbots capturing the algorithm’s

essential rules, we next explore how contact stress sensing — a capability that is readily

available in the robotic platform but interestingly not easily computable by a strictly local,

distributed algorithm — can enhance aggregation performance, as suggested by insights

from the theoretical model.
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This complementary approach demonstrates a new integration of the fields of dis-

tributed algorithms, active matter, and granular physics that navigates a translation from

theoretical abstraction to practice, utilizing methodologies inherent to each field.

6.1 Physical description of BOBbots

Here we first introduce the BOBbots ( Figure 6.1A–C) — Behaving, Organizing, Buzzing

robots. Driven granular media provide a useful soft matter system to integrate features of

the physical world into the toolkit for programming collectives. This builds upon three

decades of work understanding how forced collections of simple particles interacting lo-

cally can lead to remarkably complex and diverse phenomena, not only mimicking solids,

fluids, and gasses [219, 220] — e.g., in pattern formation [221, 222], supercooled and

glassy phenomena [143, 223], and shock waves [224] — but also displaying phenom-

ena characteristic of soft matter systems such as stress chains [225] and jamming tran-

sitions [226, 227]. While cohesive granular materials are typically generated in situations

where particles are small (powders, with interactions dominated by electrostatic or even van

der Waals interactions) or wet (with interactions dominated by formation of liquid bridges

between particles) [228, 229], we generate our cohesive granular robots using loose mag-

nets which can rotate to always achieve attraction.

Each BOBbot has a cylindrical chassis with a base of elastic “brushes” that are phys-

ically coupled to an off-center eccentric rotating mass vibration motor (ERM). The vi-

brations caused by the rotation of the ERM are converted into locomotion by the brushes

( Figure 6.1C). Due to asymmetry in our construction of this propulsion mechanism, the

BOBbots traverse predominantly circular trajectories [230] that are randomized through

their initial conditions are inherently deterministic with some noise and occur at a constant

speed per robot distributed as v0 = 4.8± 2.0 cm/s. While the individual trajectory is some-

how deterministic, the system is very sensitive to initial conditions that a very small change

in initial condition typically leads to huge difference in future trajectories (see Figure 6.6).
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Figure 6.1: BOBbots and their collective motion. (A) Schematic of experimental setup.
BOBbots are placed in a level arena with airflow gently repelling them from the bound-
aries. (B) A closeup of the experimental platform. (C) Mechanics of the BOBbots. Loose
magnetic beads housed in the BOBbots’ peripheries can reorient so BOBbots always at-
tract each other. The vibration of the ERM motor and the asymmetry of bristles lead to
the directed motion. The light sensor activates the motion. (D) Discrete element method
simulation setup. (E) The BOBbot-boundary interactions: airflow repulsion fA, BOBbot-
boundary friction fBW, and normal force FBW,n. (F) The inter-BOBbot interactions: attrac-
tion between magnetic beads FM , inter-BOBbot friction fBB, and sterical exclusion FBB,n.
Photo Credit: Bahnisikha Dutta, Ram Avinery, Georgia Institute of Technology.
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To allow for study of larger BOBbot ensembles and more comprehensive sweeps of

parameter space, we also performed Discrete-Element Method (DEM) simulations of the

BOBbots (see Figure 6.1D–F).

The motion of an individual BOBbot is modeled as a set of overdamped Langevin-type

equations governing both its translation and rotation subject to its diffusion, drift [231],

magnetic attraction, and sterical exclusion with other BOBbots. The translational drift cor-

responds to the speed from the equilibrium of the drive and drag forces while the rotational

drift corresponds to the circular rotation. Similar methods have been used to understand

macroscale phenomena emerging from collectives of microscopic elements [205] and to

model particle motion in active matter [232].

The DEM simulation parameters are calibrated to match the physical BOBbot features.

Many parameters such as the mass and dimensions of each BOBbot are easily measured.

However, other parameters are better calculated by conducting simple experiments. The

first such experiment ( Figure 6.2) calculates the magnetic force FM0 between two magnets

when their BOBbots’ shells are touching. The first magnet is placed in a BOBbot shell

attached to a rigid stand; a second shell is then tethered beneath the first by placing the

second magnet inside it. Thus, the second shell falls once its weight exceeds FM0. To

leverage this insight, a cup is tethered to the second shell and BBs are added to the cup

one-by-one until the second shell falls ( Figure 6.2A). The weight of the shell, cup, and

BBs are then measured to obtain a value of FM0 that is precise up to 0.1 g, the weight of a

single BB ( Figure 6.2B). On a log-linear plot of force, our measurements show exponential

decay, which aligns closely with those reported by the magnet manufacturer ( Figure 6.2C).

A power law fit would gives an exponent of−18, which is far off from the−4 from dipole-

dipole interaction, thus indicating an exponential decay as a better representation.

Each BOBbot’s position ~r and orientation ϕ changes at a constant rate subject to noise.

A BOBbot’s constant translational speed v0 comes from the competing driving force FDû

and the translational drag −η~̇r. Similarly, each BOBbot’s constant rotational speed ω0
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Figure 6.2: Calibration experiment for calculating magnet force FM0. (A) The experi-
mental setup for calculating FM0. (B) Measuring the weight of the tethered apparatus once
it falls gives a close approximation of FM0. (C) Left: the magnetic force’s decay with
the separation d between two magnetic beads from the manufacturer for 4.6mm-diameter
beads. Right: our measurement for 6.4mm-diameter beads.

comes from the competing driving torque τD and the rotational drag −ηϕϕ̇. The steady-

state speeds therefore follow v0 = FD/η and ω0 = τD/ηϕ. We again use simple experi-

ments to determine the drive and drag. To measure the translational drag η, we compare

a BOBbot’s trajectory when it is on a 0◦ incline versus a tilted incline. In the former, the

BOBbot circles regularly with some noise; in the latter, this regular circling is stretched

towards the direction of gravity on the incline ( Figure 6.3, top). Using the known gravi-

tational force on the BOBbot, we can calculate the translational drag force and coefficient

η. We then simulate a BOBbot’s motion using different translational drag coefficients; the

one that produces the trajectory most closely matching those in the experiments is chosen

as the simulation η ( Figure 6.3).

The measurement of the rotational drag ηϕ exploits its balance with the driving torque.

To measure the rotational torque exerted on a BOBbot, a very light rigid straw is attached

across the diameter of a BOBbot ( Figure 6.4). We then let the BOBbot use the straw to

push objects at various arm lengths. For a given obstacle to push, the rotational torque is
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Figure 6.3: Calibration experiment for calculating translational drag coefficient η.
When a BOBbot is driven on a level plane, it circles regularly with some noise. When
placed on a tilted incline, its trajectory is stretched towards the direction of gravity on
the incline. Using this known force, we measure the drag force by simulating BOBbot
trajectories on a tilted incline using different drag coefficients, comparing each trajectory’s
stretch to that of the experiment. The correct drag produces a close approximate of the
experimental trajectory. We find that viscosity varies between BOBbots, implying that the
their speeds also vary. The first three trajectories are from a BOBbot with relatively slow
velocity v0; the last is from a fast BOBbot.
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Figure 6.4: Calibration experiment for calculating rotational drag coefficient ηϕ. (A)
The experimental setup and (B) the corresponding force diagram, where fmax denotes the
largest frictional torque that the driving torque τD can balance.

obtained by finding the largest torque of friction on an obstacle to balance. We decrease the

arm length from a large value to a point the BOBbots can just push the obstacle. Given the

measured saturated angular velocity ω0, the rotational drag can be inferred as ηϕ = τD/ω0.

Many of our preliminary experiments were adulterated by boundary effects that caused

small groups of BOBbots to collect at the edges and corners of the arena, affecting steady

state properties. We mitigate these affects using airflow-based boundary repulsion. To char-

acterize these airflow effects, a BOBbot is placed close to the boundary and its trajectory

is tracked with and without airflow ( Figure 6.5). The corresponding simulation parame-

ters are then chosen to match the average characteristics of these experimental trajectories.

The airflow force profile is chosen to match the decay length observed in the example ex-

periment (which is RA = 6R0). The resting speed of the bot used in this experiment is

v0 = 3 cm/s. Note that the decay length chosen in the simulation runs throughout our study

is 2R0 and v0 = 6 cm/s.

Although the noise only causes small deviations in the individual trajectories, the com-

bination of all the forces in the ensemble makes the system behavior very sensitive to initial

conditions. Simulations with the same random seed started from almost exactly the same

initial conditions except for a discrepancy of 0.5 mm of one robot’s initial position deviate

from each other significantly after 1 minute ( Figure 6.6). We therefore regard this system
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Figure 6.5: Boundary airflow effects in experiment and simulation. Here we show
BOBbot trajectories with and without airflow effects.
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as ergodic, yielding reasonable statistical sampling on longer time scales.

a b

0.5 mm

Figure 6.6: Ensemble sensitivity to initial conditions. (A) To measure the ensemble’s
sensitivity to initial conditions, we simulated three runs with the same random seeds and
nearly identical initial conditions, with the exception of a spatial difference of 0.5 mm for
the initial position of one BOBbot, shown in blue, yellow, and red. (B) The x-position
over time of the perturbed BOBbot for different starting positions, where the curve color
corresponds to the starting position in (A). The trials only coincide for roughly the first 30
s, and after one minute they diverge significantly.

Mitigating the effects of the arena’s fixed boundaries in both experiments and simula-

tions presented a significant design challenge. BOBbots can persist along the boundary or

in corners, affecting system dynamics by, for example, enabling aggregates to form where

they would not have otherwise or hindering multiple aggregates from integrating. To ad-

dress these issues, uniform airflow was employed to gently repel BOBbots away from the

boundary and similar effects were implemented in simulation.

Since the interaction strenght typically play a critical role in lattice gas model such as

the SOPS model we will introduce later, we next investigated the degree to which collec-

tives of BOBbots aggregate as a function of their peripheral magnet strength FM0 in both

robotic experiments and DEM simulations. (For convenience, FM0 is normalized by the

gravity of Earth g = 9.81 m/s2 when using the unit of gram.)

The experimental protocol begins with placing magnets of a particular strength FM0

into the BOBbots’ peripheral slots. The BOBbots are positioned and oriented randomly in
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a rectangular arena and are then actuated uniformly for a fixed time during which the BOB-

bots’ positions and the size of the largest connected component are tracked ( Figure 6.7A–

C). These trials are conducted for several FM0 values with repetition. We followed the

same protocol in simulations.
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Figure 6.7: Evolution of BOBbot clusters. (A) Time evolution snapshots of both exper-
iment and (B) simulation for a system of 30 BOBbots with different magnet strengths:
FM0 = 5 g (left) where we observe dispersion, and FM0 = 19 g (right) where we observe
aggregation. Experimental images have been processed with a low-pass filter for better
visual clarity. (C) Time evolutions of the size of the largest component NMC in experiment
and simulation for a system of 30 BOBbots with FM0 = 5 g (magenta) and FM0 = 19 g
(blue).
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6.2 Mapping onto lattice gas

In experiment and DEM simulation, we observe an abrupt, rapid rise and then saturation in

the size NMC of the largest connected component as the magnetic attraction FM0 increases

( Figure 6.8). These curves resemble critical phenomena in lattice gas models [233]. Given

this correspondence, we explored whether the equilibrium SOPS model could be used to

make quantifiable predictions in the robot experiments.

While many systems use interparticle attraction and sterical exclusion to achieve system-

wide aggregation and interparticle repulsion to achieve dispersion, these methods typically

use some long-range sensing and tend to be nonrigorous, lacking formal proofs guarantee-

ing desirable system behavior. To better understand these collective behaviors, the abstract

model of self-organizing particle systems (SOPS) allows us to define a formal distributed
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algorithm and rigorously quantify long-term behavior. Particles in a SOPS exist on the

nodes (or vertices) of a lattice, with at most one particle per node, and move between nodes

along lattice edges. Each particle is anonymous (unlabeled), interacts only with particles

occupying adjacent lattice nodes, and does not have access to any global information such

as a coordinate system or the total number of particles.

In earlier work, Cannon et al. [234] analyzed a distributed SOPS algorithm for ag-

gregation and dispersion under the assumption that the particle system remained simply

connected (i.e., the system forms a single connected cluster with no holes). This SOPS

algorithm defines a finite Markov chain with local moves that connect the state space of all

simply connected configurations of particles. Moves are defined so that each particle, when

activated by its own Poisson clock (i.e., after a delay chosen at random from a Poisson dis-

tribution with constant mean), chooses a random neighboring node and moves there with a

probability that is a function of the number of neighbors in the current and new positions

provided the node is unoccupied and the move satisfies local conditions that guarantee the

configuration stays simply connected. In particular, for configurations σ and τ differing by

the move of a single particle p along a lattice edge, the transition probability is defined as

P (σ, τ) ∝ min(1, λn
′−n), where λ > 0 is a bias parameter that is an input to the algorithm,

n is the number of neighbors of p in σ and n′ is the number of neighbors of p in τ . These

probabilities arise from the celebrated Metropolis–Hastings algorithm [235, 236] and are

defined so that the Markov chain converges to a unique Boltzmann distribution π such that

π(σ) is proportional to λE(σ), where E(σ) is the number of nearest neighbor pairs in σ (i.e.,

those pairs that are adjacent on the lattice).

It was shown in [234] that the connected SOPS ensemble provably aggregates into a

compact conformation when λ > 3.42 and expands to a conformation with nearly max-

imal (linear) perimeter when λ < 2.17 with high probability, i.e., with a probability of

failure that is exponentially small in N , the number of particles. However, despite rigor-

ously achieving both aggregation and dispersion, this distributed algorithm has two notable
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drawbacks that make it infeasible for direct implementation in a physical system of simple

robots: the connectivity requirement that tethers the particles together and the “look ahead”

requirement used to calculate transition probabilities ensuring convergence to the desired

Boltzmann distribution.

To address these issues, we define a modified aggregation and dispersion algorithm

MAGG where particles can disconnect and moves rely only on the current state. Here,

particles occupy nodes of a finite region of the triangular lattice, again moving stochasti-

cally and favoring configurations with more pairs of neighboring particles. Each particle

has its own Poisson clock and, when activated, chooses a random adjacent lattice node.

If that node is unoccupied, the particle moves there with probability λ−n, where n is the

number of current neighbors of the particle, for bias parameter λ > 0. Thus, rather than

biasing particles towards nodes with more neighbors, we instead discourage moves away

from nodes with more neighbors, with larger λ corresponding to a stronger ferromagnetic

attraction between particles ( Figure 6.9A). This new chainMAGG converges to the same

Boltzmann distribution π(σ) ∝ λE(σ) over particle system configurations σ as the original

SOPS algorithm.

By carefully analyzing the stationary distribution ofMAGG, which is just the desired

Boltzmann distribution, we establish conditions that provably yield aggregation when the

particles are confined to a compact region of the triangular lattice ( Figure 6.9B). The proof

uses arguments from [237]; see the Materials and Methods for details.

Let configuration σ be drawn from the stationary distribution ofMAGG on a bounded,

compact region of the triangular lattice, when the number of particles N is sufficiently

large. If λ > 5.66, then with high probability there exist β > 0 and 0 < δ < 1/2 such that

σ will be (β, δ)-aggregated. However, when 0.98 < λ < 1.02, the configuration σ will be

dispersed with high probability.

Varying values of λ in simulation gives strong indication that dispersion persists for

larger values of λ and the aggregation algorithm undergoes a phase transition whereby
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the macroscopic behavior of the system suddenly changes from dispersion to aggregation

( Figure 6.9C–D), mimicking the fixed magnetization ferromagnetic Ising model which

motivated our Markov chain algorithm. Nonetheless, our proofs demonstrate that our sys-

tem has two distinct phases of behavior for different ranges of λ for any system with a

sufficiently large number of interacting particles, which is enough for our purposes. From

Figure 6.9D, we can see the magnetization FM0 plays a role analogous to the bias parameter

λ.

First, we designed a test to examine how force and λ scale. Recall that in the SOPS

algorithm, the force acting on each particle is proportional to λn, where n is the particle’s

current number of neighbors. In the experiments, BOBbots cannot count their neighbors,

but the magnets are expected to provide a similar force that also increases geometrically

when more magnets are engaged.

To estimate the relationship between force and λ, we investigate the rate at which a

BOBbot loses or gains neighbors over a fixed amount of time. Viewing a BOBbot’s com-

pletion of half its circular motion as analogous to a particle moving to a new lattice node in

the SOPS algorithm and using this time interval to evaluate the transition, simulation data

shows that a BOBbot’s transition probability from having a higher number of neighbors n

to a lower number n′ closely follows the algorithm’s P (σ, τ) ∝ min(1, λn
′−n) transition

probabilities ( Figure 6.11A). Further, we evaluated the BOBbots’ effective bias parameter

λeff as a function of FM0 and found an exponential relation λeff = exp(βFM0), where β is a

constant representing inverse temperature ( Figure 6.11B). The BOBbots’ transition prob-

abilities can then be approximated as P (σ, τ) = exp(−β(εn − εn′)), where β is the inverse

temperature of the system and εn = n ·FM0 can be interpreted as the energy contributed by

a BOBbot’s n neighbors.

With the relation between FM0 and λeff established, we next compare the aggregation

behaviors exhibited by the SOPS algorithm and the BOBbot ensembles. Figure 6.11C

shows the fraction of particles/BOBbots in the largest component NMC/N observed in
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Figure 6.9: The theoretical self-organizing particle system (SOPS). (A) A particle moves
away from a node where it has n neighbors with probability λ−n, where λ > 0. Thus,
moves from locations with more neighbors are made with smaller probability than those
with fewer (e.g., in the insets, p1 = λ−3 < p2 = λ−2 < p3 = 1). (B) Time evolution of
a simulated SOPS with 1377 particles for λ = 7.5 showing progressive aggregation. The
bulk of the largest connected component is shown in blue and its periphery is shown in light
blue. (C) Time evolution of NMC , the size of the largest connected component, showing
dispersion for λ = 1.5 and aggregation for λ = 12. The simulations use 400 particles.
(D) Phase change in λ-space for the aggregation metric AGGMC = NMC/(k0PMC

√
N),

where k0 is a scaling constant, PMC is the number of particles on the periphery of the largest
component, and N is the total number of particles. This phase change is qualitatively
invariant to the system’s size.
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both the SOPS algorithm and BOBbot simulations after converting with respect to λeff; the

algorithm does indeed capture the maximum cluster fraction observed in the simulations.

Notably, the aggregated and dispersed regimes in λ-space established by Theorem sec-

tion 6.2 provide a rigorous understanding of these BOBbot collective behaviors. For in-

stance, the proven dispersed regime 0.98 < λ < 1.02 gives a clear explanation for why

agents will not aggregate even in the presence of mutual attraction. Further, it also helps

establish the magnitude of attraction needed to saturate the aggregation.

Periodic boundary condition
Fixed boundary condition

𝟎. 𝟓

Figure 6.10: Approaching PMC ∝ N
1/2
MC with periodic boundary conditions. Scaling

between the largest component’s size NMC and perimeter PMC in number of BOBbots for
simulated systems of 100–400 BOBbots with FM0 = 19 gf using fixed boundary conditions
(blue) and periodic boundary conditions (red). The fixed boundary conditions achieve a
scaling power of 0.66 ± 0.07 while periodic boundary conditions achieve a scaling power
of 0.59± 0.18.

We additionally test the SOPS prediction that the maximum cluster should not only be

large but also compact, occupying a densely packed region. The results from [237] that

we apply here for aggregation suggest the following relationship between the size of the
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Figure 6.11: Algorithmic interpretation of BOBbot clustering. (A) A diagram showing
how the effective bias parameter λeff is evaluated from the DEM simulation. (B) The de-
pendence of λeff on the magnetic attraction force FM0. The (C) maximum cluster fraction
NMC/N and (D) aggregation metric AGGMC for different values of λ in both the SOPS
algorithm (blue) and physical simulations (red). The green and blue shaded regions show
the dispersed and aggregated regimes proved from theory, respectively.

largest component NMC and its perimeter PMC . In dispersed configurations, PMC should

scale linearly with NMC , meaning that most BOBbots lie on the periphery of their compo-

nents. In aggregated configurations, however, PMC should scale as N1/2
MC , approximating

the minimal perimeter for the same number of BOBbots by at most a constant factor. We

test these scaling relationships in simulations with 400 BOBbots ( Figure 6.12A) and find
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that the theory’s predictions hold in the dispersed regime; however, the 0.66± 0.07 sublin-

ear scaling power for the aggregated case is slightly higher than the theory’s prediction of

0.5. This discrepancy may in part be due to boundary and finite-size effects — in fact, DEM

simulations with periodic boundaries show a scaling power of 0.59± 0.18 that is closer to

the SOPS theory ( Figure 6.10) — but is also affected by non-reversibility inherent in the

BOBbots’ circular trajectories. To make a quantitative comparison that captures when com-

ponents are both large and compact, we track AGGMC = NMC/(k0PMC

√
N), where k0 is

a scaling constant defined such thatAGGMC = 1 when the system is optimally aggregated,

achieving the minimum possible perimeter. Physically, AGGMC is reminiscent of surface

tension for which energy minimization leads to a smaller interface (in our setting, smaller

perimeter PMC), yielding an AGGMC closer to 1. We obtain agreement between the SOPS

and DEM simulations with respect to this metric as well ( Figure 6.11D), further validating

the theory’s prediction, though the DEM simulations yield slightly smaller AGGMC than

the SOPS algorithm for large λ.

6.3 Mapping onto continuum model and universality

We noticed the size of the largest component NMC grows roughly proportional to t1/2 over

time ( Figure 6.7C). Since the perimeter of the largest cluster PMC scales proportional to

N0.66
MC ≈ N

2/3
MC ( Figure 6.12A), this implies the length scale grows like t1/3. This is rem-

iniscent of coarsening in a broad class of systems described by Cahn–Hilliard equation

∂u/∂t = ∇2(Φ′(u) − γ∇2u) where order parameter u takes continuous values in (−1, 1)

where −1 and 1 are analogous to empty and occupied nodes in the SOPS lattice, respec-

tively. To bridge the SOPS algorithm with the Cahn–Hilliard equation, we first observe that

the SOPS algorithm with bias parameter λ can be exactly mapped to an Ising model with

fixed magnetization [238, 239] with coupling strength J = 1
2β

log λ, where β is inverse

temperature.

Here we prove that the SOPS algorithm can be mapped to an fixed-magnetization Ising
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Figure 6.12: Perimeter scaling of BOBbot clusters. (A) Log-log plot showing the scaling
relationship between the largest component’s size NMC and perimeter PMC in number of
BOBbots for simulated systems of 400 BOBbots with FM0 = 5 g (magenta) and 19 g
(cyan) for fixed boundary conditions. Each data point is the average of 20 simulations.
While the SOPS predicts a scaling power of 0.5 for the aggregated case (cyan), the data
shows a slightly larger — but still sublinear — power of 0.66 ± 0.07. (B) Final snapshot
of the collective motion of 400 BOBbots with FM0 = 5 g (left) and 19 g (right). BOBbots
shown in black belong to the largest connected component; those outlined in red are on its
periphery.

model with coupling strength J = 1
2β

log λ. For a given SOPS configuration of particles

in a bounded region of the lattice, construct a corresponding Ising lattice gas where the

spin σ of an occupied (resp., unoccupied) node in the SOPS is +1 (resp., −1) in the gas.

The SOPS algorithm has a transition probabilities PSOPS = λ−∆HSOPS , where HSOPS =

−nmove is its Hamiltonian and nmove is the number of neighbors that the moving particle

is leaving. The Ising model has transition probabilities PIsing = exp(−β∆HIsing), where

HIsing = −1
2
J
∑

(i,j) σiσj is its Hamiltonian and σi ∈ {−1,+1} is the spin of site i.
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Let HSOPS be the Hamiltonian of the SOPS algorithm, HIsing be the Hamiltonian of a

fixed-magnetization Ising model, and J be the coupling strength of the Ising model. Then

for any particle move in the SOPS algorithm and the corresponding spin updates in the

Ising model, we have ∆HIsing = 2J∆HSOPS. Consider a particle moving from node

i to node j in the SOPS algorithm and let ni (resp., nj) be the number of neighbors the

particle has at node i (resp., node j). It is easy to see that ∆HSOPS = nj − ni for this move.

To calculate ∆HIsing, observe that the corresponding spin changes in the Ising model are

σi : +1 → −1 and σj : −1 → +1. Let z be the coordination number (i.e., degree) of the

lattice. Consider all sites k adjacent to i and j; we have four cases:

1. k is occupied and adjacent to i, so σiσk : +1→ −1. There are ni such sites.

2. k is occupied and adjacent to j, so σjσk : −1→ +1. There are nj such sites.

3. k 6= j is unoccupied and adjacent to i, so σiσk : −1 → +1. There are z − ni − 1

such sites.

4. k 6= i is unoccupied and adjacent to j, so σjσk : +1 → −1. There are z − nj − 1

such sites.

To calculate ∆HIsing, we simply sum the spin changes of these cases; all other spins remain

the same and thus cancel in the difference. We have:

∆HIsing = −1

2
J((ni − (z − ni − 1)− nj + (z − nj − 1))

− (−ni + (z − ni − 1) + nj − (z − nj − 1)))

= −1

2
J((2ni − 2nj)− (−2ni + 2nj))

= 2J(nj − ni)

= 2J∆HSOPS

This proves the lemma (Joshua Daymude has contributed to the formalism of this proof).
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Figure 6.13: Examples showing ∆HIsing = 2J∆HSOPS. A particle moves to the right with
a decrease of (A) 1, (B) 2, and (C) 0 neighbors, illustrated by the graphs showing the local
configuration before and after the move. The numbers in black between sites i and j are
the value of σiσj . The number of neighbors of the moving particle is shown in white.

Figure 6.13 shows several examples of particle motions and their corresponding changes

to the Ising Hamiltonian to illustrate the relationship established by Lemma section 6.3.

Lemma section 6.3 shows that it is exactly when J = 1
2β

log λ that we achieve PSOPS =

PIsing, which completes the mapping from the SOPS algorithm to the fixed-magnetization

Ising model.

As shown by Penrose [240], the fixed magnetization Ising model with coupling strength

J can be mapped to the surface tension γ of the Cahn–Hilliard equation as γ = βJ . In

particular,
∂u

∂t
= M∇2{f ′(u)− ε∇2u}
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where M = β, ε = J , f(u) = β−1g(u)− 1
2
(z + 1)εu2, g′(u) = arctanh(u), and the prime

denotes d/du. Thus, we obtain:

∂u

∂t
= ∇2{arctanh(u)− (z + 1)βεu− βε∇2u}

which is the standard Cahn–Hilliard equation:

∂u

∂t
= ∇2(Φ′(u)− γ∇2u)

with surface tension γ = βJ and Φ′(u) = arctanh(u) − (z + 1)γu. Here, z is the coordi-

nation number of the lattice: 4 for square and 6 for hexagonal. Along with J = 1
2β

log λ

proved in the previous section, we arrive at the connection between the SOPS algorithm

and the Cahn–Hilliard equation with surface tension γ = 1
2

log λ.

When λ = 1, the Cahn–Hilliard equation has no surface tension as γ = 1
2

log 1 = 0,

Φ′(u) has only one zero, and Φ has only one minimum. As λ increases, the surface energy

γ increases as well. When γ > 1/(z + 1), Φ′ has three zeros and Φ has double wells

( Figure 6.14), yielding a critical λc = e2/7 ≈ 1.33 in the hexagonal lattice and λc = e2/5 ≈

1.49 in the square lattice. The critical value λc ≈ 1.33 for the hexagonal lattice lies within

the λc ∈ (1.02, 5.66) range predicted by the SOPS theory and exhibited by the BOBbot

experiments.

When the surface tension is above the critical point, the characteristic length ` grows as

t1/3 [60]. Growth rate proportional to t1/3 is also seen in motility-induced phase separation

[18] and entangled worms [26]. Figure 6.15 shows how ` grows with time when λ is above

the critical point for square lattice. To deal with the singular behavior of arctanh, linear

extension around ±1 is used [61]. ` uses the first zero of the spatial correlation function

G(r), which is the Fourier transform of the structure factor [60]. Given the area scales as

NMC ∝ P
1/0.66
MC ≈ P

3/2
MC = `3/2 for the aggregated case in N ∼ 100 � ∞, cluster size

grows with time as t1/2.
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Figure 6.14: Critical surface tension γ and bias parameter λ. (A) Homogeneous free
energy Φ for different surface tensions γ. (B) Position of the well for different surface
tensions γ and its corresponding bias parameter λ. The solid gray line shows the value
u∗ = ±

√
15(γ − 1/5) from the Taylor expansion of Φ up until O(u3).

Thus, the SOPS and BOBbot ensemble behaviors map to the Cahn–Hilliard equation

with γ = 1
2

log λ ∝ FM0. This suggests that in the limit, the SOPS and BOBbot aggregation

behavior should display a second-order phase transition at a critical λc corresponding to the

critical surface tension γ in the Cahn–Hilliard equation. The corresponding critical value

λc = e2/7 ≈ 1.33 on the hexagonal lattice lies within the λc ∈ (1.02, 5.66) range proven by

the SOPS theory. Thus, we obtain agreement between the SOPS theory for a finite lattice

system and the Cahn–Hilliard equation for an active matter system at the continuum limit.

This mapping gives further confirmation of the universality (Figure 6.16) of our results and

provides another perspective for “programming” active collectives.

6.4 Control to manipulate the clustering

We have demonstrated that the BOBbot ensembles mimic a lattice model that can prov-

ably aggregate for large enough λ, corresponding physically to highly attractive interaction

that favors large components with small perimeter. We now ask whether we can achieve

rudimentary collective intelligence determining, for example, how robots could tune their
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Figure 6.15: Pattern formation below and above the critical λ. (A) Simulation of the
Cahn–Hilliard equation for λ = 1.4 below the critical point and λ = 2.0 above the critical
point. Both simulations use a 128 × 128 grid and start with a uniform distribution of
u ∼ U [−0.1, 0.1]. (B) Spatial correlation function normalized by the correlation length `.
(C) The increase of ` with time shows a power law with exponent 1/3.
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Figure 6.16: Universality from the clustering of macroscopic active matter to phase
separation of continuum. With the mappings between the dynamics of robots, particles’
motion on lattice, and continuum model, we can consequently show that the surface tension
is proportional to the inter-particle attraction between macroscopic active matter.

responses to enhance or dampen aggregation, thereby achieving a more tightly clustered

or dispersed state. In particular, we explore whether such tuning can help counteract some

ways the system deviates from the theory, such as variations in the BOBbots’ speeds and

magnetic attraction, improving the fidelity to the original algorithm. While the BOBbots

remain unable to count neighbors or estimate the Gibbs probabilities directly as prescribed

by the algorithm, we take advantage of physical effects of the BOBbot ensembles to “pro-

gram” desirable behavior without using any traditional computation.

The first effect relies on observations that for a fixed magnet strength, the size of the

largest component NMC decreases with increasing BOBbot speed v0 ( Figure 6.18). A full

investigation of the behavior of BOBbot collectives at varying uniform speeds will be the

subject of a separate study.

We further observe that NMC scales linearly with z, the average number of neighbors

per BOBbot at equilibrium ( Figure 6.17A, inset). Thus, BOBbot speed v0 is inversely

correlated with the average number of neighbors per BOBbot z. This arises from v0 being
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Figure 6.17: Design and implementation of stress sensing for enhanced aggregation.
(A) The effect of the engineered, adaptive speeds (blue) on the steady-state average num-
ber of neighbors per BOBbot (red) for FM0 = 3 g. Without adapting speeds, BOBbots
actuated at a given speed vi would obtain an average of zi neighbors per BOBbot at equi-
librium (initial point i). With the adaptive speeds, an average of zi neighbors per BOBbot
causes the average speed to slow (i→ 1) which in turn enables convergence to the steady-
state response with more neighbors per BOBbot (1 → 2). This feedback iterates until the
steady-state and engineered responses coincide at final point f = (vf , zf ), where vf < vi
and zf > zi. Inset: The mapping between maximum cluster size NMC and the average
number of neighbors per BOBbot z indicates the stress-sensing control strategy will in-
crease component sizes. (B) A BOBbot equipped with a stress sensor and the schematic
top-view sketch of the triggered and not-triggered states. (C) The BOBbot’s response to
stress. Top: the speed of a BOBbot when its sensor is and is not triggered. Bottom: The rate
of sensor triggering as function of the stress applied. Photo Credit: Ram Avinery, Georgia
Institute of Technology.

a proxy for β−1 in the effective attraction λeff. Consequently, we can mimic enhanced

aggregation via increased magnet strength by reducing a BOBbot’s speed as a function of

its number of neighbors.

Without adapting a BOBbot’s speed based on its number of neighbors, a BOBbot col-
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Figure 6.18: Dependence of maximum cluster size NMC on BOBbot speed v0 and cur-
vature RC . To investigate the effect of the BOBbots’ individual speeds on the size of the
maximum cluster, we run simulations for FM0 = 3, 7, 10 gf with 20 repetitions for 8 speeds
equally spaced in range v0 = 1–8 cm/s. Here we show how the maximum cluster sizeNMC

decreases as the BOBbots’ individual speed is increased. We also find that NMC increases
with larger radii of curvature corresponding to decreased torque. The statistics shows the
ensemble average from 20 simulations for each data point.

lective actuated uniformly at a speed v converges to an average of zstd(v) neighbors per

BOBbot at equilibrium ( Figure 6.17A, red); any point in speed-neighbor space deviating

from zstd(v) is transient. To enhance aggregation, we engineer reduced speeds veng(z) that

a BOBbot with z neighbors should adapt to ( Figure 6.17A, blue). These slowed speeds

allow the collective to reconverge to a new steady-state with a larger number of average

neighbors per BOBbot ( Figure 6.17A, arrows). This feedback between the engineered

speeds veng and the steady-state average number of neighbors zstd iterates until reaching the

fixed point in speed-neighbor space where the steady-state and engineered behaviors meet

as z = zstd(veng(z)).

While adapting speeds based on numbers of neighbors would be relatively straightfor-

ward to implement in more complex robots capable of counting neighbors (e.g., optically

as in [241, 209, 242, 210]), implementing such a scheme in the deliberately simple BOB-

bots is challenging given their lack of such sensing. Here we utilize a second physical

effect: inspired by the correlation of particle density and stress on individual particles in
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granular systems [243], we propose that monitoring local contact stress can function as a

proxy for counting numbers of neighbors. An immediate benefit of such a scheme is that

it can be implemented on the existing robots via custom, low-cost, analog surface stress

sensors (see Figure 6.17B and the Materials and Methods for details). The implemented

stress sensors function such that for sufficiently large stress (e.g., when in a cluster), motor

speed is decreased by 70% ( Figure 6.17C).
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Figure 6.19: Adapting speed via stress sensing enhances aggregation. (A) The distribu-
tion of a BOBbot’s number of contacts over six 10-minute experiments using FM0 = 3 g.
Each sample is an average of number of contacts over 1 second. Inset: Simulation re-
sults using the same conditions as the experiment. (B) A simulation demonstrating en-
hanced aggregation in an ensemble of 400 BOBbots using a weak magnet strength of
FM0 = 7 g. Each BOBbot’s speed decreases from 6 cm/s to 1.2 cm/s as its stress
s0 =

∑
j∈neighbors sj/FM0 ≈ z increases from 0 to 6, where z is its current number of

neighbors. BOBbots in an aggregate’s interior experience the most stress (dark gray) and
thus have the slowest speeds, enabling larger aggregates to form. Without adapting speed in
response to stress, the cluster sizes remain the same magnitude as in the 0 minute snapshot
(left).

We implemented this “physical algorithm” on BOBbot ensembles with weakly attrac-

tive magnets. In experiments with ensembles of 10 BOBbots in a circular arena, adapting
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BOBbot speeds in response to stress sensing significantly increases the average number of

neighbors per BOBbot ( Figure 6.19A). Further, there is a quantitative match in the final

average number of neighbors per BOBbot between the experiments and the fixed points

predicted in Figure 6.17A, validating our control strategy for enhancing aggregation. Sim-

ulations using the same arena and stress-mediated response reproduce the experimental

results ( Figure 6.19A, inset). In simulations of 400 BOBbots with FM0 = 7 g, we ob-

serve that BOBbots with more neighbors experience higher stress and thus have the slower

speeds ( Figure 6.19B). This stress-mediated decrease in speed enables large aggregates

to form that would not have existed otherwise in the weakly attractive regime. The use

of stress sensing opens an interesting avenue for collectives of rudimentary robots to in-

corporate higher-order information without complex vision systems; further, contact stress

provides insights (e.g., closeness to a jamming transition) that could be valuable in densely

packed clusters [9].

6.5 Stochastic non-robot transport

Encouraged by the close connections between the physical system and the underlying the-

oretical model along with the successful control scheme for enhanced aggregation using

stress sensing, we sought to test whether aggregated BOBbots could collectively accom-

plish a task. In particular, could an aggregated BOBbot collective “recognize” the presence

of a non-robot impurity in its environment and cooperatively expel it from the system? Typ-

ically, such collective transport tasks — e.g., the cooperative transport of food by ants [244,

245] — either manifest from an order-disorder transition or rely heavily on conformism be-

tween agents for concerted effort and alignment of forces. With our BOBbot collectives,

we instead aim to accomplish transport via simple mechanics and physical interactions

emergently controlling global behavior without any complex control, communication, or

computation.

By maintaining a high magnetic attraction FM0, we remain in the aggregated regime
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Figure 6.20: Object transport using aggregation. (A) Schematic of the experimental
setup. (B) Time evolution snapshots of box transport by a system of 30 BOBbots with
magnet strength FM0 = 5 g and 19 g. The box has a mass of 60 g. The final panel
shows the object’s complete trajectory, where D denotes the Euclidean distance of the
final displacement. Photo Credit: Ram Avinery, Bahnisikha Dutta, Georgia Institute of
Technology.

where most BOBbots connect physically and can cumulatively push against untethered

impurities (e.g., a box or disk) introduced in the system ( Figure 6.20A). The BOBbot
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FM0 = 19 g

5 g

Figure 6.21: Object transport trajectories. Displacement of the box impurity over time
for BOBbot collectives with FM0 = 5 g (magenta) and 19 g (blue).

collective’s constant stochastic reconfiguration grants it the ability to envelop, grasp, and

dislodge impurities as their individual forces additively overcome the impurities’ friction,

leading to large displacement in the aggregated regime ( Figure 6.20B, right) with a median

displacement of x7.9 cm over 12 minutes. On the contrary, we find that systems with weak

magnetic attraction (i.e., those in the dispersed regime) can typically only achieve small

impurity displacement ( Figure 6.20B, left) with a median displacement of 0.9 cm over 12

minutes (see Figure 6.21 for distributions). We observe infrequent anomalies in which

dispersed collectives achieve larger displacement than aggregated ones, but these outliers

arise from idiosyncrasies of our rudimentary robots (e.g., an aggregated cluster of BOBbots

may continuously rotate in place without coming in contact with an impurity due to the

BOBbots’ individual orientations in the aggregate.

Characterizing the impurity’s transport dynamics as mean-squared displacement over

time 〈r2(τ)〉 = vτα reveals further disparities between the aggregated and dispsered BOB-

bot collectives ( Figure 6.23A). On a log-log plot, the intercept indicates log(v), where v

is the characteristic speed of the impurity’s transport; we observe that in all but one fringe

case the strongly attractive collectives achieve transport that is orders of magnitude faster

than those of the weakly attractive ones ( Figure 6.23B). The slope of each trajectory indi-
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cates the exponent α that characterizes transport as subdiffusive (α < 1), diffusive (α = 1),

or superdiffusive (α > 1). While all the strongly attractive collectives immediately achieve

nearly ballistic transport (with α = 1.85 ± 0.11 for τ < 20 s) indicating rapid onset

of cluster formation and pushing, the weakly attractive collectives initially exhibit mostly

subdiffusive transport (with α = 0.89±0.56 for τ < 20 s) caused by intermittent collisions

from the dispersed BOBbots ( Figure 6.23C). When the slight heterogeneous distribution

of the dispersed BOBbots remains unchanged for a sufficiently long time, the accumula-

tion of displacement in a persistent direction can cause a small drift, leading to ballistic

transport at a longer time scale. These results align with the predictions of a simple model

combining subdiffusive motion with small drift ( Figure 6.22).

To validate this hypothesis, we developed a toy model in MATLAB where the sub-

diffusion rH(t) with mean-squared displacement 〈|rH(t + τ) − rH(t)|2〉t = Ct2H (for

H < 1/2) is generated by the fractional Brownian motion generator (from the MATLAB

Wavelet Toolbox) and is added to a drift motion rD(t) = vDt. The relative magnitude

difference between the subdiffusion and drift is chosen to match the experiments. When

the drift is small (i.e., |vD| = 0.005), we observe two-stage transport dynamics consistent

with the experiments ( Figure 6.22, magenta). On the other hand, when the drift is dom-

inant over the subdiffusion as in the strongly attractive collectives (i.e., |vD| = 0.5), the

toy model reproduces the nearly ballistic trajectories observed in experiment ( Figure 6.22,

blue). In fact, the mean-squared displacement of this composed motion MSD(rH + rD) is
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Figure 6.22: Toy model for object transport. Both trajectories include subdiffusive mo-
tion and drift. The blue curve has large drift while the magenta curve has small drift, rep-
resenting transport by the strongly and weakly attractive BOBbot collectives, respectively.
This model produces a qualitative match with the experiments, demonstrating the origin of
the different types of mean-squared displacement over time in the transport experiments.

related to the purely subdiffusive MSD(rH) as:

MSD(r) = 〈|r(t+ τ)− r(t)|2〉t

= 〈|rH(t+ τ) + rD(t+ τ)− rH(t)− rD(t)|2〉t

= 〈|(rH(t+ τ)− rH(t))− vDt|2〉t

= 〈|(rH(t+ τ)− rH(t))|2〉t + 〈2vD · (rH(t+ τ)− rH(t))〉t + 〈|vD|2t2〉t

= MSD(rH) + 2vD · 〈(rH(t+ τ)− rH(t))〉t + |vD|2t2

= Ct2H + |vD|2t2

where 〈(rH(t + τ) − rH(t))〉t vanishes due to the isotropy of subdiffusion. The final two

equations demonstrate how the subdiffusive power is dominated by the ballistic power 2

when the drift speed |vD| is large.

Nonetheless, the transport speeds achieved by the dispersed collectives are two orders

of magnitude smaller than those of the strongly attractive ones.
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Figure 6.23: Object transport using aggregation. (A) Mean-squared displacement of the
box over time in log-log scale for collectives with FM0 = 5 g (magenta) and 19 g (blue).
(B) Distribution of the average speed, calculated as the final displacement D (as shown in
Fig. Figure 6.20B) divided by total time. Inset: Simulation results for the overall transport
speed. The two peaks for FM0 = 19 g correspond to pushing to the edges and corners. (C)
Distributions of the mean-squared displacement exponent α at short time scale τ < 20 s.

Simulations of impurity transport (see Figure 6.24 for details) reproduce the experimen-

tal results ( Figure 6.23B, inset), including the rare anomalies. Seven of the 100 simulations

of weakly attractive collectives succeeded in transporting the impurity to the arena bound-

ary at slow speeds while 76 of the 100 simulations of strongly attractive collectives did

so ballistically. The remaining 24 simulations of attractive collectives that did not achieve

ballistic transport consistently formed an aggregate that never came into contact with the

impurity. We found that disaggregating established aggregates by introducing time periods

with no attraction enabled them to dissolve and reform for another attempt at transport. Us-

ing different disaggregating sequences, the attractive collectives achieved ballistic transport

in 15–20% more simulations than without disaggregating ( Figure 6.24).

In the additional DEM simulations with intermittent time periods with no attraction in

order to dissolve and disaggregate formed aggregates. Our simulation demonstrates aggre-

gates initially miss the obstacle to transport can find it successfully after disaggregating. All
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three disaggregating sequences we investigated result in more successful transports to the

boundary when compared to the base attractive case without disaggregating. As shown in

Figure 6.24B, the remaining 24 cases out of the 100 where the transport used to be missed

when no disaggregating sequences are applied can be partially remedied by the sequences.
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Figure 6.24: Transport enhanced by disaggregating. (A) Different patterns for mag-
netic strength over time used in simulations. The last three interleave periods of strong
magnetic attraction with periods without any magnetic attraction (disaggregating). (B) The
percentage of simulation runs achieved by weakly attractive collectives (red), strongly at-
tractive collectives (green), and strongly attractive collectives with disaggregating (blue).
The statistics use 100 simulations for each scenario. (C) Comparison of transport time to
the boundary among collectives that are weakly attractive, strongly attractive, and strongly
attractive with disaggregating.

Physically and interestingly, in the Cahn–Hilliard picture, impurity transport can be

interpreted as the expulsion of an obstacle in a continuum mixture with sufficiently high

surface tension to yield phase separation. If the obstacle occupies a position that is later

occupied by the solid phase, the obstacle is expelled due to sterical exclusion; when its po-
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sition is unvisited by the solid phase during the process of coarsening, however, it remains

stagnant, similar to the anomalies for attractive collectives. In this interpretation, disaggre-

gating effectively repeats the coarsening process to that the probability any given position

is unvisited by the solid phase is significantly diminished.

6.6 Conclusions

In this chapter, we use mathematical ideas from distributed computing and statistical physics

to create task-oriented cohesive granular media composed of simple interacting robots

called BOBbots. As predicted by the theory, the BOBbots aggregate compactly with

stronger magnets (corresponding to large bias parameter λ) and disperse with weaker mag-

nets (or small λ). Simulations capturing the physics governing the BOBbots’ motions and

interactions further confirm the predicted phase change with larger numbers of BOBbots.

The collective transport task then demonstrates the utility of the aggregation algorithm.

There are several noteworthy aspects of these findings. First, the theoretical framework

of the underlying SOPS model can be generalized to allow many types of relaxations to its

assumptions, provided its dynamics remain reversible and model a system at thermal equi-

librium. For example, noting that the probability that a robot with n neighbors detaches

may not scale precisely as λ−n as suggested by the Boltzmann weights, we can general-

ize the SOPS model to be more sensitive to small variations in these weights: the proofs

establishing the two distinct phases can be shown to extend to this setting, provided the

probabilities pn of detaching from n neighbors satisfy c1λ
−n ≤ pn ≤ c2λ

−n, for constants

c1, c2 > 0.

The robustness of the local, stochastic algorithms makes the macro-scale behavior of

the collective resistant to many types of idiosyncrasies inherent in the BOBbots, includ-

ing bias in the directions of their movements, the continuous nature of their trajectories,

and nonuniformity in their speeds and magnet strengths. Moreover, our algorithms are in-

herently self-stabilizing due to their memoryless, stateless nature, always converging to a
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desired system configuration — overcoming faults and other perturbations in the system

— without the need for external intervention. In our context, the algorithm will naturally

continue to aggregate, even as some robots may fail or the environment is perturbed.

We find agreement not only between the BOBbot ensembles and the discrete SOPS

model, but also with continuum models of active matter. The SOPS algorithm for aggre-

gation and dispersion was initially defined as a distributed, stochastic implementation of

a fixed magnetization Ising model. In addition to showing that our experimental system

follows guarantees established by the analysis of a discrete model, we also observe that

the growth of its largest component matches the power-law derived for the Cahn–Hilliard

equation, a continuous analog of the Ising model [240]. This mapping provides an intuitive

understanding of how the SOPS bias parameter λ, the physical inter-BOBbot attraction

FM0, and the surface tension γ in the Cahn–Hilliard equation correspond; thus, as γ con-

trols the phase change in the Cahn–Hilliard equation, so do λ and FM0 in their respective

settings. This observation buttresses our confidence that the SOPS model provides a useful

algorithmic framework capable of producing valid statistical guarantees for ensembles of

interacting robots in continuous space.

Moreover, we find that the nonequilibrium dynamics of the BOBbots are largely cap-

tured by the theoretical models that we analyze at thermal equilibrium, which is in agree-

ment with the findings of Stenhammar et al. [246]. For example, in addition to visually

observing the phase change as the magnetic strengths increase, we are able to test precise

predictions about the size and perimeter of the largest connected components based on the

formal definitions of aggregation and dispersion from the SOPS model. We additionally

use simulations to study the transition probability of a BOBbot from having n neighbors to

having n′ neighbors to see if the magnetic interactions conform to the theory, and indeed we

see a geometric relation decrease in the probability of moving as we increase the number

of neighbors, as predicted. The resultant correspondence between the magnetic attraction

and effective bias in the algorithm confirms a quantitative connection between the physical
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world and the abstract algorithm.

In terms of our contribution to active matter, we notice that very few active matter

studies use robots more complicated than bristlebots in flat environments. Our study has

extended this field first by introducing short-ranged attraction and then with active control.

Active matter with active response to the environment could have practicality, such as mit-

igating mergers (subsection 2.3.2) and promoting clusters to perform tasks an individual

cannot do.

In summary, the framework presented here using provable distributed, stochastic algo-

rithms to inspire the design of robust, simple systems of robots with limited computational

capabilities seems quite general. It also allows one to leverage the extensive amount of

work on distributed and stochastic algorithms, and equilibrium models and proofs in guid-

ing the tasks of inherently out of equilibrium robot swarms. Preliminary results show

that we likely can achieve other basic tasks such as alignment, separation (or speciation),

and flocking through a similar principled approach. We note that exploiting physical em-

bodiment with minimal computation seems a critical step in scaling collective behavior

to encompass many cutting edge settings, including micro-sized devices that can be used

in medical applications and cheap, scalable devices for space and terrestrial exploration.

Additionally, we plan to further study the important interplay between equilibrium and

nonequilibrium dynamics to better solidify these connections and to understand which re-

laxations remain in the same universality classes.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTION

7.1 Summary

In this dissertation, we have explored field-mediated interactions in active matter systems

with three examples (chapter 2-chapter 4). In each example, we have observed phenomena

not seen in conventional passive systems and understood some mechanisms with models

constructed from experiment and theory. We have designed further experiments to utilize

the active feature based on these mechanisms.

In Chapter 2, we extended the passive marbles in the mechanical gravity analog of

marbles on a membrane with a differential driven vehicle. With this improvement, one can

create steady-state orbits with more control parameters such as the speed. A mapping from

the classical dynamics of a single vehicle to the motion in a curved spacetime allows one to

design arbitrary spacetime by controlling these parameters. As an example, we show that

one can create Schwarzschild metric by using this mapping. The established mapping has

further allowed us to understand the precession sign of a single-vehicle orbit and helped us

revert the precession sign by changing the vehicle mass. The generalization of the single

vehicle dynamics and the Poisson equation for the elastic membrane allow us to model the

interaction between multiple vehicles. The model is verified by double-vehicle mergers

in experiments and helps design a control scheme which increases the vehicle speed with

the instantaneous tilt angle to help the vehicles avoid mergers. The scheme works for both

the two-vehicle case and the five-vehicle case. Based on the theoretical explanation to the

five-vehicle case, we posit that the scheme will work for even larger systems.

In Chapter 3, we investigated another field-mediated case where the light intensity of

a 2 m by 2 m LED screen represents the food resource for a swarm of cm-scale robots
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which roam and consume the resource. At the same time, the resource also replenishes

itself. The robots move along the resource gradient and consume resource where they

pass through. Besides the drive force created by the gradient following, the cavities made

by the resource consumption create field-mediated mutual repulsion between the robots.

Depending on the density of the swarm and the resource replenishing rate, the swarm form

various of states such as the gas state, the crystalline state, the liquid state, and the glass-like

state. In the extended study of this system, the resource is composed of three components

(R,G,B) at each position and each robot is equipped with 3 bytes of gene, either dominant

or recessive, corresponding to the ability to consume the different resource (R,G,B), The

robots exchange gene and the phenotype is determined by the Mendelian rule. A robot may

die due to the non-fitting phenotype in the wrong type of resource and can be resurrected

by two living robots coming to the rescue. Depending on the spatio-temporal pattern of

the resource, the survival rate of the robots varies. We further find that the survival rate

increases with the diversity of the phenotype.

In Chapter 4, we created a type of three-link shape-changing particle (smarticle) resem-

bling a staple to investigate the role of articulated shape changes in active matter. While an

individual could not move, a collective of smarticles (supersmarticle) confined in a move-

able ring could move diffusively through their interaction with the substrate enabled by

the inter-particle collisions. The ring acts a one-dimensional substrate and mediates the

interactions between the smarticles. Additionally, when one of the individuals becomes

inactive, not only the collective could still move, but as well the broken symmetry could be

utilized to direct the motion. The drift direction and magnitude depend on the ratio between

the inactive smarticle mass and the ring mass. This feature has allowed designing a photo-

taxis supersmarticle by making each smarticle respond to the light. For example, we have

made each smarticle freeze when detecting light and obtained a phototaxis supersmarticle.

In addition to active systems under field-mediated interaction, this thesis also includes

two studies on active matter with fixed or no environmental effect. Nonetheless, in the
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future, it would be curious to extend these two research with field-mediated versions.

In Chapter 5, we created an individual shape-changing active matter (swimmer) con-

strained on a sphere to study how the curvature of the space affects the locomotion of

active matter. The swimmer is composed of four masses that we are able to program their

relative position over time (gait). By prescribing a gait that encloses geometric phase,

the swimmer can locomote on the sphere (a curved smooth substrate) without exchanging

momentum with the substrate by utilizing the geometric phase from the curvature. Addi-

tionally, we have found that in the realistic case with friction and residual potential, the

geometric phase will generate a drive force proportional to it to help the swimmer get out

of the potential well.

In Chapter 6, we studied the clustering dynamics of active matter with short-ranged at-

traction force realized by magnetic attraction. We have observed that the lab-brewed robots

(BOBbots), which circle around individually in free space and attract each other through

loose magnets in the peripheral, cluster as a collective over time. With a larger magnetic

attraction, the final cluster size gets larger. DEM (discrete element method) simulations

with physical parameters directly measurement have matched with the experiments and

showed that the clustering behavior capture is captured the physics by Langevin-type equa-

tions. Based on the simulations, we discovered the dynamics can be mapped to a lattice gas

model (SOPS), which is equivalent to the fixed-magnetization Ising model (FMI). Further,

a bridge between FMI and Cahn-Hilliard model explains the critical strength of magnetic

attraction to allow clustering and the growth rate of the clusters. Due to the algorithmic

nature of lattice gas, this system provides us with a programmable matter, and we later

showed that decreasing the robot speed could generate larger clusters, and the clusters

could be used to clean obstacles in the arena.
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7.2 Future directions

7.2.1 Analog models of field-mediated interaction

1 cm BA

Figure 7.1: Analog Casimir Force from a Self-propelling Vibrating Robot Boat. (A) A
vibrating boat floating on water generates wave that back reacts on the boat. (B) Schlieren
imaging [247] of the wave around the boat. Credits to Steven Tarr.

As we have seen in the introduction (subsection 1.4.3), analog models can help us un-

derstand and explore physical phenomena by thinking about the similarity and differences

between the two models and applying the findings back and forth. For instance, in chap-

ter 2, we have shown that the tool from field theory, differential geometry has helped us

understand the functional role of parameters in field-mediated interaction and guided us

design useful control strategy to revert the orbital dynamics and avoid mergers. Given the

extensive study of classical and quantum fields in the past few centuries, we are optimistic

to see more inspiration be utilized in active matter under field-mediated interaction. For

instance, A Ph.D. student, Steven Tarr from our lab has found that a vibrating boat in a wa-

ter tank (Figure 7.1) can interact with the boundary in a fashion analogous to the Casimir

effect explained by the Quantum Field Theory[53]. Depending on the vibration frequency

of the boat and the initial distance from the boundary, the boat will either get attracted or
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repelled by the boundary. If one could understand how this interaction depends on these

conditions, we would have a control scheme to let an active floating object attract or avoid

boundary.

7.2.2 Using lattice gas to understand living systems

1 cmA B

Figure 7.2: Ants build a pontoon bridge across the water to fetch food. (A) Top view
of ants (Solenopsis invicta) building a pontoon bridge from the rim of a bowl filled with
water to the peanut butter at the center of the bowl. Credit to Haolin Zeng. (B) A lattice
gas algorithm that mimics the ant briding behavior. Credit to Noah Egan.

As we have seen in chapter 6 and other examples ([9, 248]), the lattice gas approach can

be useful in modeling and understanding active matter and living systems. In chapter 6, we

further benefited from the lattice model in that it can convert to continuum theory that helps

us understand the functional role of the system parameters. Besides the Ising model - Cahn

Hilliard equation correspondence we have seen in chapter 6, such tools exist in many other

lattice models such as cellular automata[249]. It will be fruitful to explore more phenomena

using this methodology. We have recently tried to understand ants building pontoon bridges

to fetch food[250] (Figure 7.2A) with a lattice gas model. Having difficulty in equilibrium
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lattice gas (Figure 7.2B), a non-equilibrium model has been found to capture some features

of this process, and we look forward to analyzing it using this methodology.

7.2.3 Mechanical response to stress

In chapter 6, we find that the mechanical response to stress can be useful in controlling

cluster formation. In this work, we have also found that when the robots cluster, they

can clear the obstacles that a single robot cannot. However, in this case, the direction

of obstacle cleaning is not directed. Nonetheless, if we can combine these two features

together, it is possible we can direct the cluster to move an object as desired. To do so,

we plan to apply stress sensors to each individual robot to recognize the obstacle while

they roam around in the arena and then push together once the concerted force is satisfied.

Besides this particular example, we believe the response to stress information would allow

us to perform many more tasks given the rich spatio-temporal patterns one could get in

granular material, which the active agents mimic.

7.2.4 Exploring more ecological systems with artificial active matter

In chapter 3, we have seen how a robotic active matter can help us understand the principle

of an ecological system and provides us with insights into the control of living systems. In

the future, we can continue to use this method to explore more ecological systems, even

including the social dynamics of human society[39, 50]. Given the trend of human society

that individuals are more distributed and can influence society much more than before while

the society still has the power to affect individuals, this understanding might be helpful[251,

252].
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Appendices



APPENDIX A

GR ROBOT

A.1 Probing the effective friction

Although the rolling friction can be complicated and the dissipation into the membrane

could make it even more complicated, we probe the magnitude of an effective friction that

absorbs all dissipative forces by doing the following experiment. We release the marble at

the rim of the circular membrane with zero speed and thus zero kinetic energy. The marble

then rolls radially towards the center, passes through the center, and stops before it reaches

the other end of the diameter due to the effective rolling friction. Absorbing the loss of

mechanical energy into the dissipation from the effective rolling friction froll for a distance

of `, we arrive at

froll` = mg∆h (A.1)

The measurements from experiment that ` = 1.5 m, ∆h = 0.1 m give the effective friction

coefficient µ = froll/mg = ∆h/` = 0.07 ∼ 0.1.

𝐸𝑘 = 0

released

stops

𝐸𝑘 = 0

ℓ

Figure A.1: An experiment to probe the effective friction.
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A.2 Converting derivatives

With the help of q̊ ≡ dq
dλ

= dt
dλ

dq
dt

and α2̊t = E,Φ2r2ϕ̊ = L in Eqs. Equation 2.11,Equation 2.12,

we have

t̊ =
E

α2
(A.2)

˚̊t =
dt

dλ

d̊t

dt

=
E

α2

d

dt
(
E

α2
)

= −E
2(α2)′

(α2)3
ṙ (A.3)

r̊ =
dt

dλ

dr

dt
=
E

α2
ṙ (A.4)

˚̊r =
dt

dλ

d̊r

dt

=
E

α2
· d
dt

(
E

α2
ṙ)

=
E2

(α2)2
·
(
−(α2)′

α2
ṙ2 + r̈

)
(A.5)

ϕ̊ =
dt

dλ

dϕ

dt
=
E

α2
ϕ̇ (A.6)

˚̊ϕ =
dt

dλ

dϕ̊

dt

=
E

α2

d

dt
(
E

α2
ϕ̇)

=
E2

(α2)2
·
(
−(α2)′

α2
ṙϕ̇+ ϕ̈

)
. (A.7)

A.3 Programming the metric

By eliminating the k in Eqs. Equation 2.27,Equation 2.28, we get

MV − V ′ = (α2)′

Φ2
(A.8)

where M(r) = 2(α2)′(r)/α2(r)− (Φ2)′(r)/Φ2(r) and V (r) = v2(r).

We can multiply a function f(r) to both sides of Equation A.8 to make the left hand
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side exact. Noting (fV )′ = f ′V + fV ′, we need f ′/f = −M . Therefore,

f(r) = −e
∫ r
r1
−M(r′)dr′

. (A.9)

With this f , we now have (fV )′ = f (α2)′/Φ2. So,

V (r) =

(∫ r

r1

f(r′) · (α2)′(r′)

Φ2(r′)
dr′
)
· 1

f(r)
. (A.10)

By plugging in the Schwarzschild metric in isotropic coordinates α2(r) = 1−rs/r,Φ2(r) =

(1− rs/r)−1, we have

f(r) = −e
∫ r
r1
− 3rs
r′(r′−rs)

dr′

= −e(C1+3 log (r/(r−rs)))

= −C2 ·
(

r

r − rs

)3

. (A.11)

Therefore,

V (r) =

(∫ r

r1

C2 ·
(

r′

r′ − rs

)3

· (r′ − rs)rs
r′3

dr′

)
/f(r)

=

(∫ r

r1

C2 ·
rs

(r′ − rs)2
dr′
)
/f(r)

= (−C2
rs

r − rs
+ C3)/(−C2 ·

(
r

r − rs

)3

)

= rs
(r − rs)2

r3
+ C

(
r − rs
r

)3

(A.12)

k(r) = −(Φ2)′V − (α2)′

2Φ2

=
(r − rs)rs(r + Cr + rs − Crs)

2r4
. (A.13)

To program the active object physically, we want to prescribe the speed v0 at a certain

radius (say the inner radius r0) so that V (r0) = v2
0 , we need
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C =
v2

0r
3
0

(r0 − rs)3
− rs
r0 − rs

. (A.14)

Further, a reasonable speed vc at a characteristic orbit size (say the circular orbit rc)

will limit the size of the Schwarzschild radius rs (the size of the black hole) with V (rc;rs)
rc

=

k(rc).

A.4 Vehicle dynamics

The dynamics of the vehicle on an incline with slope γ, which is a localized representation

of substrate under the vehicle helps explain the acceleration’s dependence on the heading θ

and local tilting angle γ ( Figure A.2a) in experiments. On the incline, we denote the direc-

tion along the gravity as ‖ and the direction perpendicular to it as⊥ so that the acceleration

from the gravity field is ag⊥ = 0,∼ ag‖ = g sin γ ( Figure A.2b). Considering this incline as

a localized picture of the vehicle’s immediate substrate, here ⊥̂ direction stands for the ϕ̂

and ‖̂ direction stands for the r̂1.

Since the friction on the rolling caster is much smaller than the other friction forces, the

vehicle rotates about the middle point of the wheel axis, M . The torque about M consists

of the frictions on the two wheels and the caster, as well as the gravity component in the

plane. Since the two wheels are connected to a differential drive, the torques generated by

the friction parallel to the wheel fL‖, fR‖ are of same magnitude and opposite signs and

therefore cancelled out. The torques generated by the friction perpendicular to the wheel

are zero since the forces pass through M .

The non-zero torques left with us are the one generated by the gravity component in the

1The model in this section is a joint work with Charles Xiao.
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Figure A.2: Vehicle dynamics of the robotic vehicle. (a) Modelling the dynamics of the
vehicle on a slope with incline angle equalled to its current tilt γ. (b) The magnitude of the
acceleration changes with the heading angle θ and vanishes when going along the gradient
of the incline. (c) The force diagram of the vehicle.

plane and the friction from the caster fc:

τ =
(

∆B î+ Lc ĵ
)
×

mg sin γ(− sin θ î− cos θ ĵ) + L ĵ × fc⊥ î (A.15)

= (mg sin γ (−∆B cos θ + Lc sin θ)− fc⊥L) k̂ (A.16)

where ∆B ≡ 1
2
(B2 −B1).

The moment of inertia of the vehicle with respect to M is I = Ivehicle +m(L2 + ∆B2)

where we approximate Ivehicle = 1
2
mR2

v with Rv being the radius of the vehicle since the
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mass distribution is quite homogeneous. Therefore the magnitude of the angular accelera-

tion (β = τ · k̂/I) and the acceleration of the center of mass is

a =
∣∣∣Lc ĵ + ∆B î

∣∣∣ · β (A.17)

≈ Lc ·
τ · k̂
I

(A.18)

=
mg sin γ(Lc sin θ −∆B cos θ)− fcL

1
2
mR2

v +mL2
c +m∆B2

Lc (A.19)

For the ideal case that the center of mass is not biased to the left or right so thatB1 = B2,

the acceleration is

a =
mgLc sin γ sin θ − fcL

1
2
mR2

v +mL2
c

Lc

=
L2
c

1
2
R2
v + L2

c

g sin γ sin θ − fcL
1
2
mR2

v +mL2
c

(A.20)

When θ = π/2 and fc being very small since this is a rolling friction, the acceleration

projected onto the horizontal plane is

a(θ = π/2) ≈ L2
c

1
2
R2
v + L2

c

g sin γ cos γ (A.21)

The actual numbers in the experiment Rv = 5 cm, Lc ≈ 1 cm give the theoretical

prediction

atheo(θ = π/2) ≈ 0.074 g sin γ cos γ (A.22)

which is quite close to the experimental measurement

aexpt(θ = π/2) = (0.073± 0.001) g sin γ cos γ (A.23)
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Figure A.3: Acceleration at different radii. The shading colored in yellow, red and blue
are the magnitude a, and the azimuthal, radial components aϕ, ar of the acceleration re-
spectively from experiments. The black lines are the theory a = k(r) · sin θ, ar = −a sin θ,
and aϕ = a cos θ where k(r) takes the mean value shown in 4c in the main text.

In reality, there is always a small bias between B1 and B2, this small correction from

the CoM (center of mass) offset that breaks the symmetry of acceleration with respect to

the heading gives the attraction to the circular orbit and will is discussed in Section S3.

This bias is

abias = −g sin γ cos θ
Lc∆B

1
2
R2 + L2

c + ∆B2
(A.24)

where ∆B can be measured by weighing the normal force on the left and right wheels and

given by

∆B =
Lw
2

NR −NL

NR +NL

(A.25)

where NL, NR are the normal forces on the two wheels and Lw = 6 cm. For an imbalance
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of (NR − NL)/(NR + NL) ≈ 20 % thus ∆B ≈ 0.6 cm. Thus, the maximum bias

(θ = 0◦, 90◦) when driving on a typical local slope of γ = 10◦ is abias = 0.074 m/s2, which

is about 40 % of the maximum magnitude of the acceleration in the system. Figure A.4

shows how this bias causes the slight dependence on θ.
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Figure A.4: Plots of k as a function of r for various values of θ using a/ sin θ. The gray
shaded regions refer to regions which are forbidden due to steric exclusion.

A.5 Transient Dynamics of a Vehicle with Slight Chirality

A.5.1 Result

The transient behavior of some trajectories that decay into circular orbits is caused by

the slight asymmetry in the mechanical structure that the center of mass (CoM) deviates

slightly from the center-line. As shown in Section S1, the acceleration magnitude |a| for a

vehicle with slight asymmetry with respect to the heading is given by

|a| = k(r) · (sin θ + ε · cos θ) (A.26)

where ε = −∆B
Lc

increases with the CoM’s deviation from the center-line being ∆B.
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Following the treatment shown in the main text, the polar equation of the trajectory is

r,ϕϕ =
2r2

,ϕ

r
+ r − k̃(r) · (r2 + r2

,ϕ)

−ε · k̃(r) · (r,ϕr +
r3
,ϕ

r
) (A.27)

where k̃ ≡ k/v2.

Let r = rc + ρ where ρ is the perturbation and rc is the radius of the circular orbit that

k(rc) = v2/rc. After discarding the O(ρ2) terms, the differential equation is reduced to

ρ,ϕϕ = −(1 + rck
′
c/kc)ρ− ερ,ϕ (A.28)

where kc ≡ k(rc), k
′
c ≡ k′(rc).

The solution to this damped oscillator gives the solution as

ρ(ϕ) = ρ(0) cos
(√

1 + rck′c/kc − (ε/2)2ϕ
)
e−εϕ/2 (A.29)

with an exponentially decaying envelope with a half-life (2 log 2)/ε that degrades with the

bias; that is, the larger the imperfection is, the faster the trajectory is attracted a circular

orbit.

On the other hand, when the vehicle has an acceleration bias towards the orbit direc-

tion, ε will be negative, then ρ will expand and leads the orbit to either crash to the center

or escape from the membrane. From this example with counterclockwise trajectory, we see

that the orbit is attracted to a circular orbit when ε ∝ (B2 − B1) > 0, that is when the

CoM is biased to the left wheel. The data listed in the previous section shows an estimate

ε ≈ 0.5, indicating a half life of (2 log 2)/0.5 ≈ 3. This qualitatively matches with our ex-

perimental observation of the transient orbits when the vehicle tested on a leveled ground

does not drive sufficiently straight. We posit the quantitative difference may come from the

176



inaccuracy of the ∆B and Lc estimate.

In summary, a counterclockwise (clockwise) orbit will get attracted to a circular orbit

when the CoM is biased to the right (left) while the eccentricity increases to escape or crash

when the CoM is biased to the left (right).

A.5.2 Derivation

We consider a slightly simpler case where the membrane is rather flat that Ψ2 = 1 +

(∂z/∂r)2 ≈ 1. The acceleration components in radial and azimuthal directions are given

by Equation A.30a,Equation A.30b in the main text as

{
rϕ̈+ 2ṙϕ̇ = aϕ = f (A.30a)

r̈ − rϕ̇2 = ar = −f · tan θ (A.30b)

where f = k(r) · (sin θ + ε cos θ) cos θ for a vehicle with bias ε.

The definition of the heading θ gives

tan θ ≡ vϕ
vr

=
rϕ̇

ṙ
. (A.31)

Using ϕ̇ = ṙ tan θ/r, we get the time derivatives of azimuth ϕ as

ϕ̇ =
ṙ tan θ

r
, ϕ̈ =

r̈ tan θ

r
+
ṙθ̇ sec2 θ

r
− ṙ2 tan θ

r2
. (A.32)

Substitute the ϕ̇ and ϕ̈ in (Equation A.30) with (Equation A.32) and eliminate r̈ by

(Equation A.30a)-(Equation A.30b)· tan θ, we have

ṙθ̇ +
ṙ2

r
tan θ = f. (A.33)

177



Consider the radial speed as the velocity’s projection on the radial direction ṙ = v·cos θ,

we arrive at the vector field description:


ṙ = v · cos θ (A.34a)

θ̇ =
f(r, θ)

v · cos θ
− v · sin θ

r
. (A.34b)

Plug in f = k(r) · (sin θ + ε cos θ) cos θ, we have

{
ṙ = v · cos θ (A.35a)

θ̇ = (k/v − v/r) sin θ + (k/v)ε cos θ. (A.35b)

Divide (Equation A.35a) by (Equation A.35b), we have

dr

dθ
=

v · cos θ

(k(r)/v − v/r + (k(r)/v)ε cos θ) · sin θ
. (A.36)

As we want r to be a function of the azimuth ϕ, we convert all θ to ϕ. We use the

definition of heading again tan θ = rϕ̇/ṙ = (rdϕ/dt)/(dr/dt) = rdϕ/dr = r/r,ϕ, sin θ =

r/
√
r2 + r2

,ϕ, and cos θ = r,ϕ/
√
r2 + r2

,ϕ. The left hand side of (Equation A.36) can thus

be converted to

LHS =
dr

dθ
=

1

θr
=

1
d(arctan (r/r,ϕ))

d(r/r,ϕ)
· d(r/r,ϕ)

dr

=
1

[1 + (r/r,ϕ)2]−1 ·
[

1
r,ϕ
− r·r,ϕϕ

r3
,ϕ

] (A.37)

The right hand side can be converted to

RHS =
r,ϕ

(k̃ − 1/r) · r + εk̃r,ϕ
. (A.38)

where k̃(r) ≡ k(r)/v2.

Equate the LHS (Equation A.37) and the RHS (Equation A.38), we finally arrive at

r,ϕϕ =
2r2

,ϕ

r
+ r − k̃(r) · (r2 + r2

,ϕ)− ε · k̃(r) · (r,ϕr +
r3
,ϕ

r
). (A.39)
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A.6 Conserved quantities

The metric ds2 = −α2dt2 + Φ2(Ψ2dr2 + r2dϕ2) gives

−1 = −α2̊t2 + Φ2(Ψ2r̊2 + r2ϕ̊2) (A.40)

where dq/dλ ≡ q̊ and we specify the affine parameter λ to be s. To convert the q̊

to q̇, we use t̊ = E/α2 and ϕ̊ = L/Φ2r2 from Equation 2.11 and Equation 2.12. Using

t̊ = E/α2 again in r̊, we have r̊ = dr/dλ = (dr/dt)(dt/dλ) = ṙ̊t = (E/α2)ṙ. Plug these

into Equation A.40, we have

−1 = −E
2

α2
+ Φ2Ψ2E

2ṙ2

α4
+

L2

Φ2r2
(A.41)

Multiply both sides with −α2/E2 and rearrange the terms, we arrive at

1 =
Φ2

α2
Ψ2ṙ2 +

1

r2

α2

Φ2

L2

E2
+
α2

E2
(A.42)

which leads to Equation 2.40 in the main text.

To show the maximum of ` is obtained at r0, we plug the derived metric into Equa-

tion 2.11,Equation 2.12,

` ≡ L

E
= e−K(r0)/v2

r0 · v (A.43)

The maximum of ` is obtained at r0 that

∂`

∂r0

= e−K(r0)/v2

(
1− r0k(r0)

v2

)
= 0, (A.44)

showing r0 coincides with the circular orbit radius rc such that k(rc) = v2/rc.
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A.7 Generalization from axi-symmetric substrate to general substrate

𝜃
𝒗

𝒂
Ƹ𝑟ො𝜑 𝛾

𝑎𝜑 = 𝑎 cos 𝜃

𝑎𝑟 = −𝑎 sin 𝜃

𝑎 = 𝑘 sin 𝜃

sin 𝜃 = ො𝒓 × ෝ𝒗 ⋅ Ƹ𝑧

ො𝒓 =
∇𝑧

|∇𝑧|

𝑘 = 𝐶𝑔 sin 𝛾
≈ 𝐶𝑔|∇𝑧|

ሷ𝑥 = −𝑎 ሶ𝑦/𝑣

ሷ𝑦 = 𝑎 ሶ𝑥/𝑣

𝑎 = 𝑘 sin 𝜃

sin 𝜃 = ෡𝒅 × ෝ𝒗 ⋅ Ƹ𝑧

෡𝒅 =
∇𝑧

|∇𝑧|

𝑘 = 𝐶𝑔|∇𝑧|

𝒂 ⋅ 𝒗 = 0 𝒂 ⋅ 𝒗 = 0

𝜃

𝒂 ො𝑥
ො𝑦

𝒗

𝒗 = 𝑣 (sin 𝜃 , cos 𝜃)′ 𝒗 = ( ሶ𝑥, ሶ𝑦)′

where where

Axi-symmetric General

Figure A.5: Generalization of the vehicle dynamics on an arbitrary terrain.

We construct the general dynamics by making analogy such that the axi-symmetric case

is a special case of the general case. The analogies can be found in Figure A.5.

If we plug the generalized direction and magnitude into the acceleration components,

we get
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ẍ = −a ẏ
v

(A.45)

= k sin θ
ẏ

v
(A.46)

= k(d̂× v̂) · ẑ ẏ
v

(A.47)

= Cg|∇z|
(
∇z
|∇z|

× v̂
)
· ẑ ẏ

v
(A.48)

= Cg(∇z × v

v
) · ẑ ẏ

v
(A.49)

=
Cg

v2
(z,xẏ − z,yẋ)ẏ (A.50)

= C g ẏ (dxẏ − dyẋ)/v2 (A.51)

Similarly, we have ÿ = −C g ẋ (dxẏ − dyẋ)/v2.

In both cases, the acceleration magnitude vanishes when the velocity us along the radial

(gradient) direction and the acceleration direction is perpendicular to the velocity.

A.8 Membrane Measurement

A.8.1 Membrane constant

To model the membrane deformation, we consider a free circular membrane with radius R

only deformed by its self weight and pressed by a cap in the center with depth D and cap

radius R0 < R. When the load from self weight is uniform, the height of the membrane z

follows

∆Z = λ−1 (A.52)

where λ absorbed the elasticity and the mass density.

Applying the axi-symmetry (∂Z/∂ϕ = 0) and boundary conditionsZ(R) = 0, Z(R0) =

−D for a membrane without a load such as the robotic vehicle, the general solution to a
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membrane deformed by only self weight is

Z(r) =
1

4λ
r2 + C1 log r + C2 (A.53)

where

C1 =
D − 1

4λ
(R2 −R2

0)

log (R/R0)
, (A.54)

C2 =
1

4λ
(R2 logR0 −R2

0 logR)−D logR

log (R/R0)
(A.55)

Figure A.6: Membrane constant measurement. The black lines show the radial profiles
of the free membrane from Poisson equation Equation A.53. The colored lines show the
measurement from experiments.

We measured the cross sections of the membrane with various central depressions D’s

and compare them with solution Equation A.53 for various λ. The value of λ is chosen

such that the solutions match with experiments the best. In our setup, λ is measured to be

6.5 m (Figure A.6).

A.8.2 Membrane isotropy

Ideally, the height of the membrane at a particular radius should be the same for any az-

imuthal angle in terms of the axi-symmetry. To understand how the membrane deviates

from the ideal, the variation of this height is evaluated with the data taken from the Opti-

track cameras for three different central depressions. The variation is found to be smaller
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than 5% of the central depression.

(a)

(b)

Figure A.7: Shapes of the membrane with different central depressions. (a) The per-
spective views of the membrane profile measured from the optical tracking system. (b) The
red curves show the heights averaged over the azimuthal angles.

A.8.3 Analytic solution to the membrane

As shown in the previous section, the deformation of the membrane by its self weight can

be well characterized by ∆Z = λ−1. To model the additional load from the vehicles besides

the weight of the membrane itself, we evaluate the area density of vehicle and scaled it by

that of the membrane so that ∆Z = λ−1(1 + P̃ ) with P̃ = σv/σ where σv and σ are

the density of the vehicle (≈ 20, 000 g/m2) and the membrane (137 g/m2) respectively.

For simplicity, we assume the load is a uniform distribution on a disc centered at the ith

vehicle’s position ri and with the radius of the vehicle Rv so that σv,i = mi
πR2

v
1(r ∈ Ωi) and

σv =
∑

i σv,i where Ωi = {r : |r− ri| < Rv}.

To solve the Poisson equation, we integrate the Green functionG(r, s) of Poisson equa-
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tion with the source.

λZ(r) =

∫
G(r, s)(1 + P̃ (s))ds2 (A.56)

=

∫
G(r, s)ds2 +

1

σ

∑
i

∫
Ωi

G(r, s)σv,i(s)ds
2 (A.57)

≡ I1 + I2 (A.58)

where the Green function on a disc with radius R is

G(r, s) =
1

2π
log |r− s|

− 1

2π
log

(
|s|
R
·
∣∣∣∣r−R2 s

|s|2

∣∣∣∣) (A.59)

G(r,0) =
1

2π
log |r| − 1

2π
logR (A.60)

Let us consider a field point that is not covered by the vehicles r /∈ ∪iΩi. I1 is the solu-

tion to the case with uniform load that I1 = 1
4
(|r|2 − R2). For I2, the source is effectively

a point source since the field point is outside the source, so

I2 =
1

σ

∑
i

∫
Ωi

G(r, s)
mi

πR2
v

πR2
vδ(s− ri)ds

2 (A.61)

=
1

σ

∑
i

miG(r, ri) (A.62)

Up till so far, we have solved the shape of the membrane Z(r). Next, we evaluate the

height of the ith vehicle. Since the vehicle is not a point object, we average the membrane

height Z on the rim of the vehicle to approximate the height of the vehicle zi.

zi = 〈Z〉∂Ωi (A.63)

λzi = 〈I1 + I2〉 = 〈I1〉+ 〈I2〉 (A.64)

〈I1〉 is contributed by the self weight of the entire membrane so that we approximate it
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by just the value at the center of the vehicle ri: 〈I1〉 = 1
4
(|ri|2 −R2).

For 〈I2〉, there are two different types of contributions. The first ones are the patches of

domain from the vehicles other than the ith vehicle, the one of concern that contribute as

far field. The second type is the contribution from the load of vehicle i itself.

For the first type, we still use the point source approximation:

〈I2,j 6=i〉 =
mj

σ
G(ri, rj) (A.65)

For the second type:

〈I2,i〉 =
mi

σ
〈G(r, ri)〉r∈Ωi (A.66)

=
mi

2πσ

(
〈log |r− ri|〉 −

〈
log

(
|ri|
R
·
∣∣∣∣r−R2 ri

|ri|2

∣∣∣∣)〉)
=

mi

2πσ

(
logRv − log

(
|ri|
R
·
∣∣∣∣ri −R2 ri

|ri|2

∣∣∣∣))
=

mi

2πσ
log

(
RvR

R2 − |ri|2

)
(A.67)

Piecing all these terms together, we arrive at the z position of the ith vehicle is

2πλzi =
π

2
(|ri|2 −R2) +

mi

σ
log

(
RvR

R2 − |ri|2

)
+

1

σ

∑
j 6=i

mj

(
log
|ri − rj|
|ri − r′j|

− log
|rj|
R

)
(A.68)

where r′ = (R/|r|)2r is conventionally regarded as the position of the image charge.

rj’s are the positions of the other vehicles.

Despite the fact that some approximations are made, the analytical solution matches

with the numerical result (FEM) with a relative error smaller than 10−3 (Figure A.8).
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𝑧 𝑡
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𝑧 𝐹

𝐸
𝑀
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𝑀
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Figure A.8: Numerical verification of the analytical solution. We show a test with the
blue vehicle put at different y positions while the x position is fixed (0.2 m). The solid
blue line shows the membrane shape and the dotted line shows the vertical position of the
vehicle z when placed at different positions. The bottom panel shows the relative error of
z between the analytical (Equation A.68) and numerical (FEM) solution.
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A.9 Dynamics of two vehicles with the same mass

Figure A.9: Dynamics of two vehicles with the same mass (a) Trajectories of vehicles
with the same mass started at different initial conditions. (b) The relative distance of the
two vehicles in (a).
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APPENDIX B

SMARTICLE

B.1 Geometric Mechanics of the crawler

𝐷

𝐷0

𝑊
0

𝐿

The contact closer 
to P is fixed

A

B

C

III

IVIII

Figure B.1: Basic information of a smarticle crawler. (A) The dimensions of a smarticle
crawler. (B) A crawler with the arm angled in quadrant III of the shape space. (C) The
local connection measured from simulation.

Here we show a minimal model for the connection field of a smarticle crawler. In this

model, we assume the tip closer to the projection of the center of mass (CoM) of the crawler

always freezes given that this tip has a larger normal force and thus a larger maximum static

friction. For instance, Figure B.1, in tip A and B, A is closer to P, the projection of the CoM,

M since AP < BP . At this moment, we assume the A will be fixed and only B will slide

as θ1 and θ2 change according to the gait.
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If we denote AP = Ξ, we have

Ξ(θ1, θ2) =
D2 + 2L2 + L(3D cos θ1 +D cos θ2 + 2L cos (θ1 + θ2))

2
√
D2 + 2L2 + 2L(D cos θ1 +D cos θ2 + L cos (θ1 + θ2))

(B.1)

An approximate Ξ to the first order gives us

dΞ =
∂Ξ

∂θ1

dθ1 +
∂Ξ

∂θ2

dθ2. (B.2)

Geometric mechanics assumes linear relation between the velocity in shape space (θ1, θ2)

and real space (ξx). This gives

ξx =
dΞ

dt
≡ a1θ̇1 + a2θ̇2. (B.3)

By comparing Equation B.2 and Equation B.3, we have

a1 =
∂Ξ

∂θ1

, a2 =
∂Ξ

∂θ2

. (B.4)

Γ+

Γ− 𝐿 = 5 𝑐𝑚
𝒂+

𝒂−𝒂0

Local connection

𝜃
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-1

-1 0
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Motor speed (rad/s)
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GM surface integral

A B C
simulation

theory
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Figure B.2: Connection field in quadrant III. (A) Simulation and theory connection are
shown in orange and blue arrows in quadrant III. The black lines are the boundary of a red
slit gait. (B) The curl of the connection field (curvature) for the entire shape space. (C) The
crawling speed from simulation (blue) deviates from the geometric approximation (red) as
the motor speed gets higher and the system gets less and less kinetic where the GM works.
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Figure B.2A shows the result by Equation B.4 with orange arrows are close to the blue

arrows from numerical simulations. In these simulations, to get the connection at (θ1, θ2),

the smarticle starts from a point in the close neighborhood of (θ1, θ2) and ends at (θ1, θ2).

There is no dependence on the neighborhood point one choose as we expect.

Now that we have the connection field in quadrant III, we wonder if the efficient gait

enclosing the most sufficient part of the shape space would produce a crawling as we ex-

pect. If we consider a gait around the diagonal slit Γ+ ∪ Γ− and denote the corresponding

connection field as a+ and a−, we have

a+ ≡ lim
ε→0

a(θ0, θ0 + ε) (B.5)

=

LD sin θ0+L2 sin θ0 cos θ0
D+2L cos θ0

L2 sin θ0 cos θ0
D+2L cos θ0

 (B.6)

a− ≡ lim
ε→0

a(θ0, θ0 − ε) (B.7)

=

 L2 sin θ0 cos θ0
D+2L cos θ0

LD sin θ0+L2 sin θ0 cos θ0
D+2L cos θ0

 (B.8)

The crawling along this gait (counterclockwise) per cycle is therefore

Sred slit =

∫
Γ+

a+ · dθ +

∫
Γ−

a− · dθ (B.9)

= 2

∫ 0

−π/2
a+ · (dθ0, dθ0) (B.10)

= 2

∫ 0

−π/2

LD sin θ0 + 2L2 sin θ0 cos θ0

D + 2L cos θ0

dθ0 (B.11)

= −2L (B.12)

This matches our intuition that a gait fully expanding the two arms with length L pro-

duces a crawling of 2L.
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Now, let us consider another two important slits of the connection field in quadrants II

and IV.

A is fixed

Local connection

simulation
theory

𝜃
2

0

-1

0 1
𝜃1

A B

IV

Figure B.3: Connection field in quadrant IV. (A) simulation and theory connection in
quadrant IV. (B) A typical snapshot of the crawler in quadrant IV.

Using the same treatment as quadrant III. As shown in Figure B.3B, now the fixed tip

is the lower left corner of the body segment A. The motion in x direction is denoted as

AP = ξ where

Ξ(θ1, θ2) =
D0D +D2

0 +W 2
0 + 2D0L cos θ2 − 2W0L sin θ2

2
√

(D +D0)2 + 4L2 +W 2
0 + 4(D +D0)L cos θ2 − 4W0L sin θ2

(B.13)

Therefore, the connection field is

a1 = 0, a2 =
∂Ξ

∂θ2

. (B.14)

We can see the match between the theoretical and the simulation values in Figure B.3A.

Finally, let us see if we understand the boundary between these domains.

The boundary between the ‘two hands up’ domain in quadrant I and ‘one arm touching
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1
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Local connection

Figure B.4: The boundary of the domains are set by the different contact modes.

the ground’ is given by the angle δ as shown in the upper-right inset of Figure B.4.

δ = arcsin (W0/2L). (B.15)

The boundary between the ‘one arm touching the ground’ and ‘belly off the ground’ is

given by the geometric constraint

0 = F (θ1, θ2) = DW0 + L(W0(cos θ1 + cos θ2)

+ (−D +D0) sin θ1 − (D +D0) sin θ2 − 2L sin (θ1 + θ2)). (B.16)
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A linear approximation of these two boundaries can be computed as

k1 =
dθ2

θ1

|(θ1,θ2)=(−δ,δ) (B.17)

= −∂F/∂θ1

∂F/∂θ2

|(−δ,−δ) (B.18)

=
1

2
(B.19)

k2 = 1/k1. (B.20)

In Figure B.4, we can see this approximation (black line) captures the simulation result

reasonably well.
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APPENDIX C

SWIMMER

C.1 Numerical integration

To obtain the equation for numerical integration, we plug the angular momentum Equa-

tion 5.6 into the equation of motion Equation 5.13, so

−τCsgn(φ̇)− τgφ =
dL

dt
(C.1)

=
dI

dt
φ̇+ Iφ̈+ α̈ (C.2)

=
∂I

∂θv
θ̇vφ̇+ Iφ̈+ α̈ (C.3)

Plugging in the I(θv(t)) in Equation 5.7 and the α in Equation 5.8, we finally arrive at

φ̈ = I(θv)
−1
(

2mvR
2 sin (2θv) θ̇vφ̇− 2mhR

2θ̈h − τCsgn(φ̇)− τgθ
)

(C.4)

The numerical simulation integrates Equation C.4. The initial position φ(0) = 0

such that the swimmer starts from the bottom of the slight potential well from the resid-

ual gravity. The initial angular velocity φ̇ is chosen that the initial angular momentum

L(0) = I(0)φ̇(0) + α̇(0) is zero.

The motor positions θv(t) and θh(t) use the commanded signal sent to the motor (see

S1). The sign function in the Coulomb friction is smoothed by the arctan function with

characteristic angular speed 0.01 rad/s � the typical speed of the swimmer to avoid the

numerical singularity. There are two motors on the horizontal track and two motors on the

vertical track. The mass of each motor is 0.116 kg = mv = mh. The radius of the swimmer

is R = 0.46 m. The mass the track is mtrack = 0.388 kg.
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For the convenience of implementing the same gait as the commanded shape change

sent to the motors, which are discrete signals requiring interpolation in the differential

equations to be integrated, we use a numerical scheme with fixed steps (forward Euler) so

that the interpolation of the input signal is time-economic. The test of convergence with

step size h shows a global (i.e. position φ) error of O(h) (and therefore local error of

O(h2)) as expected for a first-order scheme. We use the step size h = 3.1 × 10−4 s such

that the relative error is 1.8 %.

ℎ = 3.1 × 10−4 s

6.1 × 10−4 s

a b

−1

Figure C.1: Numerical convergence check. (a) Numerical integration of a swimmer
driven by a square swimming gait and subjected to a friction of τC = 8.6 × 10−3 kg
m2s−2 and residual gravity τg = 4.0 × 10−4 kg m2s−2 with step sizes h = 3.1 × 10−4 s
and 6.1 × 10−4 s. The inset shows a close-up at around 650 s. (b) The relative error from
numerical integration improves with the decrease of step size h. The improvement largely
follows a trend of O(h), which can be seen by a comparison with the black line that has
a power of −1. Here the relative error is defined as the average of |φnum − φtruth|/|φnum|
where we use h = 7.7 × 10−5 s to approximate φtruth. The step size we use in this study,
h = 3.1× 10−4, is shown in a solid purple dot.
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S. Ly, J. Garcia-Ojalvo, and G. M. Süel, “Metabolic co-dependence gives rise to

211



collective oscillations within biofilms,” Nature, vol. 523, no. 7562, pp. 550–554,
2015.

[199] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: A review
from the swarm engineering perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1–
41, 2013.

[200] L. Bayindir, “A review of swarm robotics tasks,” Neurocomputing, vol. 172, pp. 292–
321, 2016.

[201] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of swarm
robotics,” Science Robotics, vol. 5, no. 49, eabe4385, 2020.

[202] K. Elamvazhuthi and S. Berman, “Mean-field models in swarm robotics: A survey,”
Bioinspiration & Biomimetics, vol. 15, no. 1, p. 015 001, 2019.

[203] P. Flocchini, G. Prencipe, and N. Santoro, Eds., Distributed Computing by Mobile
Entities. Switzerland: Springer International Publishing, 2019.

[204] G. Notomista, S. Mayya, A. Mazumdar, S. Hutchinson, and M. Egerstedt, “A study
of a class of vibration-driven robots: Modeling, analysis, control and design of the
brushbot,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2019, pp. 5101–5106.

[205] H. Hamann, Swarm Robotics: A Formal Approach. Springer, 2018.

[206] L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft actuators for small-scale
robotics,” Advanced Materials, vol. 29, no. 13, p. 1 603 483, 2017.

[207] H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, and Q. He, “Recon-
figurable magnetic microrobot swarm: Multimode transformation, locomotion, and
manipulation,” Science Robotics, vol. 4, no. 28, eaav8006, 2019.

[208] D. H. Wolpert, “The stochastic thermodynamics of computation,” Journal of Physics
A: Mathematical and Theoretical, vol. 52, no. 19, p. 193 001, 2019.

[209] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a
thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, 2014.

[210] B. Piranda and J. Bourgeois, “Designing a quasi-spherical module for a huge mod-
ular robot to create programmable matter,” Autonomous Robots, vol. 42, no. 8,
pp. 1619–1633, 2018.

[211] N. Fatès and N. Vlassopoulos, “A robust aggregation method for quasi-blind robots
in an active environment,” in ICSI 2011, 2011.

212



[212] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized aggregation
without computation,” International Journal of Robotics Research, vol. 33, no. 8,
pp. 1145–1161, 2014.
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