
DEVELOPING AN ANTICIPATORY CONTROLLER TO IMPROVE
PERFORMANCE OF A SNAKE-LIKE ROBOT IN UNSTRUCTURED TERRAIN

A Thesis
Presented to

The Academic Faculty

By

Ian Tomkinson

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology

December 2018

Copyright © Ian Tomkinson 2018

DEVELOPING AN ANTICIPATORY CONTROLLER TO IMPROVE
PERFORMANCE OF A SNAKE-LIKE ROBOT IN UNSTRUCTURED TERRAIN

Approved by:

Dr. Daniel I Goldman, Advisor
School of Physics
Georgia Institute of Technology

Dr. Frank Hammond
School of Mechanical Engineering
Georgia Institute of Technology

Dr. David Hu
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: December 7, 2018

Belief can mean the difference between a fear of failure and the courage to try. On a team

or in a family, belief makes each individual stronger and also fortifies the group as a

whole.

Coach K

To my family

ACKNOWLEDGEMENTS

I want to thank the members of the Complex Rheology and Biomechanics Lab at Geor-

gia Tech and the Biorobotics Lab at Carnegie Mellon for making this work possible. On

the CMU side, thanks to Dr. Howie Choset for collaborating with our group, and a special

thanks to Guillaume Sartoretti for assisting with the development of the control scheme. I’d

like to thank Dr. Dan Goldman for advising and supporting me during my studies, as well

as Dr. Hammond and Dr. Hu for serving on the committee. Thanks to Dr. Jennifer Rieser

for extensive mentorship and guidance with designing the experiments, assisting to analyze

the Optitrack data, and offering insights into the results through her work in simulation. I’d

also like to think Yasemin and Enes Aydin for their help with technical challenges devel-

oping the gantry system, as well as Zachary Goddard for his extensive contributions to

the gantry development. Thanks to Ross, Xiaobin, and Zachary for assisting me learn the

ropes during my first summer in the lab. Finally, a very special thanks to Jonathan Gosyne,

Kehinde Aina, Seth Daly, Mason Murray-Cooper, Daniel Soto, and Christian Hubicki for

making the CRAB lab an exciting and fun place to work through engaging discussions

about everything ranging from advanced control theory to Survivor strategy.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Figures . x

Chapter 1: Introduction . 1

1.1 Robots in Unstructured Environments . 1

1.2 Drawing Inspiration from Biology . 2

1.3 Robophysics . 3

1.4 Objective . 4

I Automated Gantry System 6

Chapter 2: Gantry System Overview and Mechanical Design 7

2.1 Gantry Motivation . 8

2.2 Gantry Overview . 9

2.3 Experimental Overview . 9

2.4 Objectives . 10

2.5 Design Parameters . 10

2.5.1 Safety . 11

2.5.2 Robustness . 15

2.5.3 Ease of Use and Cost . 18

vi

Chapter 3: Gantry Software Overview . 19

3.1 Software Overview . 19

3.2 Main C++ windows executable file . 20

3.3 Optitrack Camera System . 21

3.3.1 Optitrack Camera Hardware . 22

3.3.2 Optitrack Camera Software . 24

3.4 Arduino Gantry Control . 28

3.4.1 Arduino Program Overview . 29

Chapter 4: Gantry Electronics . 31

4.1 Microcontroller Selection . 32

4.2 Sensors . 33

4.2.1 Limit Switches . 33

4.2.2 Photoelectric Resistors . 35

4.3 Actuation . 36

4.3.1 Stepper Motors . 36

4.3.2 Servo Motor and Electromagnets 38

4.3.3 Frigelli Motor . 40

Chapter 5: Gantry Results . 42

II Snake Robot Anticipatory Controller 44

Chapter 6: Controller Introduction . 45

6.1 Motivation . 46

vii

6.2 Previous Snake Robot Control Systems . 46

6.3 Our Approach - Anticipatory Control . 47

Chapter 7: Snake Robot Overview . 49

7.1 Hardware . 49

7.1.1 Gantry Interface . 50

7.1.2 Tail Module . 52

7.1.3 Contact Sensing Circuit . 53

7.2 Software . 54

7.2.1 Actuation . 55

7.2.2 Sensing . 56

7.3 Serpenoid Curve . 57

7.4 Modeling Robot Obstacle Interactions . 59

7.4.1 Straight Line Testing . 59

7.4.2 Sampling Initial Conditions . 61

Chapter 8: Controller Development . 62

8.1 Controller Overview . 62

8.2 Controller Implementation . 63

8.2.1 Predicting Steering Magnitude . 63

8.2.2 Steering Implementation: Amplitude Modulation Method 65

8.2.3 Steering Implementation: AMM steering testing 65

8.2.4 Predicting Scattering Direction . 68

8.2.5 Steering Direction Implementation 70

viii

8.3 Controller Summary . 71

8.4 Anticipatory Controller within the Shape-based framework 73

Chapter 9: Results . 76

9.1 Single Post Results . 77

9.1.1 Open Loop Results: Predicting Scattering Direction 79

9.1.2 Controller Results . 81

9.2 Multiple Post Results . 83

9.3 Discussion and Analysis . 85

9.3.1 Single Post Controller Limitations 85

9.3.2 Multiple Post Controller Limitation 86

9.3.3 Robot Limitations . 87

Chapter 10: Improving the Controller . 91

10.1 Modified Single Post Controller . 91

10.2 Modified Multiple Post Controller . 93

10.2.1 Reducing robot body effects . 93

10.2.2 Addressing Multiple Collision Experiments 96

10.3 Conclusions and Future work . 98

Appendix A: Supplemental Figures . 105

References . 110

ix

LIST OF FIGURES

1.1 Comparison of a biological snake and our robophysical model. The left-
hand figure shows a living snake moving through an unstructured environ-
ment, and the righthand figure shows our attempt to capture aspects of this
behavior in a controlled laboratory environment. 2

1.2 Examples of automated systems in the CRAB lab which use Robophysics
to model interactions between a range of different robots and environments.
Images courtesy of the CRAB lab. 3

2.1 Overview of the gantry system. The key components (cameras, gantry arm,
electromagnetic gripper, posts, and contact sensing) are highlighted. 7

2.2 Summary of the key design criteria for the gantry system, and how they are
taken into account by the design. 11

2.3 We mounted this 1080p HD Logitech webcam above the gantry system
in order to stream experiments to Twitch, as well as record HD video of
important experiments. 12

2.4 Four limit switches are mounted at the ends of the X and Z support rails.
These switches turn off the X and Z actuation once the gantry has reached
the edge of its desired range of motion by triggering a GPIO pin on the
Arduino Mega. This prevents damage to the Stepper motors which control
the gantry X and Z position. 13

2.5 This simple photoresistor circuit determines the proximity of the electro-
magnet to the magnetic plate on the snake. A threshold value is determined
for what constitutes successful contact, allowing the program to exit in the
case of poor contact with the snake. 14

2.6 This power rail allows for easy access to the power supplies of all of the
gantry components in case of emergencies. 15

x

2.7 Cable carrying drag chains were installed on the X and Z rails of the gantry
in in order to protect the wires from moving parts. 3D printed brackets
support the chain as it moves in the positive and negative direction, allowing
the chain to fold back on itself as the gantry moves. 16

3.1 Overview of the three main components which are interfaced through the
software. The Main C++ file is written as a Windows executable file, and
interfaces with the AX-12A Dynamixel motors, the Arduino Mega, and the
Optitrack camera system. Each of these components is broken down further
in this section. 19

3.2 High level overview of the primary project code written with C++. 20

3.3 One of the six Optitrack cameras mounted around the gantry system. The
cameras were mounted so that the snake and gantry could be viewed from
a variety of angles, while trying to minimize having the camera’s view ob-
structed by the gantry arm. 22

3.4 An illustration of how the Motive software is used in our setup. The large
red rigid body represents the gantry, the five large orange markers are the
posts, the green and purple rigid bodies are the magnetic plates on the
snake, and the remainder of the orange markers are the segments of the
snake. 24

3.5 Frequently used functions called from the Motive API. 26

3.6 The Arduino IDE was used to interface with the microcontroller and de-
velop low level functionality for sub-components of the gantry system.
Commands are given to the program via serial interrupts, and any of the
gantry subcomponents can be directly controlled through the Arduino Se-
rial Monitor. 28

3.7 Overview of the structure of the arduino program. 29

4.1 Commonly used commands for controlling the gantry system. Commands
are triggered by writing the appropriate key word into the serial monitor,
or by sending the commands from the main C++ file to the Arduino using
UART communication. 31

4.2 An Arduino Mega was selected as our microcontroller based on its low
cost, high usability, and large number of available pins. 32

xi

4.3 The limit switches are crucial to the safety of the gantry system. The height
of the Y-axis limit switch (shown) is important to ensuring good contact
between the magnetic plates and electromagnets. 34

4.4 This simple photoresistor circuit determines the proximity of the electro-
magnet to the magnetic plate on the snake. A threshold value is determined
for what constitutes successful contact, allowing the program to exit in the
case of poor contact with the snake. 35

4.5 An overview of the stepper, motor driver, and Arduino circuit for X and Z
axis actuation. 37

4.6 An example of how the Nema 23 is implemented in the gantry system to
drive X axis locomotion. 38

4.7 Electromagnetic gripper at the end of the extendable gantry arm. The elec-
tromagnets are encased in the two blue 3D printed cases and the servo mo-
tor rotates the entire gantry arm by the angle shown in blue. An inset photo
of the snake is included to highlight the interface between the electromag-
nets of the gantry and the magnetic plates on the snake. 39

4.8 A Frigelli linear actuator is used to raise and lower the vertical gantry arm
to pick up the snake robot. 40

6.1 Snake robots in unstructured environments of varying levels of complex-
ity. Images A and C courtesy of the Biorobotics lab at Carnegie Mellon
University. 45

7.1 Early rendering of an overhead view of the snake robot setup in a typical
multipost setup (courtesy of Zachary Goddard). All posts have a radius of
2.3 cm and the spacing between posts is 6.9 cm. 49

7.2 This figure highlights two crucial modifications to the snake robot: the
magnetic plate bracket used to pick up the robot with the gantry and the
contact sensing circuit used to measure contact location and duration be-
tween the robot and the posts. 51

7.3 CAD design of the snake tail, used to prevent snake wires from dragging
behind the snake. 52

xii

7.4 The MPR121 from Adafruit provides an easy way to integrate capacitive
sensing onto the head of the robot. This figure from the Adafruit website
illustrates how the board is interfaced with an Arduino Uno and a capac-
itive touch sensor to show how the board should be wired, and the actual
implementation is shown in Fig. 7.2 . 54

7.5 A USB2Dynamixel by Robotis was used to command the AX-12A motors
from a desktop computer. Image from the Robotis documentation. 55

7.6 This figure shows how data is transferred from the contact sensing circuit
on the head of the robot to the Arduino Mini, to the Arduino Mega, and
finally to the computer. 56

7.7 The angle of each segment, ζN(t)), is defined according to the serpenoid
equation, where the angle is defined from the center position. The lefthand
figure (from Robotis documentation) shows the relationship between the
physical angle and the analog input value for the AX-12A motors, and the
righthand figure (from [2]) shows these angles defined along the body of
the snake robot. 57

7.8 Straight line experiments were run off to the side of the posts to verify that
the open loop controller resulted in a straight line trajectory of the center of
mass of the robot. 59

7.9 Definition of the important parameters to our model of the robot-obstacle
interaction. The lefthand figure shows the head contact angle φ between the
post and the head of the robot, and righthand figure (courtesy of Jennifer
Rieser) shows the scattering angle θ determined from the head trajectory
of the robot. 60

8.1 Overview of the anticipatory controller. Interactions between the robot and
the post are studied in simulation and experiment. A linear correlation be-
tween scattering angle and head contact duration is used to determine the
amplitude change required to correct for the scattering. The robot uses
AMM steering to correct for scattering after contact, and the resulting dis-
tributions are compared for the open loop snake and controller. 62

8.2 Simulation plot of scattering angle vs contact duration taken from [2]. . . . 64

8.3 Wu et al provides a framework for steering a snake like robot - this figure
is first presented in [14]. 64

8.4 Angles commanded to the robot and measured via the Optitrack system (in
degrees). Note that error increases at higher angles. 66

xiii

8.5 The resulting head trajectories of implementing the AMM on the robot to
steer to the angles in table 8.4. 67

8.6 Using the experimentally determined correction constant results in better
steering performance for large angles. 68

8.7 Contact location on the post is a fairly reliable indicator of the direction
that the robot will scatter. Reproduced from [2]. 69

8.8 The amplitude change causes the snake to expand or contract when viewed
from above. Depending on which point of zero curvature the steering acti-
vates, either shape can be used to steer in the positive or negative direction. . 70

8.9 The sign of the amplitude change required to steer in a desired direction
depends on which point of zero curvature the steering method is activated. . 71

8.10 Two experiments with the same initial conditions are compared, one with
the anticipatory controller and one open loop. 72

8.11 Two space-time plots are generated in Matlab, one for the open loop case
and one for the anticipatory controller. 73

9.1 An early rendering of the snake robot in a typical single post experiment
(courtesy of Zachary Goddard). 77

9.2 The scattering angle is calculated as a function of the contact states con-
tact angle, φ , and phase, η . Comparison with the simulation results in [2]
shows that our sampling of robot head initial conditions provides a good
representation of the allowable contact states between the robot and the post. 78

9.3 Contact between the head of the robot and the post is used to predict scatter-
ing direction. The left-hand figure gives an overview of the possible contact
states on the head of the robot, and right-hand figure plots scattering angle
vs contact duration, colored by contact state. 79

9.4 Scattering angle vs contact duration for simulation (light blue) and experi-
ment (positive angles in red and negative angles in blue). 80

9.5 Scattering angle is plotted as a function of the two contact states for the
controller. 81

9.6 The histograms for the open loop controllers are fitted with normalized
gaussian functions in order to get an estimate of the spread of the data. . . . 82

xiv

9.7 An early rendering of the snake robot in the multipost experimental setup
prior to making the modifications in Chapter 7 (courtesy of Zachary God-
dard). All posts have a radius of 2.3 cm and the spacing between posts is
6.9 cm. 83

9.8 Histograms for the multipost open loop and controller, with the 15th and
85th quantile plotted as red vertical lines. 84

9.9 Scattering angle vs duration colored by contact sensing panel in contact
with post at the last moment of contact. Last contact serves as a better
indicator of scattering direction than first contact. 86

9.11 Unusual deformations sometimes occur for both the open loop (blue) and
controller (red) in the multipost setup. 89

9.10 In the multipost experiments, having more than one contact between the
robot head and the posts is possible. Results from simulations in [2] sug-
gest that the longest contact duration is a better indicator of the resulting
scattering duration than the first contact. The top figure shows the angle vs
duration relationship for the first contact between the robot and the posts
and the bottom figure shows the longest contact between the robot and the
posts. 90

10.1 Histograms of the open loop (top) and new controller (bottom), with quan-
tiles shown in red. 92

10.2 The raw data for the expanding controller (bottom) shows a significant de-
crease in scattering over the open loop experiments (top), especially for
contact durations greater than 0.5 seconds. 101

10.3 Histograms of the contact angles for the open loop (top) and expanding
controller (bottom). The expanding controller shows an improved reduction
in scattering over the original controller. 102

10.4 Raw data (top) and histogram for the longest duration controller. The
longest duration controller shows a similar reduction in scattering with the
expanding controller. 103

A.1 The raw data for the improved single post controller from the multipost
experiments (top), and the associated histogram (bottom) with the 15th and
85th quantiles shown in red. Note that only experiments where head contact
was detected are included. 106

xv

A.2 The raw data for the contracting controller from the multipost experiments
(top), and the associated histogram (bottom) with the 15th and 85th quan-
tiles shown in red. Note that only experiments where head contact was
detected are included. 107

A.3 The raw data for the delayed controller from the multipost experiments
(top), and the associated histogram (bottom) with the 15th and 85th quan-
tiles shown in red. Note that only experiments where head contact was
detected are included. 108

xvi

SUMMARY

Limbless robots have the potential to help with many possible applications from search

and rescue to surveillance. However, their performance in unstructured environments does

not currently match that of living systems. In order to understand how collisions with ob-

stacles effect locomotion, we studied the interactions between a snake robot and vertical

posts. Under normal open loop control where the robot is controlled by the serpenoid equa-

tion presented in [1], we observe that the collision between the robot and the post will often

cause the robot to reorient and deviate away from its open loop trajectory by an angle θ

which we call the scattering angle. Drawing insights from previous experimental results

and simulations [2], we hypothesize that a model of the interaction between the robot and

the posts can be used to implement a simple control scheme to control the orientation of the

robot using only minimal onboard sensing. These robot-obstacle collisions are character-

ized by running many experiments to systematically sample all possible contact conditions

between the robot and the post. To assist with the collection of this data, an automated

gantry system was developed to conduct experiments without any human input. This al-

lows us to model and understand the behavior of the robot at contact. Using this model,

we develop an anticipatory control scheme to correct for the scattering that results from

the collision with the posts. Contact sensing at the head of the snake measures the location

and duration of contact with the pegs. The controller uses this measurement to predict the

magnitude and direction of the steering behavior and steer the snake to correct for the scat-

tering. Finally, we experimentally validate this controller for a single post as well as a row

of five evenly spaced posts and find that the controller reduces the distribution of scattering

angles caused by the post and offers further insight into the nature of the robot-obstacle

collision.

xvii

CHAPTER 1

INTRODUCTION

1.1 Robots in Unstructured Environments

Autonomous navigation through unstructured environments is quickly becoming one of the

most exciting new areas in the field of robotics. While robots are traditionally used in in-

dustrial applications such as assembly line automation where precise control of position is

necessary, this new relatively new field of robotics seeks to take robots out of the labora-

tory and in to the real world. From space exploration, field robotics, autonomous driving,

drones, and bipedal robots, roboticists are quickly changing the paradigm of what kinds of

problems robots can solve. These novel systems have the potential to completely revolu-

tionize many different industries including transportation, agriculture, search and rescue,

military surveillance, and package delivery. While this may appear to be a wide range of

seemingly unrelated fields, the fundamental questions behind solving these problems are

the same:

1. How does a robot pick the ”best” path through the environment?

2. What does it mean for a path to be ”best”?

3. How can a robot adapt its path as it learns more about our environment?

4. How do we control the robot to move along this path?

Modern robotics and controls attempts to address these challenging issues through rel-

atively new approaches like optimal control, robust control, artificial intelligence, and ma-

chine learning. However, elegant solutions to these difficult problems already exists in

biological systems. In particular, animals like snakes, lizards, and cockroaches are particu-

larly adept at maneuvering through a wide range of environments. Therefore, our approach

1

to addressing some of these challenging questions is to study biological and robotic systems

in parallel.

Figure 1.1: Comparison of a biological snake and our robophysical model. The lefthand
figure shows a living snake moving through an unstructured environment, and the right-
hand figure shows our attempt to capture aspects of this behavior in a controlled laboratory
environment.

1.2 Drawing Inspiration from Biology

While animals are able to easily navigate through environments with rocks, sticks, and

other obstacles, robotic systems are unable to match their performance. Fig. 1.1 illustrates

the type of heterogeneous environment robots may encounter in the field. The performance

of living snakes in these types of environments has been studied in [3]. However, with live

animal experiments, we have very little control over the behavior of the animal, we can only

observe what they chose to do. Therefore, studying living systems and robotic systems in

parallel allows us to systematically vary robot parameters and observe the effect of varying

these parameters on the robot’s behavior. We hope that studying the biological system will

offer us insights into how to design and program a better robot, and studying the robotic

system will offer us insight into how living systems can achieve such fluid locomotion.

2

1.3 Robophysics

Figure 1.2: Examples of automated systems in the CRAB lab which use Robophysics to
model interactions between a range of different robots and environments. Images courtesy
of the CRAB lab.

This idea of systematically changing robot parameters to see how they effect the robot’s

behavior is crucial to what we call Robophysics [4]. In particular, we are interested in using

3

Robophysics to study the interaction between the robots and the environment. Instead of

designing a controller that treats obstacles as a disturbance to the system and rejects them,

or using simultaneous localization and mapping (SLAM) to detect and avoid obstacles, we

seek to develop a model for the interaction between the robot and its environment through

a combination of systematic experimental testing and simulation. A model of these interac-

tions can then be utilized by a simple controller to use these interactions between the robot

and the environment advantageously. The main drawback to this approach, however, is

that these models often require large amounts of experimental data to develop and validate.

In order to assist with data collection, automated gantry systems can be extremely use-

ful. Fig. 1.2 shows three automated gantry systems developed to collect large amounts of

experimental data and understand how robotic systems respond to different environments.

Fig. 1.2-A shows a system designed to test robots climbing up slope on granular media.

Fig. 1.2-B shows the gantry system designed to automate experiments modeling the inter-

actions between a snake robot and a row of vertical posts. The development of this system

is topic of the first part of this thesis. Finally, Fig. 1.2-C shows a system to study bipedal

walking on granular materials [5].

1.4 Objective

The following two objectives are addressed in the two main sections of this thesis:

1. Develop an automated gantry system and perform systematic experimental testing to

generate a model for the interactions between a snake robot and vertical posts.

2. Use this model of the environment to create an anticipatory controller to control the

orientation of the robot based on the interaction of the robot and the obstacle.

The remainder of the thesis is organized as follows: Chapters 2-5 address the mechan-

ical design, electronics, and software used to create the gantry system. Chapters 6-10

4

describe the snake robot, controller development, controller results, and modifications to

the controller to improve performance.

5

Part I

Automated Gantry System

6

CHAPTER 2

GANTRY SYSTEM OVERVIEW AND MECHANICAL DESIGN

Figure 2.1: Overview of the gantry system. The key components (cameras, gantry arm,

electromagnetic gripper, posts, and contact sensing) are highlighted.

7

2.1 Gantry Motivation

Previously, experiments to study the interactions between the snake robot and the posts

relied on the snake robot being manually placed on the ground by a graduate student using

a ruler. Due to the large amount of experimental data required to create an experimental

model of these interactions, developing an automated system to conduct these experiments

is a very logical solution. Building on the work of [6], where a smaller gantry system was

built to study locomotion on sandy slopes, we seek to demonstrate that these gantry systems

can also function on a much larger scale. However, we will demonstrate in this thesis that

many novel issues arise when attempting to build an automated system at a much larger

system. For example, two recurring challenges in the mechanical, electrical, and software

development of the gantry system are reliably identifying Optitrack markers on the snake

and making consistent, quality contact between the the snake robot and the gantry system.

The first part of the thesis highlights and addresses these challenges and their solutions.

Despite these challenges, we created a fairly robust automated gantry system that was able

to conduct thousands of snake robot experiments. Furthermore, the gantry system offers

higher accuracy in placing the robot with the desired position and orientation. This position

and orientation accuracy can be now be tested in a systematic way so that we can develop

an understanding of the uncertainty associated with these parameters. The remainder of

Chapter 2 provides an overview of the tasks the gantry system will automate, important de-

sign criteria for the system, and a high level mechanical overview of the system. Chapter 3

provides insight into the software we wrote to automate these tasks. Chapter 4 describes the

electronics necessary for the sensing and actuation required by the gantry system. Finally,

Chapter 5 describes the performance of the system. To see the system in action, please

refer to the video referenced in this section.

8

2.2 Gantry Overview

The gantry allows for the control of X, Y, Z and orientation of the electromagnetic gripper

so that the snake can be picked up from any position on the mat. The X and Z directions are

controlled by two stepper motors, and the Y axis uses a Frigelli motor to raise and lower

the electromagnetic gripper. Two electromagnets allow the gantry to pick up the snake

robot by making contact with magnetic plates on the robot. Finally, additional features are

developed as needed to improve the safety and robustness of the system.

2.3 Experimental Overview

Our primary purpose in developing this system was to automate the experiments presented

in [2]. In this work, the snake was placed manually on the ground which was time con-

suming and potentially inaccurate. Like the system presented in [6], our automated gantry

system can conduct many experiments with minimal human supervision. This allows for

the large amounts of data to be collected relatively easily, and demonstrates our ability to

produce results consistent with [2]. In order to automate these experiments, the following

steps are implemented.

1. Initialize the snake

2. Begin snake locomotion

3. Move the gantry arm in parallel with the snake

4. Stop the gantry and snake after five complete undulations

5. Determine the position and orientation of the snake robot

6. Position the gantry directly above the snake’s magnetic contact plates

7. Turn on the electromagnets

9

8. Lower the gantry arm until contact is made with the plates

9. Raise the snake until it is clear of the posts

10. Reorient the snake and move it to the next desired head initial position

11. Lower the snake onto the mat

12. Turn off magnets, raise the gantry arm, and move the gantry off to the side of the mat

2.4 Objectives

Based on these steps, we determined the following objectives as crucial to being able to

successfully automate the experiments.

1. The gantry will need to be able to pick up the snake in a variety of different positions

and orientations.

2. The gantry cameras will need to have a complete view of the entire mat in order to

capture the Optitrack markers for the snake.

3. The gantry will need to be able to accurately place the snake at a variety of initial

positions and orientations.

4. The gantry will need to be built with effective wire management so that the snake

does not become stuck during experiments.

2.5 Design Parameters

Based on the steps and objectives described above, we determined that safety, robustness,

cost, and ease of use are important design criteria for the system to meet. The following

sections describe in detail why they were selected as important, and how the design sought

to address the criteria. These criteria are summarized in Fig. 2.2 below.

10

Figure 2.2: Summary of the key design criteria for the gantry system, and how they are

taken into account by the design.

2.5.1 Safety

We designed the gantry system to be operated with no human intervention in order to collect

large amounts of experimental data. As a result, many precautionary measures were taken

in order to prevent damage to people, the snake robot, or the gantry system. These safety

features are detailed below:

1. We installed a Logitech C920 HD Pro Webcam (Fig. 2.3) above the setup, giving a

complete view of the snake robot and gantry system at all times during experiments.

Using OBS studio, we can easily stream a live feed from the experiment to Twitch

TV so that the system can be monitored remotely while it is running. Additionally,

OBS studio also gives us the option to record video, which can be used to go back

and detect what caused an experiment to fail.

11

Figure 2.3: We mounted this 1080p HD Logitech webcam above the gantry system in order

to stream experiments to Twitch, as well as record HD video of important experiments.

2. The computer that controls the gantry system is equipped with TeamViewer, which

means that we can log in remotely and end an experiment if needed, as well as control

the gantry arm, monitor experiment progress in the command window, and begin

recording video with OBS studio.

3. We installed limit switches (Fig. 2.4) in the x, y, and z directions to prevent the gantry

from grinding against the end of the rails, or pushing the snake into the ground.

12

Figure 2.4: Four limit switches are mounted at the ends of the X and Z support rails. These

switches turn off the X and Z actuation once the gantry has reached the edge of its desired

range of motion by triggering a GPIO pin on the Arduino Mega. This prevents damage to

the Stepper motors which control the gantry X and Z position.

4. We built and installed two circuits with photoresistors around the electromagnets on

the magnetic gripper of the gantry. These circuits allow the user to estimate when

contact has been made based on the amount of light detected by the sensors. The

gantry code checks to see if successful contact was made before raising the gantry

arm, and if no contact is detected, the program ends. The hardware and software for

these systems are described in greater detail in Chapters 3 and 4.

13

Figure 2.5: This simple photoresistor circuit determines the proximity of the electromagnet

to the magnetic plate on the snake. A threshold value is determined for what constitutes

successful contact, allowing the program to exit in the case of poor contact with the snake.

5. At the beginning of each experiment, the code pings all of the motors to ensure they

are still connected. If the computer cannot connect to a motor because an error or

warning light has been triggered, the program exits.

6. The power switches(Fig. 2.6) for all of the components of the gantry system are

easily accessible and clearly labeled so that components can be easily powered down

in emergencies.

14

Figure 2.6: This power rail allows for easy access to the power supplies of all of the gantry

components in case of emergencies.

2.5.2 Robustness

In order for the gantry system to complete many experiments without failure, it is important

for the system to be robust. The two most significant challenges to the robustness of the

system were mitigated by developing effective wire management and producing reliable

Optitrack data.

1. Wire management:

Wire management for a system of this size is crucial since there are many mecha-

tronic systems that need to be powered, and numerous moving parts. In order to

prevent gantry cables from dragging on the ground, we installed two drag chain ca-

ble carriers along the X and Z rails of the gantry well above the snake robot and the

gantry arm. These carriers protect the cables from getting caught on the upper rails

15

of the gantry while the system is moving, and keep wires out of the path of the snake.

Another concern was the wires leading to the snake getting caught on the posts or

getting caught on the gantry arm. These cables were run along the upper gantry rails

then hung down directly over the snake. The gantry arm moves in parallel with the

snake during experiments so that the snake cable is always hanging directly above

the snake. The individual cables are bundled together using braided cable to prevent

catching on the gantry.

Figure 2.7: Cable carrying drag chains were installed on the X and Z rails of the gantry in

in order to protect the wires from moving parts. 3D printed brackets support the chain as

it moves in the positive and negative direction, allowing the chain to fold back on itself as

the gantry moves.

Even with these precautions in place, it became apparent that power cables for the

snake robot were applying forces on the snake robot and influencing the experimental

data. As a result, a 3D printed tail module (Fig. 7.3) was designed so that the cables

16

point directly up from the snake, instead of dragging behind the robot. Furthermore,

instead of anchoring the snake cable to a fixed point on the gantry rail above, a

simple system was built to allow the cable to slide freely in the Z direction to prevent

pulling on the robot. A carbon fiber rod is mounted behind the gantry railing, and the

cables are attached to a metal ring surrounding the rod. If the power cables become

tensioned as the robot moves, instead of exerting a torque on the robot from above,

the ring is free to slide along the rod so that the cable stays above the robot. While

there is certainly more work that could be done in cleaning up the wires for aesthetics,

these simple changes were sufficient to be able to collect hundreds of experiments of

reliable data without any wire related issues.

2. Optitrack Data:

The other challenging problem that needed to be overcome for a robust system was

getting reliable Optitrack data for locating the gantry and snake during experiments

and analyzing the experiments afterwards. Even with 6 Optitrack cameras, markers

were often dropped due to the position of the gantry arm. In order to improve this

data, the cameras were rearranged so that they were below the gantry arm, but there

were some areas of the mat (like directly in front of the mat) where the Optitrack data

was weak. This is because the focus of the camera placement was to have reliable

locations for the electromagnet plates so that the gantry can effectively pick up the

snake. Additionally, the markers on the snake were modified in order to be more

visible to the Optitrack system. Marker holders were designed to raise the spherical

markers above the surface of the snake and wires leading to the head of the robot. The

marker holders on the magnet plates were custom printed to allow for the creation of

rigid bodies. Early on, it proved almost impossible to calculate the center of mass of

the snake from the raw marker data since markers were often incorrectly identified.

It was much easier for Motive to look for two unique rigid bodies, and locate them in

order to find the snake. Each magnet holder is composed of the 3D printed base, two

17

spherical Optitrack markers, a layer of foam, then the metal plates which are picked

up by the electromagnets. Reflective tape is used to create two unique rigid bodies,

which are defined in the motive software. Similarly, a rigid body is created on the

gantry end effector in order to track its location. Six large Optitrack markers are

arranged symmetrically around the center of mass of the end effector so that moving

to the location of the snake is a simple as commanding the gantry to move to the

average of the X and Z coordinates of the snake rigid bodies.

2.5.3 Ease of Use and Cost

Additionally, the gantry was designed so that it could be assembled quickly with cost ef-

fective components. Besides the Optitrack camera system, (which is necessary for accurate

tracking), components were selected that allowed the system to be developed quickly with

relatively low cost parts. Many of the design decisions were made to emulate the system

developed in [6] so that we could take advantage of the knowledge and expertise already in

the lab about these systems. A majority of these components are readily available from Mc-

Master Carr or OpenBuilds. For example, the V-Slot rails and Tee Nuts from Open Builds

allow the upper gantry frame to easily be constructed with minimal machining. There is

significant tips and advice for developing these kinds of automated systems available on

openbuilds.com. In addition to all of the hobbiest level supplies, this website also has a

strong community dedicated to creating do it yourself laser cutters, CNCs, and automated

drawing machines that rely on very similar parts, frames, and actuation methods that we

used to develop our system.

18

CHAPTER 3

GANTRY SOFTWARE OVERVIEW

3.1 Software Overview

Figure 3.1: Overview of the three main components which are interfaced through the soft-
ware. The Main C++ file is written as a Windows executable file, and interfaces with the
AX-12A Dynamixel motors, the Arduino Mega, and the Optitrack camera system. Each of
these components is broken down further in this section.

The software for the gantry system can be divided into three main programs: the Ar-

duino Mega code, the Arduino mini code, and the main C++ code written as a windows

19

executable file in C++. We selected C++ as the primary programming language because

it allows us to interface easily between the Optitrack camera system, the gantry code on

the Arduino Mega, and the AX-12A motors through the USB2Dynamixel. Each of these

systems has strong compatibility with C++ as shown in (Fig. 3.1). The key takeaway from

this figure is how all of the different gantry components communicate with each other in

the software. The C++ file communicates with the AX-12A dynamixel motors through a

commercially available USB2Dynamixel via serial communication, which will be detailed

in Section 7. The C++ file communicates with Arduino Mega via UART serial communi-

cation which is broken down further in Section 3.4. Finally, the Optitrack camera system

interfaces with the main C++ file via the Motive API which is detailed in Section 3.4.

3.2 Main C++ windows executable file

Figure 3.2: High level overview of the primary project code written with C++.

The structure of the main C++ program is overviewed in Fig. 3.2. The setup block

20

(green) is only executed once. This block initializes the camera system, connects to all of

the motors, and asks for user input on how many experiments to run and where to store the

data. The second block is the heart of the program, and is looped through for every trial

of data to be collected. The details of how each of these steps is not important yet as they

will be explained in detail in the remainder of this section. Our approach in developing the

software for this challenging problem was to break the problem down in to a series of tasks

that need to be accomplished, and break these tasks down further into manageable subtasks.

This simple approach allowed us to develop solutions to one simple subtask at a time, and

test this subtask independently to ensure it is functioning correctly before integrating it

with the rest of the code. For now, we will ignore the control of the snake motors as that

is addressed in Part II, and focus on the Optitrack camera system and the Arduino gantry

control.

3.3 Optitrack Camera System

A reliable vision system is crucial for both having quality experimental data and being able

to automate the experiments. In particular, having good marker tracking is essential to

just about every step in the main loop of Fig. 3.2. For example, during snake locomotion,

reliable tracking data for every segment of the snake is needed so that the scattering angle

can be determined in post processing. To move the gantry to the snake, we rely heavily

upon knowing the position and orientation of both the snake and gantry. To place the snake

accurately, we need to have a global reference frame so that we know where the snake

should be placed in reference to the posts. Therefore, in order to acchieve the reliable

tracking needed to complete these tasks, we selected hardware and software by Optitrack

which can be purchased at https://optitrack.com/products/motive/.

21

Figure 3.3: One of the six Optitrack cameras mounted around the gantry system. The
cameras were mounted so that the snake and gantry could be viewed from a variety of
angles, while trying to minimize having the camera’s view obstructed by the gantry arm.

3.3.1 Optitrack Camera Hardware

Six Optitrack Flex 13 cameras are mounted above the gantry system are used to track the

position of the snake, posts, and gantry. We selected the Flex 13 because it balances high

performance at a relatively low cost point compared to other models (about one thousand

dollars each). The prime series offers higher frame rates, but the lowest price for these

cameras is double that of the Flex 13, and we have observed in previous experiments that

120 frames per second is sufficient for our application.

The number of cameras was increased from four to six when the gantry system was

22

being developed. The Optitrack software requires a marker to be viewed from multiple

cameras in order to determine its location in 3D space. Prior to the gantry system, four

cameras were sufficient to have clean, reliable tracking data for the snake robot during

experiments. Adding the gantry system, however, complicates camera placement signifi-

cantly because cameras can easily have their view of markers blocked as the gantry moves

to different areas of the mat. Even with six cameras, the quality of the tracking data has

been one of the greatest challenges in this project. This challenge is addressed in part II

as it drove several innovations on the design of the snake to make it more visible to the

camera system. Theoretically, this problem can easily be solved by adding more cameras,

but it would require installing an additional hub, and would be expensive. Our setup uses

the OptiHub 2, which can connect to up to 6 cameras via USB camera cables.

In order to track the location of objects that we care about, Optitrack markers and re-

flected tape are used to generate markers on the snake, gantry, and posts. Each segment of

the robot has at least one Optitrack marker, which allows us to follow the trajectory of each

segment. Reflective tape is wrapped around five ping pong balls, which are mounted on the

top of each of the five posts. Finally, six ping pong ball markers are attached to the gantry

system. These six markers form what is called a rigid body which is used to track the end

effector of the gantry (more on this in the software section).

The shape of the gantry gripper arm went through many iterations to reach its current

design. The markers are raised and extended beyond the electromagnets in order to be

more easily visible to the cameras above. The overall form factor, however, needed to

remain compact since early iterations of this design frequently got caught on the snake’s

power cable when the gantry went to pick up or put down the robot. Finally, the shape of

the rigid body was intentionally designed to be symmetric so that its centroid lines up with

the middle of the gripper arm.

23

3.3.2 Optitrack Camera Software

Figure 3.4: An illustration of how the Motive software is used in our setup. The large red
rigid body represents the gantry, the five large orange markers are the posts, the green and
purple rigid bodies are the magnetic plates on the snake, and the remainder of the orange
markers are the segments of the snake.

The camera hub directly interfaces with a software called Motive shown in Fig. 3.4.

Motive offers extensive tools for tracking markers, and only a fraction of its vast capa-

bilities are used in this project. Extensive documentation and support on this software is

provided here https://optitrack.com/support/software/motive-tracker.html.

The first step of using this software is calibrating the cameras. In order to calibrate the

cameras, a calibration wand and calibration square are required. The camera calibration

procedure is briefly summarized in the following steps:

1. Remove all markers from the view of the cameras. Anything that is reflective can

24

easily be picked up by the cameras. Check the view for each individual camera in

grayscale mode and object mode.

2. If there are any markers which cannot be obscured or removed, mask them with the

Optitrack Software.

3. Begin calibration, and specify a location to save the Optitrack project.

4. Wave the calibration wand in front of each camera, ensuring to fully and evenly cover

its entire view.

5. Wave wand over the entire mat to ensure complete coverage.

6. Finish Calibration, and save the project.

7. Set the ground plane so that the X axis is parallel to the array of posts, and clearly in

view of all of the cameras.

Another important feature of the Optitrack Software is the creation of rigid bodies.

Creating a rigid body allows you to specify the multiple points on an object and track its

geometric centroid. We use rigid bodies to track the position of the gantry as well as the

position of the magnetic plates on the snake. A couple of rules must be followed in order to

specify a rigid body, which are important to consider when placing markers on an object.

1. The distance between markers must always remain fixed (this is necessary from the

definition of a rigid body).

2. A rigid body must contain three or more markers. More than three is preferable since

it will continue to track the object if a marker is temporarily dropped.

3. The three markers must not all lie on the same plane. In order to assist the software,

we recommend making rigid bodies very distinct from each other. In our experience,

rigid bodies with similar geometries can easily be confused.

25

Defining two rigid bodies on the snake significantly simplified the calculation neces-

sary to find the magnetic contact plates. Instead of trying to sort the markers on the snake

and estimate the correct location of the magnetic plates, we simply define rigid bodies on

these magnetic plates and let the Optitrack software do the work.

In practice, Motive is used very infrequently for this project besides for calibrating the

cameras and defining rigid bodies. Instead, we use the Motive API because it allows the

camera information to be integrated with the rest of our code and called in real time. A

very detailed set of documentation on the Motive API is available online at the Motive

API Function Reference webpage [7]. Frequently used functions are summarized in ta-

ble 3.5 below, and then we explain how they are used in each part of the main C++ code to

communicate with the cameras.

Figure 3.5: Frequently used functions called from the Motive API.

The initialize and load project commands are used during the Setup block to prepare

the camera system for data acquisition. The update command is used frequently throughout

the entire code to ensure that the data is being pulled from the most recent frame available.

The X,Y,Z, marker count, marker commands are used during the snake locomotion loop to

26

pull the location of every marker, then write them to an excel spreadsheet.

The rigid body location command is used to calculate the positions of the gantry and

two snake contact markers in the ”pick up snake” sub-task. The orientation of the snake is

calculated from the location of the two snake contacts using inverse tangent. This angle is

sent to the servo motor so that the the electromagnets line up above the magnetic contact

plates. Using the average value of the two snake contact markers, the program calculates

the distance between the gantry and the snake, then commands the stepper motors to travel

that distance. We noticed that, due to slight slipping in the timing belt, the gantry does not

travel exactly the distance commanded. Therefore, to ensure that we will accurately arrive

at the snake’s exact location, the gantry actually moves towards the snake twice. The first

”coarse” adjustment moves the gantry very close to the magnetic plates. At this point, the

gantry position is requested again, and the distance between snake and gantry is sent to the

motors again. This second ”fine” position adjustment corrects from the error caused by the

slipping in the timing belt.

Finally, Set Rigid Body Enabled is used to turn the rigid bodies on and off. We noted

in the previous paragraph how important the rigid bodies were for finding and picking up

the snake. There are, however, times when we do not want the rigid bodies to be active.

During the snake locomotion loop, camera data must be taken and recorded quickly since

this data is requested every time a position is commanded to the snake motors. Tracking

rigid bodies is relatively time costly since the software must correctly identify the markers

on the rigid body and calculate their centroid. For this reason, during the snake loop, only

raw marker data is tracked, and when the rigid body data is requested to pick up the snake,

the snake has stopped moving and timing is not important.

This section illustrates how the Optitrack data is used to automate the tasks in 3.2 by in-

forming how to move the gantry system. The next section explains how the gantry system is

27

controlled by the Arduino Mega, and the electronics necessary to execute these commands.

3.4 Arduino Gantry Control

Figure 3.6: The Arduino IDE was used to interface with the microcontroller and develop
low level functionality for sub-components of the gantry system. Commands are given
to the program via serial interrupts, and any of the gantry subcomponents can be directly
controlled through the Arduino Serial Monitor.

As shown in Fig. 3.1, the Arduino Mega is essential for handling all of the control of

the gantry system, as well as interfacing with the capacitive touch sensors. The Arduino

28

controls the X and Z stepper motors, the servo motor, the electromagnets, the frigeli motor

(Y axis), and interfaces with the contact sensing on board with the snake. The remainder

of this section will discuss the Arduino software for each of these components in detail,

except for the contact sensing data which will be addressed in Section 7.

3.4.1 Arduino Program Overview

Figure 3.7: Overview of the structure of the arduino program.

Fig. 3.7 overviews the structure of the Arduino program. The first section initializes

the pins to be inputs or outputs depending on how they are being used by the subcompo-

nents. The second section executes X and Z axis gantry locomotion for the stepper motors.

This section is also the main Arduino code, so always is running as an infinite loop. With-

out being given any input, this loop does nothing. When the values for zMove or xMove

are modified in the serial interrupt, however, the motors are activated. Every time the main

29

loop is executed, a pulse is sent to the stepper motors, and the value of zMove or xMove

is decremented until it reaches zero, and the code returns to its normal idle state. It is also

important to note that when the gantry finishes executing a X and Z command, the phrase

”done moving” is written to the serial monitor. This is an essential step that drastically

improves the speed of certain parts of the main C++ file. The way that the C++ program

executes is that as soon as a line of code is executed, it moves on to the next line of code.

In many circumstances, however, we want the code to wait until the gantry is done moving

before the next lines of code execute. In order to do this, the program enters an infinite

while loop while the gantry arm is moving. In this loop, the program is polling the serial

monitor, and when the Arduino sends the done moving command to the C++ program,

the C++ program brakes the loop and continues execution with the next command to the

gantry. This is crucial because we don’t know how long it will take the gantry to reach the

snake since it may scatter to many different locations and orientations.

The majority of the gantry control actually occurs within the serial interrupts in the third

part of the code. In addition to triggering the X and Z locomotion in the main loop, the

serial interrupts also allow for control of the electromagnets, photoresistor circuit, rotary

servo, Frigeli motor for Y axis locomotion, as well as interfacing with the contact sensing

on the snake. The following section explains how these functions work, and breaks down

the electronics necessary to accomplish these tasks (except for the snake contact sensing,

which is addressed in detail in part II.)

30

CHAPTER 4

GANTRY ELECTRONICS

Figure 4.1: Commonly used commands for controlling the gantry system. Commands are
triggered by writing the appropriate key word into the serial monitor, or by sending the
commands from the main C++ file to the Arduino using UART communication.

As we highlighted in Chapter 3, the majority of the gantry control is accomplished in

the serial interrupt section of the Arduino Mega code. Figure 4.1 lists the commands which

can be written to the serial monitor to control the electromagnets, servo motor, Frigelli mo-

tor, and photoresistor circuit. As mentioned in Chapter 3, the gantry can be driven directly

from the arduino serial monitor, which allows each of these subcomponents to be devel-

oped, coded, and tested independently. In this section, we go in depth into how each of

these subcomponent works, as well as the hardware associated with working these sensors

and actuators.

31

4.1 Microcontroller Selection

Figure 4.2: An Arduino Mega was selected as our microcontroller based on its low cost,
high usability, and large number of available pins.

An Arduino Mega was selected as the microcontroller to control the gantry system.

Arduinos are used frequently in our lab due to the low price point (about 36 dollars for

a Mega). Additionally, the Arduino IDE is extremely easy to learn for someone without

experience working on microcontrollers, and plenty of documentation and support is avail-

able online. Communication protocols such as UART, I2C, and SPI are much easier to

work with compared to similar cost microcontrollers like the TI MSP432. The Mega in

particular has a much larger pinout selection, which was crucial since this Arduino must

coordinate with many different components. The Arduino Mega has a total of 54 GPIO

pins and 16 Analog input pins, and a majority of the pins on the board are currently being

32

used by our setup.

4.2 Sensors

A wide variety of sensors are required in order to automate the experiments in a robust

manner. In addition to the Optitrack cameras which were addressed in the previous section,

the primary sensors used for the gantry system are the limit switches and the photoresistor

circuits.

4.2.1 Limit Switches

Limit switches are a crucial safety feature to prevent damage to the stepper motors by

switching the motors off when the limit of the range has been hit. Additionally, the limit

switch associated with the Y-axis allows us to determine the correct height to place the

snake. Since the Frigelli motor is controlled with an on-off controller, the Y-axis limit

switch is essential to stopping the gantry arm at the appropriate height to pick up the snake

robot. While there is no direct command for the limit switches in the program, they are acti-

vated immediately on contact. For example, in the case of the X and Z axis limit switches,

the main stepper code mentioned in section 3 is constantly checking the states of these

switches. If the appropriate limit switch is hit, the X and Z actuation stops. Furthermore,

the Y axis limit is crucial to raising and lowering the snake to the ground. The height of

this limit switch is easily adjusted by sliding the 3D printed trigger up or down in the open

builds V slot linear rail. Setting this height is essential to successfully making reliable con-

tact between the magnetic plates on the snake and the electromagnets. In addition to the

limit switch, a clever design of the 3D printed connection between the gantry arm and the

electromagnetic gripper allows for some compliance between these two parts of the gantry.

Briefly, two pieces of foam are inserted in this blue connection piece: one piece below the

open builds rail and one above the open builds rail. These foam pieces allow the gripper to

be lowered so that there is some force between the electromagnets and the magnetic plates,

33

Figure 4.3: The limit switches are crucial to the safety of the gantry system. The height of
the Y-axis limit switch (shown) is important to ensuring good contact between the magnetic
plates and electromagnets.

but now the foam can deform in a way which prevents this force from damaging the gantry

arm as well as ensuring that both electromagnets are fully making contact with the two

magnetic plates. A similar compliance is also built into the snake by placing foam between

the magnetic plates and the 3D printed support, which will be discussed in Section 7. Com-

bining this compliance with the correct Y-axis limit switch height and proper calibration of

the servo motor ensures that when the gantry receives accurate rigid body position data for

34

the snake and the gantry, the gantry will be able to pick up the snake consistently.

4.2.2 Photoelectric Resistors

Figure 4.4: This simple photoresistor circuit determines the proximity of the electromagnet
to the magnetic plate on the snake. A threshold value is determined for what constitutes
successful contact, allowing the program to exit in the case of poor contact with the snake.

The photoelectric resistors (Fig. 4.4) are important for detecting if this contact is re-

liable. As mentioned in Section 2.1, the circuit acts as a simple proximity sensor so that

we can detect if something is wrong. While debugging the Optitrack data, we observed

that if the gantry moves to the wrong location, it will still attempt to pick up the snake and

move it back to the start position which could cause the snake to be dragged by its wires,

potentially damaging the snake or the posts. Therefore, the photoelectric resistors act as a

simple safety switch to prevent this from happening. Within a 3D printed shell designed to

35

fit around the exterior of the electromagnets, four connected photoresistors return a voltage

corresponding to the light intensity detected since each photoresistor decreases its resis-

tance with an increase of light intensity. This voltage signal is filtered by a capacitor then

sent to two analog input pins on the Arduino Mega (one for each electromagnet). Through

a trial and error process, we determined what the appropriate threshold should be for suc-

cessful contact. Even with the capacitor, however, there are still occasional spikes in the

analog signal so there is also some filtering done in software to make the best estimate for

the state of the contact. This circuit will occasionally shut down the program in cases where

there is only partial contact between the magnet and the plate, but this error was considered

more acceptable than the alternative case where the magnets don’t make contact and the

system continues. Still, even with this occasional error this circuit is effective at preventing

the program from continuing when there is clearly no contact.

4.3 Actuation

The information gathered from the sensing is used to inform the actions of the actuators.

We saw previously how the camera data is used to dictate the motion of the stepper motors,

how the Y-axis limit switch is important for the frigelli linear actuator, and the relationship

between the photoresistor proximity sensors and the electromagnets. In this section, we

will briefly discuss the hardware behind this actuation.

4.3.1 Stepper Motors

Two OpenBuilds Nema 23 stepper motors were selected to actuate the X and Z directions

of the gantry. These motors are controlled via a WANTAI 2H microstep driver. Fig. 4.5

shows how the motor is wired to the driver and Arduino. Two GPIO output pins from the

Arduino supply the Pulse and Direction signals to the driver. The motors are powered by

a variable power supply at 25.7 V, and together draw about 1 Amp of current during op-

eration. The driver converts the pulse and direction signal into the appropriate signal for

36

Figure 4.5: An overview of the stepper, motor driver, and Arduino circuit for X and Z axis
actuation.

the two phases of the stepper. Finally, all of the Arduino, stepper motor, and the driver are

connected to a common ground.

Fig. 4.6 shows how the steppers are implemented to control actuation in the gantry

system. This photo shows a closeup of the Stepper motor on the X axis just above the

extendable gantry arm. A gear is attached to the output shaft of the stepper motor which

meshes with a timing belt which runs the entire length of the X axis. A machined steel

plate with wheels is used to interface the gantry arm with the open build rails so that the

entire arm can can roll left and right along these rails. A similar mechanism is used to

translate the entire X-axis rail in the Z direction. As mentioned previously, the drag chains

associated with these two axes were essential for preventing wires from getting caught and

damaged during gantry locomotion.

37

Figure 4.6: An example of how the Nema 23 is implemented in the gantry system to drive
X axis locomotion.

4.3.2 Servo Motor and Electromagnets

Fig. 4.7 shows the electromagnets and the servo motor on the electromagnetic gripper. The

magnets are turned on and off using a single GPIO output pin on the arduino with the

help of a relay switch (shown on the red 3D printed mount just above the blue arrow).

As discussed previously, the blue connection 3D printed segment allows for compliance

for better connection between the magnets and the magnetic plate. The Hitec servo motor

is located just below the relay switch mount and provides 180 degrees of rotation. In

order to accurately command the gripper arm to a known angle, the input to this servo

must be calibrated to an output angle in the real world. In order to do this, the servo was

commanded to reach a world angle of 45 degrees (with 0 degrees corresponding to rotating

38

Figure 4.7: Electromagnetic gripper at the end of the extendable gantry arm. The elec-
tromagnets are encased in the two blue 3D printed cases and the servo motor rotates the
entire gantry arm by the angle shown in blue. An inset photo of the snake is included to
highlight the interface between the electromagnets of the gantry and the magnetic plates on
the snake.

the servo clockwise until the gantry gripper is parallel to the line of posts) using a trial

and error process. The input required to generate this angle is recorded, then the servo is

commanded to an angle of 90 degrees (perpendicular to the posts) and this servo input is

recorded. Using these two data points, we were able to come up with the equation of a line

that relates the world frame angle of the gripper arm to the servo input required to move it

there. This equation is used to determine what servo input is necessary to line up the gantry

arm with the magnetic plates on the snake after calculating the angle the snake rigid bodies

create using the Optitrack data. For most scattering angles of the snake, this calibration is

extremely effective for aligning the snake and the gripper. However, near the two extremes

39

of the servo’s range (0 degrees and 180 degrees), this relationship no longer holds, and the

alignment between the gripper and snake may be a bit inaccurate. Additionally, in some

cases, the snake is completely unable to make it through the posts and actually is reoriented

by over 90 degrees in either direction. In both of these cases, the photo resistor circuit is

crucial to determining if the contact is good enough to effectively pick up the snake.

4.3.3 Frigelli Motor

Figure 4.8: A Frigelli linear actuator is used to raise and lower the vertical gantry arm to

pick up the snake robot.

Fig. 4.3.3 shows how the Frigelli FA-150-S-15-18 linear actuator raises and lowers the

gantry vertical arm to pick up the snake robot. Two open builds linear v rails are installed

40

in parallel. One of the rails is mounted directly to the machined plates overhead, and the

other rail is mounted to the output shaft of the frigelli. A machined plate with wheels allows

the Frigelli rail to extend and retract in parallel to the fixed rail. A limit switch attached

near the bottom of the fixed rail defines the end of the fixed rail. As discussed previously,

this limit switch is essential to setting the height of the gantry when picking up the snake.

Similar to the electromagnets, the Frigelli is controlled using a combination of GPIO pins

and a relay switch. The Frigelli can only be told to move positive, negative, or stop moving

so having this Y-axis limit switch is crucial to automating the pickup of the snake.

41

CHAPTER 5

GANTRY RESULTS

A video demonstration of the complete gantry system functioning correctly (as well as the

open loop and controlled snake described in part II) can be seen in the video at

https://youtu.be/GO3HrDTGhZ0.

Note that this video is sped up roughly 100x to show the snake complete a full set of

experiments. In this early demonstration of the gantry system, individual experiments took

about 5 minutes on average. However, since the time this video was taken, considerable

improvements to the code have allowed the system to complete a full experiment closer to

3 minutes. Note that individual experiment times may vary based on the location that the

robot scatters. Over the course of the past year and a half, this gantry system has performed

thousands of experiments for evaluating and improving its performance as well as develop-

ing and testing the snake robot. In the single post setup, there were very few issues which

could stop the gantry from running. During these experiments, I could set up the gantry

and leave the lab for hours at a time knowing that there were few possible scenarios where

the gantry system would ”fail,” and that appropriate precautions were taken to mitigate the

risk associated with these scenarios.

At its top performance, the gantry system was able to complete over 150 experiments

consecutively with no human input on multiple occasions. However, as with any system

that is used so heavily, the repeated use of the gantry caused some of the gantry components

to wear out over time. In particular, the reflective tape used on the snake robot to identify

the magnetic plates needed to be replaced frequently. In addition, other parts which were

replaced due to consistent wear including the AX-12A motors on the snake, the stepper

motor wires, and the snake robot wheels.

42

The multiple post setup, however, provided additional complexities which prevented

the gantry from running unsupervised for these long periods of time. In particular, certain

initial conditions caused the robot to get completely caught as it moved through the posts.

For this reason, I preferred to always have someone in the room when running the system

for the multipost experiments. If the snake ends an experiment still in the middle of the

posts, lowering the gantry arm to the snake could damage the posts or the arm, and there

was nothing in the software that could prevent that from happening. Additionally, poten-

tially hazardous scenarios were simply more common with the multipost setup since nearly

every experiment resulted in the robot hitting a post whereas with the single post, most

experiments do not hit the post.

Even with these limitations, the gantry system was effective at collecting the necessary

data for the multipost experiments. Furthermore, such a system can be easily generalized

to pick up different types of robots, as well as to pick up and move obstacles in order

to generate an arbitrary terrain for the robot to navigate. This natural extension of the

gantry system can be used to explore really interesting problems in terms of path planning,

navigation, and control of a biologically inspired robot through an arbitrary environment.

43

Part II

Snake Robot Anticipatory Controller

44

CHAPTER 6

CONTROLLER INTRODUCTION

Figure 6.1: Snake robots in unstructured environments of varying levels of complexity.

Images A and C courtesy of the Biorobotics lab at Carnegie Mellon University.

45

6.1 Motivation

For scenarios where a snake robot may be deployed in the field such as disaster response

and surveillance, collisions with obstacles are not only highly likely, but often unavoid-

able. For example, Fig. 6.1-A illustrates the type of heterogeneous environment that a

snake robot may encounter in field deployment. Understanding what happens during the

interactions between robot and obstacles, and coming up with effective control strategies to

locomote through these environments is essential for successful deployment. As mentioned

previously, our approach to this challenge is to develop a controller that utilizes the physics

of these collisions. While machine learning techniques may be used to train robots to navi-

gate through challenging environments (such as in [8]), we don’t really understand how the

solution that the reinforcement learning generates works at a fundamental level. With that

said, previous work in snake robot control and sensing, is still essential for developing and

understanding our controller in the context of existing frameworks for controlling snake

robots.

6.2 Previous Snake Robot Control Systems

Early work in the field [1] attempted to use contact sensing along the robot in order to

avoid obstacles. More recent work, however, seeks not to avoid collisions with obstacles

but to use them advantageously. In [9] interactions between snake robot and obstacles

are modeled as a hybrid dynamical system which includes the continuous dynamics of the

robot locomotion as well as discrete events which model the collisions with obstacles. This

model is tested in simulation and experiment and used to develop a controller. This con-

troller is composed of two main schemes: a leader follower scheme for free snake robot

locomotion, and a jam resolution scheme to free the robot when it gets pinned on obstacles.

Finally, a jam detection scheme determines which state the controller should be in. If a

single joint deviates from its commanded angle by more than a given threshold, the joint

46

is defined to be jammed. If more than two joints on the robot are jammed for greater than

some threshold, the robot will enter the jam resolution scheme.

The main drawback to this scheme, however, is that there are only two distinct states

of snake motion, and it only modifies its behavior once the snake is completely jammed.

Conversely, shape based controllers address these limitations by continuously varying the

parameters of the snake’s waveform to modify its local curvature based on sensing of the

robot’s environment. The idea of shape based controllers, first presented in [10] and uti-

lized in [11] and [12] provides a natural framework for thinking about snake locomotion.

These works control the snake robot to follow a family of shapes which allow the robot

to locomote through complex environments. While our system lacks the inertial sensing

to fully utilize these schemes, we will show in the following section that we are able to

implement a special case of this controller using only very simple onboard sensing to con-

trol the orientation of the robot. Our novel contribution to this field, therefore, is not the

mechanism used to steer the snake, but the way that the controller uses the model of the

interaction to inform the steering behavior.

6.3 Our Approach - Anticipatory Control

Previous work in a Chronos physics simulation shows a linear correlation between scatter-

ing duration and contact duration between the head of the robot and the post [2]. Inspired

by the anticipatory controller developed in [13], we propose using this correlation to de-

velop a controller for the snake robot. In [13], a bioinspired hexapod robot collides with

a boulder in granular media. Contact sensing panels on the boulder determine where the

robot makes contact with the obstacle. When the robot is given an open loop trajectory,

the scattering angle between the robot and the boulder can be reasonably well predicted by

looking at which panel of the boulder made contact with the robot. Once this relationship

47

is developed experimentally, it is used to correct the robots trajectory with a simple antici-

patory controller. Based on the location of contact between the robot and the boulder, the

controller anticipates the scattering angle, and steers to correct for it by using a tail as a

rudder.

The obvious drawback to this scheme, however, is that the robot is using sensing on the

boulder to inform its controller which is not an accurate depiction of how living or robotic

systems move through environments. Conversely, for our system, we rely only on onboard

sensing to inform the controller. Therefore, in order to reliably measure contact between

the head of the snake robot and the vertical, posts we developed a contact sensing circuit at

the head of the robot. Inspired by this idea of using a interaction model to perform control,

we propose using this contact duration to inform a control strategy. Using an amplitude

modulation steering mechanism first developed by [14], we propose using the interaction

model to predict the scattering angle resulting from the collision, and steer to correct it.

The remainder of this thesis is divided into the following chapters. Chapter 7 provides

an overview of our robot system, as well as the contact sensing circuit. Chapter 8 develops

the theory and experimental testing needed to develop the anticipatory controller. Chapter 9

discusses the results of testing this controller, and hypothesizes how the controller can

be improved in the future. Finally, chapter 10 presents and tests possible modications to

improve the performance of the controller.

48

CHAPTER 7

SNAKE ROBOT OVERVIEW

7.1 Hardware

Figure 7.1: Early rendering of an overhead view of the snake robot setup in a typical
multipost setup (courtesy of Zachary Goddard). All posts have a radius of 2.3 cm and the
spacing between posts is 6.9 cm.

Our snake robot is composed of twelve AX-12A Dynamixel motors joined together

using 3D printed brackets. While the body brackets are the same throughout the body of

the snake robot, two specialized brackets were built for the head and tail of the robot. The

49

head module is rounded so that there is a hemispherical surface which first contacts the

post, and the back of the tail module is rounded in a similar fashion. Each bracket connects

to passive lego wheels on the base of the brackets which provide the direction dependent

friction necessary for the robot to locomote.

Ax-12A motors were selected due to their low price point and high usability. At just under

50 dollars per motor, these motors are near the lower end of the dynamixel line, but still

provide plenty of torque for our application (1.5 N m stall torque at 12 V). Since this work

focuses primarily on developing new software for an existing system, only a high level

description of the mechanical design of the snake is provided as a reference to the reader

to better understand the experiments. However, key modifications to the robot to improve

integration with the gantry system and provide the sensing necessary for the controller will

be provided in the subsequent subsections to show how these new components achieved

these objectives.

7.1.1 Gantry Interface

The first set of modifications to the original snake robot sought to improve tracking of the

the snake by the Optitrack camera system. As mentioned in Chapter 3, getting quality

Optitrack data was one on the greatest challenges to developing a robust automated gantry

system. We attempted to address this by adding red 3D printed columns to lift the markers

off of the body of the snake and hopefully improve tracking of individual markers. The

individual marker data, however, still was subject to markers getting swapped or dropped,

so a more robust way of identifying the snake’s final orientation was needed. The white

3D printed brackets were designed with this problem in mind. By applying reflective tape

on top of the magnetic plate, we were able to create two geometrically distinct rigid bodies

on the snake at the exact points where the robot will be picked up. Additionally, these

brackets provide the largest possible contact surface between the magnetic plate and the

electromagnet without protruding beyond the dimensions of the snake below. Finally, a

50

Figure 7.2: This figure highlights two crucial modifications to the snake robot: the magnetic
plate bracket used to pick up the robot with the gantry and the contact sensing circuit used
to measure contact location and duration between the robot and the posts.

foam piece is placed in between the bracket and the plate, which ensures the best possible

contact between the electromagnets and the magnetic plates. Fig. 7.2 shows an assembled

bracket on the snake. Note that this bracket uses a single piece of reflective tape to create

the three reference points necessary to define a rigid body, whereas the second bracket (not

shown) uses four references points to prevent confusion between the two brackets.

51

7.1.2 Tail Module

Figure 7.3: CAD design of the snake tail, used to prevent snake wires from dragging behind

the snake.

The tail module shown in Fig. 7.3 was designed in an iterative process with wire manage-

ment in mind. During hand placed experiments, wires would frequently get caught on the

posts during experiments, so it was necessary to have someone around to prevent this from

happening while the snake was moving. Additionally, we were extremely cognizant of the

fact that the trailing wires of the snake could potentially effect locomotion of the snake,

or get tangled with the gantry arm when the snake was being picked up. To address these

concerns, the tail was designed to keep the snake wires from dragging behind the snake

52

during locomotion. The tail extends directly above the last module of the snake to prevent

contact with the posts during experiments, and the wires are threaded through a hole in the

center of the piece. These wires hang down directly from the gantry system which moves

alongside the snake so that the snake wires are always hanging directly above the robot to

prevent them from being caught. Note that the wires are not directly fixed to the gantry arm

above, but have some slack and room to translate so that the snake wires are never pulling

on the robot from above. Ensuring that the wires don’t pull on the snake was an important

step to prevent damaging the robot and to produce dependable data in our experiments.

7.1.3 Contact Sensing Circuit

In order to collect experimental data on the interaction between the head of the robot and

the environment, developing a contact sensing circuit at the head of the robot was crucial.

Previous work in simulation [2] has shown that the majority of the scattering behavior

observed in the system can be understood by looking at the interaction between the head

of the robot and the post. Therefore, this contact sensing circuit will be important for

understanding the behavior of the snake robot at contact. Furthermore, this contact sensing

circuit is also an essential part of the controller by allowing us to determine the location

and duration of contact between the head of the robot and the posts. The wiring for the

contact sensing circuit is shown in Fig. 7.4, and the actual implementation on the robot

can be seen in Fig. 7.2. Four capacitive touch sensing panels are connected to an MPR121

contact sensing circuit board from Adafruit using I2C serial communication. This contact

sensing board connects to an Arduino mini where a simple code compares the capacitance

value for each panel to a threshold to determine if contact has been made. We decided to

use the mini because then both the MPR121 and the Arduino mini could be mounted on the

head of the robot. We found that having long cables running between the contact panels

and the MPR121 was not effective because they affected the capacitance measurements. To

implement these boards on the robot, a new hollow head module was designed so that the

53

Figure 7.4: The MPR121 from Adafruit provides an easy way to integrate capacitive sens-
ing onto the head of the robot. This figure from the Adafruit website illustrates how the
board is interfaced with an Arduino Uno and a capacitive touch sensor to show how the
board should be wired, and the actual implementation is shown in Fig. 7.2

MPR121 could be embedded within the head module of the robot, and the Arduino mini

could be mounted directly on top of the head of the robot.

7.2 Software

The control of the snake is easily integrated with the rest of the gantry code as shown in

Fig. 3.1. The snake code can easily be divided into two main components: sensing via the

contact sensing circuit and actuation via the AX-12A motors.

54

7.2.1 Actuation

Figure 7.5: A USB2Dynamixel by Robotis was used to command the AX-12A motors from

a desktop computer. Image from the Robotis documentation.

The Robotis SDK software was used to control the Ax-12A motors on the snake. This soft-

ware package allows the motors to be controlled using robust, well documented libraries on

the Dynamixel SDK Github page, so it is used frequently to control many robots in the lab.

We use the C++ package because it allows for easy integration with the other components

of the gantry system as mentioned in Chapter 3. The commands are sent from the computer

to the robot with the USB2Dynamixel, which plugs in to a USB port in the desktop com-

puter. The USB2Dynamixel outputs to three wires (power, ground, signal) which connect

to the motors using transistor to transistor level serial communication. The power line is

directly connected to a 12 V power supply, and the motors draw less than an amp of current

during normal operation. The motors are daisy chained together using short three-pronged

connector wires, and assigned their own ID. Motor registers such as motor ID, torque, po-

sition, and more can be directly and easily modified with the Dynamixel wizard, or in the

code using the SDK.

55

7.2.2 Sensing

Figure 7.6: This figure shows how data is transferred from the contact sensing circuit on the

head of the robot to the Arduino Mini, to the Arduino Mega, and finally to the computer.

In order to implement the controller, the actuation of the motors must be combined with

sensing data from the contact sensing circuit. Fig. 7.6 shows how data is transferred from

the contact sensing panels (7.4) to the main program. Starting with the Arduino mini, a

simple sketch compares the analog value for the capacitance of each panel with a threshold

to determine if contact has been made. Then, for digital output pins, one corresponding to

each of the panels, are set to either HIGH or LOW depending on if contact is detected. This

signal is sent to the Arduino Mega over four wires, and input as an GPIO digital input. This

data can be requested in the Arduino Mega sketch, again relying on the serial interrupts.

Writing the command ’data’ to the serial monitor tells the the Mega to read these four pins

and determine the contact state. In the main snake loop, this information is requested at

every time step, and is written to a CSV file along with the Optitrack data. In addition,

this information can be used in the loop to determine when contact has been made between

the snake and the post and trigger the controller. In order to prevent a random spike from

activating the controller, a minimum of three contact points is necessary for the controller to

activate. We have seen in post-processing the contact sensor data that this a good threshold

for determining what is a real contact and what is just a spike in the readings.

56

7.3 Serpenoid Curve

Figure 7.7: The angle of each segment, ζN(t)), is defined according to the serpenoid equa-

tion, where the angle is defined from the center position. The lefthand figure (from Robotis

documentation) shows the relationship between the physical angle and the analog input

value for the AX-12A motors, and the righthand figure (from [2]) shows these angles de-

fined along the body of the snake robot.

The theory for how to generate the open loop trajectory is well established in the liter-

ature. We consider an N-jointed snake robot, where we specify the joint angles ζ (t) =

(ζ1(t), ...,ζN(t)) ∈ RN for 1 ≤ i ≤ N at some time t. Hirose et al. [1] described a family

of curves, the serpenoid curves, that can parameterize the shape of a snake robot during

locomotion under a variety of gaits. In this work, we focus on two dimensional locomotion

for which the corresponding open-loop serpenoid curve is given by [1, 11, 15]:

ζi(t) = ζ0 +Asin(ωS si−ωT t) , (7.1)

where ζ0 is a constant curvature offset, si is the distance from the head of the snake to

57

the joint i along the snake’s body, A, ωS and ωT respectively are the amplitude, the spatial

and temporal frequencies of the serpenoid curve. For our robot, we implement the Hirose

equation to find that the position of each motor is given by:

ζi(t) = Asin
(

2πi
N
− 2π f t

)
, (7.2)

where A is 40 degrees, i is the motor number, N is the total number of motors on the snake

(12), and f is 0.22 Hz. As shown in Fig. 7.7, the angle ζ is defined from the center of the

motor so that if all motors were commanded to have an angle of 0, the robot would be in a

straight line. Therefore, this commanded angle needs to be shifted and scaled to match the

command input range of the AX-12As where a commanded value of 0 to 1023 maps to an

output angle of 0 to 300 as defined in Fig. 7.7.

58

7.4 Modeling Robot Obstacle Interactions

7.4.1 Straight Line Testing

Figure 7.8: Straight line experiments were run off to the side of the posts to verify that the

open loop controller resulted in a straight line trajectory of the center of mass of the robot.

In order to validate that programming these angles results in the desired open loop behavior,

we tested the robot off to the side of the posts. Fig. 7.8 shows an example of a successful

data set for this kind of straight line callibration. For the ten experiments shown, the mean

angle is -0.5 degrees with a standard deviation of 1.5 degrees. Archiving this level of

reproduciblity was a fairly challenging problem. Issues with the snake and servo motor

59

Figure 7.9: Definition of the important parameters to our model of the robot-obstacle inter-
action. The lefthand figure shows the head contact angle φ between the post and the head
of the robot, and righthand figure (courtesy of Jennifer Rieser) shows the scattering angle
θ determined from the head trajectory of the robot.

caused the trajectories to either be at an angle or curved. In particular, we observed that

the straight line angle changed over time after many experiments. This was caused by

the fact that the screw in the servo motor controlling the gantry orientation loosened over

many experiments. Adding loctite to the screw fixed this issue, but we also noticed some

curvature in the trajectory of the snake. This curvature was caused by wear on the wheels,

which changed the nature of the direction dependent friction for a few segments of the

body. Replacing all of the wheels on the snake resulted in the straight line behavior seen in

the figure.

60

7.4.2 Sampling Initial Conditions

Finally, we needed a way to model and understand the collisions between the snake robot

and the posts. We observed that collisions between the snake and posts caused the robot to

change its orientation and follow a new straight line trajectory. We call this angle between

the original heading of the robot and the new trajectory the scattering angle, which we

determine from the Optitrack data in post processing. Fig. 7.9-B shows the sign convention

used for the scattering angle measurement. Once the robot has passed a threshold distance

past the posts in the Z direction, we fit two lines the maximum and minimum values of the

waveform, then average the slope of these two lines. From the slope of the line, we can

then determine the angle from the global reference frame.

We model this interaction between the posts and the robot by measuring scattering angle

as a function of two contact states: head contact angle φ and the phase η . The head contact

angle is defined according to the sign convention presented in Fig. 7.9-A, and tells us the

location on the post where the snake first makes contact. The phase of the snake is defined

by equation 7.3 and tells us what part of the cycle the snake is in when it makes contact.

η = atan
(

dx
wx

)
(7.3)

In order to systematically sample all geometrically allowable contact states, we system-

atically sample a box of head position initial conditions. For a single post, the size of this

box is dictated by the dimensions of the robot. This centered 20 by 40 cm box is randomly

sampled by the gantry system for around 500 experiments. In the multiple post setup, the

dimension of this box is dictated by the length of the robot and the center to center distance

between the posts. This sampling method allows us to make a fair comparison between

open loop and controller, as well as to fully understand the different contact conditions

that arise in the experiments. Chapter 8 will further explain how this control scheme was

developed, then the results from these tests will be presented and discussed in chapter 9.

61

CHAPTER 8

CONTROLLER DEVELOPMENT

8.1 Controller Overview

Figure 8.1: Overview of the anticipatory controller. Interactions between the robot and the
post are studied in simulation and experiment. A linear correlation between scattering angle
and head contact duration is used to determine the amplitude change required to correct for
the scattering. The robot uses AMM steering to correct for scattering after contact, and the
resulting distributions are compared for the open loop snake and controller.

Previous work in the Chrono simulation environment [2], [16] demonstrates the ex-

istence of a linear relationship between the scattering angle and the duration of contact

between the head and the post shown in the first panel of Fig 8.1. Given this relationship,

this section describes how an anticipatory control scheme was developed by building on

the Amplitude Modulation Method (AMM) [14]. At a high level, the controller uses this

relationship to anticipate the scattering angle based on the recorded contact duration, and

implements the amplitude modulation method to correct for it. The resulting distributions

for the open loop trajectories and the controller are compared for the single and multiple

62

post setups in section 9.

8.2 Controller Implementation

This section addresses the details as to how the controller is implemented on the robot.

Section 8.2.1 explains the method we use to predict the magnitude of the scattering angle by

summarizing a result from [2]. Section 8.2.2 describes the theory behind how an amplitude

change on the snake results in a change in heading. Section 8.2.3 takes this theory and

validates it with systematic testing on the robot. Finally, section 8.2.4 discusses a method

to predict the scattering direction of the robot using only the available onboard sensing.

8.2.1 Predicting Steering Magnitude

We hypothesize that the relationship between scattering angle and contact duration (Fig. 8.2)

can be used to control the robot to reduce the scattering behavior for larger scattering an-

gles. Note that data points with a contact duration of about .5 seconds and less, this linear

relationship no longer holds. In this region, there is little the controller can do to correct

for the steering behavior so scattering within plus or minus five degrees in this region is

expected with or without the controller. For longer durations, however, we should be able

to use a linear regression of this data in order to determine how much steering is necessary

to correct the orientation of the robot. This relationship is verified experimentally in 9, and

implemented in the controller with the help of the Amplitude Method for steering.

63

Figure 8.2: Simulation plot of scattering angle vs contact duration taken from [2].

Figure 8.3: Wu et al provides a framework for steering a snake like robot - this figure is

first presented in [14].

64

8.2.2 Steering Implementation: Amplitude Modulation Method

According to [14], a snake robot can be steered by increasing or decreasing the amplitude of

the sine wave in equation 7.2 at what is known as a point of zero curvature along the snakes

backbone, i.e. where the sine wave and the resulting joint angle are equivalently zero. Wu

and Ma outline the following steps to achieve this steering. First the robot moves along

straight line (labeled 1 in Fig. 8.3-B) until it reaches point A. At point A, the amplitude

of the first motor is increased, so that the snake follows trajectory 2. In the joint angle

vs time plot, (Fig. 8.3-A) point A is what is known as a point of zero curvature, and is

important because it is the beginning of a new undulation so the snake joint angle is zero.

The amplitude change from the first motor is passed down the body of the snake following

the offset in the snake equation, as shown in 8.3-A. Once the snake completes half a cycle,

the amplitude of A is changed back to normal, and this amplitude change is passed down

the body once again. The result of the controller is that the snake now moves along path 3,

and the resulting steering angle Φ is directly related to the amplitude change ∆A as shown

in Equation 8.1.

Φ =
2N
ωS

∆A (8.1)

where ωS is the spatial frequency of the serpenoid curve, and N the number of joints on the

robot. This equation provides the theory behind how we can steer to correct for scattering,

but we still need to validate that this approach will actually work on our robot.

8.2.3 Steering Implementation: AMM steering testing

To test this steering scheme on the robot, first the joint angle vs time plot from Fig. 8.2.2-A

for each joint was reproduced in a Matlab script to verify that the method was implemented

correctly. In this testing script, an array of angles is given as an input, then equation 8.1

is used to calculate the appropriate amplitude change required to steer at the given angle.

65

This amplitude change is then implemented on the head joint after the first full undulation,

and passed down the body by making the amplitude change at the correct time. At the next

point of zero curvature, the amplitude is changed back to the normal value.

Once we could reproduce Fig. 8.2.2-A and generate Fig. 8.11, we were confident that

the code was working correctly so it was implemented on the robot. Using a similar ap-

proach, the commanded angles in column 1 of table 8.4 are given as an input for the con-

troller on the robot running off to the side of any obstacles. After implementing the AMM

steering (again at the first undulation), the resulting angle caused by the steering is mea-

sured by the Optitrack cameras overhead from the head trajectories shown in Fig. 8.5.

Figure 8.4: Angles commanded to the robot and measured via the Optitrack system (in
degrees). Note that error increases at higher angles.

These measured angles show a systematic error between the measured angle and the

actual angle. This is not surprising since nothing in the Wu paper addresses our particular

robot. Therefore, equation 8.1 is modified by adding a calibrated constant, α , to correct for

66

Figure 8.5: The resulting head trajectories of implementing the AMM on the robot to steer
to the angles in table 8.4.

this systematic error. The modified steering equations now reads:

Φ =
2Nα

ωS
∆A (8.2)

where the calibrated constant α is specific to our experimental setup. Fig. 8.6 shows

how adding this constant improves the tracking of commanded angles by plotting measured

angle vs commanded angle. For perfect tracking, we would expect the points to fall along

the line y = x, shown in black. The red X markers represent the experimental data points

before implementing the calibration constant, and the blue X markers represent the exper-

imental data points with the correction. While there is still some small error between the

commanded value and measured value for these points, it is random. This figure shows

that we can accurately predict the correct angle to steer, the amplitude modulation method

gives us the ability to achieve that angle on the robot accurately.

67

Figure 8.6: Using the experimentally determined correction constant results in better steer-

ing performance for large angles.

8.2.4 Predicting Scattering Direction

Knowing the magnitude of the scattering angle, however, is not sufficient for correcting

scattering. Depending on the state of contact between the head of the robot and the post,

the robot may scatter to the left or the right. Predicting the scattering direction based on the

available on board sensing, however, is not a trivial problem. The work in simulation [2]

again provides us with a useful starting point. Fig. 8.7 shows that contact on the right side

of the post generally scatters in the positive direction and contact on the left side of the post

generally scatters in the negative direction. Therefore, we hypothesize that contact with the

right front contact panel on the head of the snake 9.3 will correlate strongly with contact

on the left side of the post. From 8.7, we know that contact on the left side of the post

will most likely will result in scattering in the positive direction. Therefore, we command

68

Figure 8.7: Contact location on the post is a fairly reliable indicator of the direction that
the robot will scatter. Reproduced from [2].

the snake to steer in the negative direction to counteract this predicted scattering. Still, the

correlation in 8.7 is not true for all of the simulation data. This is an important observation

because predicting the wrong scattering direction will result in the controller performing

worse than the open loop case. Based on the simulation results, we hypothesized that

looking at which contact panels make contact with the post can be a good predictor of the

direction of the resulting scatter. In this first iteration of the controller, scattering direction

is predicted based on the first state of contact between the robot and the obstacle. However,

the analysis in Chapter 9 will show that the last contact state gives a better prediction of

scattering direction.

69

8.2.5 Steering Direction Implementation

One interesting observation from these early experiments is what the amplitude modula-

tion looks like on the body. When we were running these tests to develop the accuracy of

the angle tracking, the amplitude modulation was always implemented after the first full

undulation of the snake. We observed that, for this particular point of zero curvature, in

order to steer in the positive direction a negative amplitude change is implemented. This

causes a local decrease in curvature, and the snake lengthens in the direction of locomotion

which we call expanding (shown in Fig. 8.8-A). Conversely, to steer in the negative direc-

tion, a positive amplitude change is implemented. This causes a local increase of curvature,

and the snake shortens in the direction of locomotion which we call contraction (shown in

Fig. 8.8-B).

Figure 8.8: The amplitude change causes the snake to expand or contract when viewed from
above. Depending on which point of zero curvature the steering activates, either shape can
be used to steer in the positive or negative direction.

However, we can see from 8.3 that there are also points of zero curvature at half un-

70

dulations. In order to take advantage of additional points of zero curvature, we modified

the controller so that it can steer at these half cycle as well as full cycle points of zero

curvature. Another interesting observation is that the steering behavior at the half cycle

is actually reversed. This behavior is likely due to the fact that at the half points of zero

curvature, the global angle of the head joint is pointing in the opposite direction as when

then robot is at full cycle points of zero curvature. Fig. 8.9 shows how if you want to steer

in the positive direction and you make begin implementation at a full cycle point of zero

curvature, you should expand the snake. Conversely, if you wanted to steer at the half cycle

point, then you would want to contract the snake. Therefore, we can achieve steering at

next immediate point of zero curvature by changing the sign of the amplitude change for

the half cycle points of zero curvature, which is what is implemented in the first iteration

of the controller. Variations on this steering decision are considered in chapter 9.

Figure 8.9: The sign of the amplitude change required to steer in a desired direction depends
on which point of zero curvature the steering method is activated.

8.3 Controller Summary

The following steps summarize the anticipatory controller:

1. Detect contact and record contact location and duration

2. Predict scattering direction based on location of contact on the head of the robot

71

3. Predict scattering angle based on the linear correlation between scattering angle and

head contact duration

4. Determine the appropriate amplitude change in order to correct for the predicted

equation using equation 8.2.

5. Implement amplitude modulation method with the correct sign at the first point of

zero curvature after contact

Figure 8.10: Two experiments with the same initial conditions are compared, one with the
anticipatory controller and one open loop.

Note that in step three, only the front two panels are used to measure contact duration

in order to be consistent with the implementation in simulation. Figure 8.10 illustrates

the controller in action for a typical single peg experiment. The open loop head trajectory

72

(blue) results in a fairly large scattering angle based on the collision with the post. The con-

troller (red), however, is able to correct for a majority of this scattering by implementing

this amplitude change at the point of zero curvature. It is worth noting that while the trajec-

tory has translated in the X direction due to contact with the post, this kind of trajectory is

typical of the controller. Since we are trying to control the snake’s orientation not position,

this translation is not an indicator of poor controller performance. This translation, how-

ever, is an interesting feature of the controller and worth considering, especially in terms of

the modified controllers in Chapter 10. We would expect the size of this translation to be

closely tied to how long the controller needs to wait to implement steering between the end

of contact and the appropriate point of zero curvature. For this reason, the first iteration of

the controller steers immediately at the first available point of zero curvature.

8.4 Anticipatory Controller within the Shape-based framework

0 2 4

Cycles

2

4

6

8

10

12

S
e
g
m
e
n
t

-50

0

50

0 2 4

Cycles

2

4

6

8

10

12

S
e
g
m
e
n
t

-50

0

50

Figure 8.11: Two space-time plots are generated in Matlab, one for the open loop case and

one for the anticipatory controller.

In this section, we briefly explain how this controller fits within the shape-based control

framework first mentioned in 8.1. Shape-based controllers use a family of shape functions

to reduce the dimensionality in systems with such high degrees-of-freedom like a snake

73

robot [17]. The goal of such a shape function h : Σ→RN is to determine ζ (t) as a function

of a small number of control parameters. Those parameters lie in the shape space Σ, which

is usually of a lower dimension than RN . In [17], shape functions h(A,ωS) = ζ (t) are

defined in the form of Eq.(7.2) where the amplitude and spatial frequency are allowed to

vary, and the other parameters are held constant:

h : Σ = R2 7→ RN

hi(A(t),ωS(t)) = θ0 +A(t)sin(ωS(t)si−ωT t) .
(8.3)

Shape based controllers define groups of joints along the snake as windows, which are

specified by joints between points of zero curvature along the body. These windows allow

for the robot to make local changes in curvature based on local sensing at the head of the

robot, and then pass theses changes down the body [11]. The first window encompasses

all joints from the robot’s head to the first point of zero-curvature along its body. The

following windows are defined between two successive points of zero-curvature along the

robot’s body, and the last window between the last point of zero curvature and the tail.

The windows naturally move down the body at the same rate as the serpenoid curve (i.e.,

2π/ωT). This process enables us to naturally pass information along the robot’s body, as

the snake locomotes through its environment.

We can see now that the Amplitude Modulation Method presented by [14] is equivalent

to discretely changing the curvature of the head window, at the first point in time when the

head module is at a zero-curvature point after a collision. By changing the amplitude at

the head and passing it down the body, we are effectively modifying the amplitude of the

new head window, which begins when the head joint reaches its point of zero curvature and

ends when the head joint reaches its next point of zero curvature. At that second time, a

new head window is initiated at the head joint, and the amplitude of this new window is

reset to its normal value.

This is illustrated nicely by the two spacetime plots in Fig. 8.11 which were generated in

Matlab with the script described earlier. The controller plot (right) is clearly distinguishable

74

from the open loop plot (Left) by the dark band that is passed down the body at around two

cycles. This dark band represents an amplitude change which is initialized at the end of the

first cycle at the head, and then passed down the body.

75

CHAPTER 9

RESULTS

In order to verify some of the simulation results presented in Chapter 8 as well as evaluate

the performance of the controller, we conduct experiments with a single post or an array

of evenly spaced vertical posts. Section 9.1 presents the results from the single post ex-

periments. Section 9.2 shows the results for the multiple post setup. Finally, Section 9.3

looks closer at the results to understand what factors impacted the performance of these

controllers. In addition to potential shortcomings of the controllers, we will also men-

tion methods which could improve the performance of the controller in these experiments.

These insights are used in Chapter 10 to develop and test modifications to the controller

with the goal of further reducing the scattering distributions for both the single post and the

multiple post setup.

76

9.1 Single Post Results

Figure 9.1: An early rendering of the snake robot in a typical single post experiment (cour-

tesy of Zachary Goddard).

The single post experiments were crucial both for controller development as well as testing

the controller. In the single post setup, a box of initial conditions is sampled randomly. This

box represents the position of the head joint of the snake on the mat. The box is symmetric

about the post, which means that if the head position of the robot falls along the axis of

symmetry of this box, the trajectory of the center of the mass of the robot passes directly

through the center of the post. The size of this initial condition box is dictated by the size

77

of the robot, and is 28 cm wide by 40 cm tall. Once the system has been calibrated so that

the robot is traveling straight as shown in Fig. 7.8, and since the locomotion of the snake is

cyclic, sampling this box of initial conditions gives a thorough sampling of the allowable

contact states (contact angle and phase defined in Chapter 7) between the robot and the

post. This is verified in Fig. 9.2, where the scattering angle is plotted as a function of the

contact states. Note that for the single post, a majority of the experiments do not actually

hit the post. Experiments where no contact was made don’t offer much insight into the

interactions between the robot and the post, and are generally omitted from the analysis.

Figure 9.2: The scattering angle is calculated as a function of the contact states contact
angle, φ , and phase, η . Comparison with the simulation results in [2] shows that our
sampling of robot head initial conditions provides a good representation of the allowable
contact states between the robot and the post.

78

9.1.1 Open Loop Results: Predicting Scattering Direction

Figure 9.3: Contact between the head of the robot and the post is used to predict scattering

direction. The left-hand figure gives an overview of the possible contact states on the head

of the robot, and right-hand figure plots scattering angle vs contact duration, colored by

contact state.

In Chapter 8, we predicted that the contact location on the head of the robot would be a

good indication of the direction the robot should scatter. One of the important early results

from the open loop data was to verify this prediction experimentally. The plot in Fig. 9.3

shows the contact state of the robot at the moment of first contact as a function of the

scattering angle and contact duration. Note that the left back and right back sensors are not

used in order to stay consistent with the simulation work presented in [2]. The points in

blue represent the experiments where the robot registered contact on the right front panel

of the robot, and generally scattered in the positive direction. The points in red represent

the experiments where the robot detected contact on the left front panel of the robot, and

these points generally scatter in the negative direction. This shows that the initial contact

detected by the robot at first contact is generally a good predictor of the direction that the

79

robot will scatter, and this is what is implemented in the first iteration of the controller in

order to determine which direction to steer. The points in green, however, make contact

with both the left and right panel at the first point of contact and can scatter in either

direction. The analysis is Section 9.3 provides some insight into a better way to predict

scattering direction by addressing these points, and is used to inform a better anticipatory

controller in Chapter 10.

Figure 9.4: Scattering angle vs contact duration for simulation (light blue) and experiment
(positive angles in red and negative angles in blue).

In addition to the steering direction, we wanted to verify the relationship shown in

Fig. 8.2 experimentally in order to have a method to determine the magnitude which the

robot should steer. The light blue points represent the simulation data, and the points in

red and blue are the positive and negative experimental data respectively. Note that the

durations for both the simulation and experiment are scaled by their respective frequencies

in order to make a fair comparison, which is why the duration units are in fractions of a

cycle. This figure not only shows a strong agreement between simulation and experiment,

80

but also provides us with the equation we need for the controller: the linear regression of the

negative data points shown in dark blue. For simplicity, we used this same equation for both

the positive and negative scattering angles based on the symmetry of Fig. 9.4. However, we

will see for the multipost experiments, the resulting open loop scattering distributions are

not always perfectly symmetric, and this assumption may impact controller performance.

9.1.2 Controller Results

Figure 9.5: Scattering angle is plotted as a function of the two contact states for the con-

troller.

Using these open loop experiments, we were able to develop the controller, then test it on

the single post setup. The same sampling procedure is used to acquire the controller data,

and roughly 500 total experiments are collected for both the open loop and controller so that

we can determine the effect of the controller on the scattering distribution by comparing

the controller data against the open loop data. Fig. 9.5 plots the controller scattering angle

81

as a function of the two contact states. Note that there are fewer dark red and blue points in

this figure than in 9.2. However, to make a more direct comparison, it is easier to compare

the histograms of the scattering angle in Fig. 9.6. These histograms of the scattering angle

of experiments where the robot made contact with the post show a reduction in scattering

with the implementation of the controller. Note that these two probability density plots can

be roughly approximated with a Gaussian function. In order to quantify this reduction in

scattering, we fit the data with these functions. For the open loop experiments, σ = 10.7±

0.9 and for the controller σ = 6.5±0.6. This shows a noticable reduction in scattering, but

as we will see in Section 10, the single post controller can be improved considerably with

some clever modifications.

Figure 9.6: The histograms for the open loop controllers are fitted with normalized gaussian

functions in order to get an estimate of the spread of the data.

82

9.2 Multiple Post Results

Figure 9.7: An early rendering of the snake robot in the multipost experimental setup prior

to making the modifications in Chapter 7 (courtesy of Zachary Goddard). All posts have a

radius of 2.3 cm and the spacing between posts is 6.9 cm.

With the controller functioning reasonably well for the single post experiments we were

interested to see how this controller could handle an array of five evenly spaced posts. We

selected a distance of 6.9 cm between the posts because we observed quantitatively that at

smaller spacings, the robot often failed to locomote through the posts, and at larger spac-

ings, the robot effectively acts the same as in the single post case. Again, we systematically

83

sample a box of initial conditions symmetric about the center post. Now, however, the box

of initial conditions is dictated by the post spacing and the robot length. The results for the

multiple post controller are shown in Fig. 9.8. In the open loop case, the two open loop

peaks at ±20 degrees are destroyed by the controller. However, this means that we cannot

use Gaussian functions to estimate the spread of the distribution. Instead, we calculate the

15th and 85th quantiles to use as a measure of the spread, since this tells us that 70 percent

of the data falls between these two values. The quantiles for the open loop and controller

are (-19.9,15.3) and (-9.5,18) respectively. This shows that the controller has a noticeable

reduction in the scattering behavior, but could definitely be improved.

Figure 9.8: Histograms for the multipost open loop and controller, with the 15th and 85th

quantile plotted as red vertical lines.

84

9.3 Discussion and Analysis

In order to understand the when and where the controller is effective, a close analysis

of the controller performance is required. Analyzing the shortcomings of the controller

in these experiments will allow us to develop alternative approaches that should improve

performance. Furthermore, some of the limitations are inherent to our system, and these

limitations are also important to be aware of in order to contextualize the results from the

experiments.

9.3.1 Single Post Controller Limitations

There are two clear sources of error in the controller in the single post controller. First,

there is some error in predicting the magnitude of the scattering. Since the amount the

controller steers is determined by a linear regression of experimental data, there is definitely

uncertainty associated with this fit. For the points in Fig. 9.4 that do not fall near these two

curves, the controller would not be effective at correcting the orientation of the robot.

A much more likely source of error, however, are mistakes in determining the steering

direction. We saw in Chapter 8 that the first point of contact between the robot and the posts

was a fairly good indicator of the direction that the robot will scatter. We hypothesized that

this prediction could be further improved by instead looking at the last contact between

the robot and the post. Fig 9.9 shows that last contact is in fact a much better indicator

of scattering direction than first contact. With this in mind, the controller is modified in

Chapter 9.9 to choose the steering direction based on the last panel in contact with the post.

85

Figure 9.9: Scattering angle vs duration colored by contact sensing panel in contact with

post at the last moment of contact. Last contact serves as a better indicator of scattering

direction than first contact.

9.3.2 Multiple Post Controller Limitation

One clear difference between the multipost setup and the single post experiments is that the

robot must locomote between the posts after the contact between the head and the posts is

broken. This certainly has the potential to impact the trajectory of the robot, especially if the

controller is attempting to change the shape of the snake while it is fitting through this gap

in the posts. Therefore, these re-orientations caused only by the body cannot be corrected

by the controller since we only have local sensing on the head of the robot. In order to

minimize the effects of these body contacts, we propose several variations on the controller

86

based on the idea that steering at the right time or in the right way can assist the snake to

locomote through the posts. These approaches are developed in detail in Chapter 10, and

the results for each of the modified controllers are presented.

Another complication present in the multiple post setup is that the robot can actually

make contact with multiple posts. In this case, it is unclear which contact duration will

dictate the scattering behavior of the robot. Again, we turn to the simulations in [2], which

say that the longest contact duration will be the best predictor of the scattering behavior

as shown in Fig. 9.10. Therefore, we would expect that the somewhat naive open loop

controller would guess the scattering direction incorrectly. Imagine the robot making a

glancing contact with a peg on the left of the head, followed by a longer contact on the

peg on its right. We would expect that the second contact will dictate the direction of the

scattering. However, the controller will actually steer the robot based on the first contact,

and will actually make the controller perform worse than the open loop in this example.

Therefore, we propose modifying the open loop controller so that the scattering direction

is predicted based on the longest duration. Implementing this controller, however, is not

trivial. Chapter 10 discusses one possible method to accomplish this as well as the potential

drawbacks of this method.

9.3.3 Robot Limitations

The physical limitations of the robot also certainly had an impact on the controller perfor-

mance in some experiments. While the simulation assumes that individual robot segments

are perfectly rigid, this is certainly not true with 3D printed brackets. While these brack-

ets generally hold the motors in place, in some instances when they are experiencing high

torque (like when the robot is ”caught” in between posts in the multipost setup), these

brackets are certainly capable of bending. In particular, it seemed like the brackets became

a little bit more flexible over time. Many of the brackets have been on the robot for well

over a year, experiencing thousands of experiments. In order to make future versions of the

87

robot more robust, these brackets can be reinforced by making them a little bit thicker or

using a higher fill on the 3D printer.

In addition, the lego wheels were also subject to wear over the course of many ex-

periments. This was a particularly problematic because once the inside of the wheel hub

has been worn out by friction between the axle and the hub, the wheels lose the direction

dependent friction that is needed to locomote. As this friction property changes at differ-

ent rates on different wheel modules along the robot’s body, the robot will slowly lose its

ability to locomote straight. Even with the gantry servo motor calibrated correctly, worn

wheels will cause the robot to follow a curved trajectory instead of a straight line, which

has the potential to impact the quality of our results.

88

Figure 9.11: Unusual deformations sometimes occur for both the open loop (blue) and

controller (red) in the multipost setup.

Finally, the robot is limited by the torque output of the robot. In general, deformations

to the shape of the robot tend to be relatively small, but sometimes the robot hits a post

with the right combination of contact angle and phase which causes the head to get pinned

on the post. These contact cases are very rare, but the controller is unable to correct for

the large scattering which can be generated. The resulting trajectories are disjointed and

unpredictable as shown in Fig. 9.11, and controlling the robot in these uncommon cases is

outside of the scope of what we hope to accomplish with the controller.

89

Figure 9.10: In the multipost experiments, having more than one contact between the robot
head and the posts is possible. Results from simulations in [2] suggest that the longest con-
tact duration is a better indicator of the resulting scattering duration than the first contact.
The top figure shows the angle vs duration relationship for the first contact between the
robot and the posts and the bottom figure shows the longest contact between the robot and
the posts.

90

CHAPTER 10

IMPROVING THE CONTROLLER

In this chapter, ideas for improving the performance of the controller are quickly developed

and tested. For this reason, each iteration of the controller has significantly less experimen-

tal data than in the previous section. These controller modifications are inspired by and seek

to address some of the limitations and challenges of the controller discovered by the anal-

ysis in Section 9.3. First, in 10.1 the single post controller is modified to decide scattering

direction based on the last contact panel in contact with the post instead of the first contact

panel in contact with the post. Then, in 10.2, several modifications are tested in order to

address the limitations of the controller in the multiple posts configuration. In particular,

we will attempt to reduce the body effects of the snake robot as it locomotes through gaps

in the posts and improve the steering direction prediction when the snake contacts more

than one post. We hope that these modifications to the controller offer the road map to how

to create a more effective controller for navigating the single and multipost setups, as well

as offering further insights into the collision between the robot and posts.

10.1 Modified Single Post Controller

While the single post controller results presented in Chapter 9 certainly show a reduction

in scattering, we believe that this can be improved further by using the last contact to de-

termine scattering direction as opposed to first contact as mentioned in Section 9.3. We

hypothesize that making this change will reduce the overall scattering pattern for the single

post by greatly reducing the point where the controller chooses to steer in the wrong direc-

tion. To test this hypothesis, the new controller and open loop were tested for 100 initial

conditions each. These initial conditions span a 8 by 40 cm box, with experiments evenly

spaced 2 cm apart.

91

Figure 10.1: Histograms of the open loop (top) and new controller (bottom), with quantiles

shown in red.

We found that the new controller was able significantly reduce the scattering distri-

bution. Fig. 9.8 shows the histograms for the open loop and controller for these initial

92

conditions. We can see that the quantiles for the open loop (-10.7,17.9) span a much larger

range of angles than those for the controller (-1.0,7.6).

10.2 Modified Multiple Post Controller

Now that we have dramatically improved the controller performance for the single post

case, we can consider improvements specific to the multipost setup. As mentioned in Sec-

tion 9.3, the two biggest issues impacting the performance of the controller in the multipost

setup are the re-orientations caused by the body moving through the posts and multiple

head contacts. This section proposes and tests modifications to the controller in order to

help address this concerns.

10.2.1 Reducing robot body effects

The first group of controller modifications seeks to reduce the body re-orientations by

changing how and when the steering mechanism is implemented. Recall from Chapter 8

that the robot can be steered in either direction by just contracting or expanding its shape

if the steering is initialized at the appropriate point of zero curvature. Based on this ob-

servation, four variations of the controller are compared against the open loop controller

and each other. For each modification, 60 initial conditions centered around the middle

post and evenly spaced 2 cm apart are tested. The controller modifications are described as

follows:

1. Improved single post controller: This is the controller just presented in the previous

section. The last contact state of the first detected contact is used to determine which

direction to steer the robot. Then the controller will initialize steering at the next

point of zero curvature. The pseudo-code below summarizes the controller and pro-

vides a reference for comparing the proposed modified multiple post controllers.

if End of first contact is detected then

93

Record last contact panel touched

Record contact duration

Choose steering direction based on last contact

Determine amplitude change ∆A from eq. 8.2

Begin Amplitude Modulation Method steering at next point of zero curvature

end if

2. Expanding controller: This controller again picks the direction to steer based on the

last contact state of the first detected contact. Then, the controller steers using only

the expanding shape. If the expanding shape results in the desired steering direction

at the next point of zero curvature, it steers as soon as possible. Otherwise, the snake

waits another half undulation to steer with the expanding shape. Implementation of

this scheme is summarized by the pseudo-code below.

if End of first contact is detected then

Record last contact panel touched

Record contact duration

Choose steering direction based on last contact

Determine amplitude change ∆A from eq. 8.2

end if

if Expanding Shape (∆A < 0) then

Begin steering at next point of zero curvature

else

Wait another half cycle to steer

Flip the sign of ∆A

end if

3. Contracting controller: This controller again picks the direction to steer based on the

94

last contact state of the first detected contact. Then, the controller steers using only

the contracting shape. If the contracting shape results in the desired steering direction

at the next point of zero curvature, it steers as soon as possible. Otherwise, the snake

waits another half undulation to steer with the contracting shape.Implementation of

this scheme is summarized by the pseudo-code below.

if End of first contact is detected then

Record last contact panel touched

Record contact duration

Choose steering direction based on last contact

Determine amplitude change ∆A from eq. 8.2

end if

if Contracting Shape (∆A > 0) then

Begin steering at next point of zero curvature

else

Wait another half cycle to steer

Flip the sign of ∆A

end if

4. Delayed Controller: This controller again picks the direction to steer based on the last

contact state of the first detected contact. This controller steers using either the con-

tracting or expanding shape, but waits an extra half undulation before steering. The

idea behind this controller is to just give the robot more time to clear the posts before

sending an amplitude modulation down the body.Implementation of this scheme is

summarized by the pseudo-code below.

if End of first contact is detected then

Record last contact panel touched

95

Record contact duration

Choose steering direction based on last contact

Determine amplitude change ∆A from eq. 8.2

Wait an extra half cycle then begin AMM steering

end if

The results of these four controllers were compared, and the expanding controller was

shown to be the most effective at reducing the scattering behavior. The raw data for the

expanding controller and open loop are presented in Fig. 10.2 to show visually how the

controller is again most effective for durations longer than 0.5 seconds. Furthermore, in or-

der to estimate the spread of the data, the quantiles are plotted in the histograms of Fig. 10.3.

The quantiles for the expanding controller (-2.0,14.2) show a considerable reduction over

the open loop quantiles (-8.9,23.3) as well as the other controller variations. If we define a

metric δ for describing the spread of these distributions as the difference between the 85th

quantile and the 15th quantile, we can easily rank these modified controller in terms of

performance. These controllers, in order of best to worst performance, are the expanding

controller (δ = 16.2), the improved single post controller (δ = 23.1), the contracting con-

troller (δ = 24), the open loop controller (δ = 32.2), and the delayed controller (δ = 41.3).

It is worth noting that while both the expanding and contracting controller were on par with

or better than the improved single post controller, the delayed controller performed quite

poorly. This suggests that there may be a cost associated with waiting too late to steer. The

histograms for these other controllers are included in the appendix.

10.2.2 Addressing Multiple Collision Experiments

As mentioned earlier, multiple head collisions is a problem that is not currently addressed

by the controller. Based on the simulation results in Section 9.3, we believe modifying

the controller to choose the steering direction based on the longest contact duration will

help to mitigate this problem. Taking the expanding controller that performed the best in

96

Section 10.2.1, we build on this controller to adapt it to base its decision on the longest

of the first two contacts between the robot and the post. One of the complications of this

controller is that we need to estimate how long to wait for a potential second contact.

This is addressed by adding a waiting state in between the end of the first contact and

the start of the steering implementation. The longest duration controller is summarized

below:

While the snake is moving, different conditions are checked during each loop iteration

to determine when to activate the controller. First, the code checks to see if contact is de-

tected between the head of the snake and the posts. If this contact is detected the contact

start time is recorded, and the code checks each iteration to see if the contact has been bro-

ken. Once this contact is broken, the contact end time and contact panel are recorded. The

end of contact also causes the code to enter a wait state, which was selected to be three sec-

onds. During this wait state, again we check for a second contact initialization and contact

end. If a second contact is not detected during the wait state, the snake determines the cor-

rect magnitude and direction to steer based on the contact duration and final contact panel,

as well as the appropriate point of zero curvature to begin the steering. These parameters

are fed as inputs into a subfunction that executes the amplitude modulation method to steer

the snake. However, if a second contact is detected during this wait state, the duration and

contact panel for this contact are recorded, and the wait state is terminated immediately

once this second contact is broken. If the second contact is longer than the first contact, the

appropriate magnitude and direction to steer is determined based on this second contact. In

order to implement steering, we use only the expanding shape like in the expanding con-

troller discussed in the previous section, by checking the sign of the amplitude change. If

the amplitude change is negative, then the snake steers at the next point of zero curvature,

but if the sign is positive then the sign of the amplitude is reversed and the steering begins

a half undulation later.

In this manner, we can chose the correct direction to steer by using the longest of the

97

first two contacts. This controller was tested for 60 experiments, with the head initial condi-

tions centered on the middle post, and spaced two cm apart. The results from this controller,

which are shown in 10.4, demonstrate that the performance of this control scheme is fairly

comparable with that of the expanding controller without looking at the longest duration.

In particular, the quantiles (-1.2,15.1) and δ = 16.3 for this controller are nearly identical

to those of the first contact, expanding controller. While implementing longest contact did

not produce the further reduction of scattering we were expecting, this result at least shows

consistency performance from the expanding controller.

While the longest duration/expanding controller did not offer an additional reduction

in scattering over the first duration/expanding controller, we believe that this controller can

be further improved with a few simple modifications. In particular, the duration of the

wait state is an easily adjustable parameter of the controller which could have an impact

on its performance. The wait state was conservatively selected to be three seconds since

durations longer than one second are rarely observed, and we estimated that these durations

would never be more than half a second apart. The downside to this conservative wait state,

however, is that the steering method is often implemented very late in the robot’s trajectory.

We believe that this wait state is much longer than it needs to be, and reducing the length

of this state could improve the performance of the controller.

10.3 Conclusions and Future work

In conclusion, this thesis outlined the iterative approach used to design an anticipatory con-

troller for a snake robot based on a model for the interaction between the robot and its

environment. We saw how the development of an automated gantry system assisted this

process by allowing data to be collected in large quantities. With the aid of this gantry sys-

tem, we studied the open loop behavior of the snake for a single vertical post and an array

of five evenly spaced posts to verify previous experimental results and determine the model.

Furthermore, we used this model along with an established steering method to design an an-

98

ticipatory controller to correct for the scattering caused by interactions between the robots

and the posts. We carefully studied the results of implementing this control scheme for

both experimental setups, and identified potential short comings of the controller based on

quantative observations and data analysis. Finally, we used these shortcomings to rapidly

iterate on variations on the control scheme to address these limitations and improve perfor-

mance. We found that this iterative process resulted in two variations of the controller that

significantly reduce the scattering of the robot in both sets of experiments.

In particular, we saw from our comparison of the controllers in 10.2.1 that for the

multipost setup, the ability to steer is not enough, how you implement the steering on

the robot matters. We believe that the expanding controller is particularly well suited for a

horizontal line of posts because it modifies the shape of the robot in a way that assists the

robot fit between the posts. This minimizes the effects of robot body collisions which our

model does not take into account. The expanding controller, however, may not be the best

method of steering in every environment. For example, in a row of vertical posts you might

want to use the contracting controller so that you can achieve your desired steering while

traveling less distance in the direction of locomotion. Future work along these lines could

examine which method of steering is most advantageous for a particular set of obstacles.

In a way, telling the robot to expand its shape because we know it needs to fit through a

gap in posts is cheating in a robotics sense, since the controller should rely on and make

decisions only based on the available onboard sensing. However, if the robot can learn

which steering method is best for a particular environment, then we can add additional

sensing on the robot (like a vision system) to allow the robot to estimate the set of obstacles

the robot is approaching, and use a higher level controller to tell the robot which variation

of the anticipatory controller should be applied for this particular scenario.

Another interesting area for future work would be to study the effect of compliance

on the performance of the robot in these unstructured environments. Previous work with

the biologically inspired Rhex robot has shown how the passive compliance in the legs of

99

the robot can assist the robot to move through challenging terrain [18]. Therefore, cleverly

adjusting the compliance of the robot at contact with obstacles may lead to some interesting

new controllers, especially since recent work with biological snakes [19] has shown how

the passive dynamics are also important for snake locomotion. Therefore, we envision that

the work presented in this thesis along with other works in the field can help lead to the

development of improved snake robot control schemes. These novel control schemes will

allow snake robots to move gracefully through any arbitrary arrangement of obstacles so

that these robots can be deployed successfully in real world applications.

100

Figure 10.2: The raw data for the expanding controller (bottom) shows a significant de-
crease in scattering over the open loop experiments (top), especially for contact durations
greater than 0.5 seconds.

101

Figure 10.3: Histograms of the contact angles for the open loop (top) and expanding con-
troller (bottom). The expanding controller shows an improved reduction in scattering over
the original controller.

102

Figure 10.4: Raw data (top) and histogram for the longest duration controller. The longest
duration controller shows a similar reduction in scattering with the expanding controller.

103

Appendices

104

APPENDIX A

SUPPLEMENTAL FIGURES

105

Figure A.1: The raw data for the improved single post controller from the multipost experi-
ments (top), and the associated histogram (bottom) with the 15th and 85th quantiles shown
in red. Note that only experiments where head contact was detected are included.

106

Figure A.2: The raw data for the contracting controller from the multipost experiments
(top), and the associated histogram (bottom) with the 15th and 85th quantiles shown in red.
Note that only experiments where head contact was detected are included.

107

Figure A.3: The raw data for the delayed controller from the multipost experiments (top),
and the associated histogram (bottom) with the 15th and 85th quantiles shown in red. Note
that only experiments where head contact was detected are included.

108

REFERENCES

[1] S. Hirose, Biologically Inspired Robots: Serpentile Locomotors and Manipulators.
Oxford University Press, 1993, ISBN: 0198562616.

[2] J. M. Rieser, P. E. Schiebel, A. Pazouki, F. Qian, Z. Goddard, A. Zangwill, D. Negrut,
and D. I. Goldman, “The dynamics of scattering in undulatory active collisions,”
ArXiv e-prints, Nov. 2017. arXiv: 1712.00136 [physics.class-ph].

[3] P. E. Schiebel, J. M. Rieser, A. M. Hubbard, L. Chen, and D. I. Goldman, “Colli-
sional diffraction emerges from simple control of limbless locomotion,” in Confer-
ence on Biomimetic and Biohybrid Systems, Springer, 2017, pp. 611–618.

[4] J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, C. Li,
R. Maladen, C. Gong, M. Travers, R. L. Hatton, H. Choset, P. B. Umbanhowar, and
D. I. Goldman, A review on locomotion robophysics: The study of movement at the
intersection of robotics, soft matter and dynamical systems, 2016. arXiv: 1602.
04712 [cs.RO].

[5] J. Gosyne, C. Hubicki, X. Xiong, A. Ames, and D. Goldman, “Bipedal locomotion
up sandy slopes: Systematic experiments using zero moment point methods,” Hu-
manoid RObots (Humanoids), 2018 18th IEEE-RAS International Conference on,
2018.

[6] F. Qian, K. Daffon, T. Zhang, and D. I. Goldman, “An automated system for system-
atic testing of locomotion on heterogeneous granular media,” Aug. 2013, pp. 547–
554, ISBN: 978-981-4525-52-7.

[7] Motive api: Function reference.

[8] G. Sartoretti, Y. Shi, W. Paivine, M. Travers, K. Sun, and H. Choset, “Distributed
learning for the decentralized control of articulated mobile robots.,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[9] P. Liljebäck, K. Pettersen, Ø. Stavdahl, and J. Gravdahl, Snake Robots: Modelling,
Mechatronics, and Control. Jan. 2013, ISBN: 978-1-4471-2995-0.

[10] M. Travers, J. Whitman, P. Schiebel, D. Goldman, and H. Choset, “Shape-based
compliance in locomotion,” in Proceedings of Robotics: Science and Systems, An-
nArbor, Michigan, Jun. 2016.

109

http://arxiv.org/abs/1712.00136
http://arxiv.org/abs/1602.04712
http://arxiv.org/abs/1602.04712

[11] J. Whitman, F. Ruscelli, M. Travers, and H. Choset, “Shape-based compliant control
with variable coordination centralization on a snake robot,” in CDC 2016, Dec. 2016.

[12] M. Travers, A. Ansari, and H. Choset, “A dynamical systems approach to obstacle
navigation for a series-elastic hexapod robot,” in 2016 IEEE Conference on Decision
and Control, Dec. 2016.

[13] F. Qian and D. Goldman, “Anticipatory control using substrate manipulation en-
ables trajectory control of legged locomotion on heterogeneous granular media,”
vol. 9467, 2015, pp. 9467 - 9467 - 12.

[14] X. Wu and S. Ma, “Neurally controlled steering for collision-free behavior of a snake
robot,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2443–
2449, Nov. 2013.

[15] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, and H. Choset,
“Parameterized and scripted gaits for modular snake robots,” Advanced Robotics,
vol. 23, no. 9, pp. 1131–1158, 2009.

[16] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Tay-
lor, H. Sugiyama, and D. Negrut, “Chrono: An open source multi-physics dynamics
engine,” in, T. Kozubek, Ed., Springer, 2016, pp. 19–49.

[17] M. Travers, J. Whitman, and H. Choset, “Shape-based coordination in locomotion
control,” The International Journal of Robotics Research, p. 0 278 364 918 761 569,
2018.

[18] J. C. Spagna, D. I. Goldman, P.-C. Lin, D. E. Koditschek, and R. J. Full, “Distributed
mechanical feedback in arthropods and robots simplifies control of rapid running on
challenging terrain,” Bioinspiration Biomimetics, vol. 2, no. 1, p. 9, 2007.

[19] P. Schiebel, J. Rieser, A. M. Hubbard, L. Chen, D. Z. Rocklin, and D. Goldman,
Mechanical diffraction reveals the role of passive dynamics in a slithering snake,
2018.

110

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Robots in Unstructured Environments
	Drawing Inspiration from Biology
	Robophysics
	Objective

	I Automated Gantry System
	Gantry System Overview and Mechanical Design
	Gantry Motivation
	Gantry Overview
	Experimental Overview
	Objectives
	Design Parameters
	Safety
	Robustness
	Ease of Use and Cost

	Gantry Software Overview
	Software Overview
	Main C++ windows executable file
	Optitrack Camera System
	Optitrack Camera Hardware
	Optitrack Camera Software

	Arduino Gantry Control
	Arduino Program Overview

	Gantry Electronics
	Microcontroller Selection
	Sensors
	Limit Switches
	Photoelectric Resistors

	Actuation
	Stepper Motors
	Servo Motor and Electromagnets
	Frigelli Motor

	Gantry Results

	II Snake Robot Anticipatory Controller
	Controller Introduction
	Motivation
	Previous Snake Robot Control Systems
	Our Approach - Anticipatory Control

	Snake Robot Overview
	Hardware
	Gantry Interface
	Tail Module
	Contact Sensing Circuit

	Software
	Actuation
	Sensing

	Serpenoid Curve
	Modeling Robot Obstacle Interactions
	Straight Line Testing
	Sampling Initial Conditions

	Controller Development
	Controller Overview
	Controller Implementation
	Predicting Steering Magnitude
	Steering Implementation: Amplitude Modulation Method
	Steering Implementation: AMM steering testing
	Predicting Scattering Direction
	Steering Direction Implementation

	Controller Summary
	Anticipatory Controller within the Shape-based framework

	Results
	Single Post Results
	Open Loop Results: Predicting Scattering Direction
	Controller Results

	Multiple Post Results
	Discussion and Analysis
	Single Post Controller Limitations
	Multiple Post Controller Limitation
	Robot Limitations

	 Improving the Controller
	Modified Single Post Controller
	Modified Multiple Post Controller
	Reducing robot body effects
	Addressing Multiple Collision Experiments

	Conclusions and Future work

	Supplemental Figures
	References

