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This work examines the behavior of granular materials forced away from equilibrium in

two di�erent experimental systems. We study pattern formation in vibrated granular

layers, and uidization of grains near the onset of uidization in a water uidized bed.

When a thin layer of grains is subject to su�ciently strong vertical vibration of

frequency fd, standing wave patterns are excited and oscillate subharmonically at fd=2.

The patterns form when �, the peak plate acceleration normalized by gravity, exceeds

a critical value, � � 2:5. To gain understanding of this transition, we studied the

behavior of the layer near the onset of patterns. Below onset, for � < 2:5, we found that

although no visible patterns were excited, the noisy state contained spatial structure. In

addition, we studied the formation and the evolution of order in square patterns after

a rapid change in � from below to above onset. We found that the pattern formed

in two distinct stages: a rapid ordering with universal properties, followed by a slower

non-universal ordering. We also examined the behavior of the average wavelength of the

patterns during the �rst stage ordering, and found that the evolution of the wavelength

was accompanied by a change in the e�ective uid depth of the layer. The condition for a

rapid layer uidization was shown to be governed by a previously studied grain mobility

transition. In the asymptotically formed square patterns, we found that the dynamics

of the nodes of the patterns displayed normal modes and dispersion relations analogous

to those of a two-dimensional crystal lattice. In addition, the normal modes could be

resonantly excited; if the amplitude of a mode became large enough, the crystal melted, in

accord with the Lindemann criterion for 2D melting. At higher values of �, we performed

experiments on patterns that displayed phase discontinuities, called kinks. We observed

that localized transient kinks called phase bubbles prevented the formation of stable

patterns that would oscillate at fd=6. By preparing the system with a uniform initial

condition, we were able to observe transient fd=6 patterns. In addition, we found that
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a convective motion associated with kinks led to segregation of di�erent-sized particles:

large particles were pulled into the kink and remained trapped.

Fluidization in a water uidized bed occurs when the pressure drop �P developed

by the ow Q through packed grains balances the buoyant weight of the grains, (�p �
�f )gh, where �p and �f are the solid and uid densities and h is the height of the grains.

For increasing Q, uidization is characterized by an increase in void fraction, 1��, where

� is the solid particle fraction. Using a light scattering technique called Di�using Wave

Spectroscopy, we studied the dynamics of grains for smooth increases and decreases of

Q near the onset of uidization. We found that the behavior was strongly inuenced

by the initial packing fraction of the grains. Loosely packed grains near Random Loose

Packed (RLP), with 1 � � � 0:45, moved immediately at the onset of uidization and

remained in motion. In contrast, tightly packed grains displayed a range in Q above

onset during which voidage changes were followed by a rapid settling into a motionless

state. We found that this was a result of yield stresses developed in the packed material

due to the creation of a stress-bearing network; the network resulted from jamming of

the grains due to frictional contacts between the grains and the walls of the cell. We also

found that behavior of the bed upon deuidization was analogous to the behavior of a

supercooled liquid near the glass transition: for 1�� > 0:45, the bed resembled a liquid.

For 1�� < 0:45, motion in the bed was hindered due to local regions of largely immobile

particles. These regions grew in size as Q was decreased until �P < (�p��f )gh, at which

point all translational dynamics of the grains ceased.
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4.1 The trajectory of a single inelastic ball during a jump from � = 2:2 to
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5.3 A schematic showing the ow of grains from peaks and lines into valleys
after a plate oscillation cycle. The black and white indicate the positions
of the peaks and the lines after one plate oscillation. The gray arrows
indicate the direction of the ow of the grains. In the schematic diagram,
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6.33 A projected side view of a kink created in a molecular dynamics simulation.
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Chapter 1

Introduction

1.1 Motivation and problems to be studied

Granular materials are typically de�ned as a collection of macroscopic particles

which interact dissipatively upon collision and for which the thermal energy kBT is

small compared to any energy scale in the problem. Concealed in this rather mundane

description are systems that mimic the behavior of matter in many di�erent regimes, see

Figure 1.1. These regimes can be high Knudsen number collisionless ow, shock waves

propagating with Mach number much greater than one, or solids which can support a

yield stress. Importantly, all regimes can be seen and studied in detail in a single-person

laboratory experiment.

As an example, imagine pouring sand, a common granular material, out of a jar

over a pencil and onto the ground. As the grains leave the jar, their ow resembles a uid.

In fact, due to the large mean-ow velocity relative to the uctuating component of ow

velocity (a factor of 10), the grains strike the pencil at high Mach number. Consequently,

an oblique shock forms. When the ow hits the ground it solidi�es due to dissipative

collisions, coming to rest in the form of a pile. Unlike the uid-like ow above it, the

pile can support stress. Thus, this simple experiment exhibits physical phenomena and

properties of matter that are typically studied only at great cost and almost never in the

same experiment. In this spirit, we explore the behavior of granular materials in di�erent

regimes in this dissertation.

The problems that will be described cover a fairly wide range of behavior of a

collection of grains. In a single thesis I am able to describe systems which display peculiar

clustering e�ects in gas-like behavior, time dependence of wave patterns which form in

a granular uid, the e�ects of uctuations in the granular temperature on this uid,

uid-like behavior in a collection of grains forced by water, and solid, glassy behavior of

a packed set of grains where inter-particle forces and stress chains dominate the behavior

1.1.1 Overview of the Dissertation

The work in this dissertation deals with transitions between di�erent regimes

of granular behavior as control parameters are changed. Two main systems will be
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Figure 1.1: Di�erent behavior displayed by granular materials, left to right and down
the page: surface waves in a vibrated layer, Cerenkov wave radiation of a rod moving in
a thin layer, localized structures (oscillons) in a vibrated layer, sand piles on the Petrie
Islands, Ottawa (from website of The Friends of Petrie Island), stress chain backbone in
a solid granular pile of disks (from website of B. Behringer), the wake of a 1 mm sphere
falling in water (from E. Ramos)

studied, and both are e�ectively designed to maintain a set of grains out of the motionless

equilibrium state. Wave phenomena in thin vibrated layers will be discussed in Chapters

4-6. Chapter 7 discusses a problem in granular gases called inelastic collapse. Chapters

8-9 will deal with uidization phenomena in a water uidized bed, including behavior

of grains at onset of uidization and analogies to glasses. Chapter 2 will review the

behavior of granular materials in regimes which are relevant to the problems discussed
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in the dissertation, and Chapter 10 will conclude.

The remainder of Chapter 1 introduces the two main systems that will be studied.

1.1.2 Wave patterns in vibrated layers

We study a system in which thin granular layers (up to about 15 particle diameters

deep) are vibrated vertically sinusoidally such that the position of the plate obeys,

y = A sin(2�fdt) (1.1)

where fd is the drive frequency of the plate, typically between 10�200 Hz, and A

is the amplitude of the plate. The state of the system is characterized by the peak plate

acceleration relative to gravity, � = A(2�fd)
2=g. Since chapters 4-6 review the literature

of vibrated granular layers relevant to the speci�c problems studied, in this section we

will only briey introduce the basic features of the system which have already been well

described in [129, 179{181].

Behavior of the layer for increasing �

As an example of the basic phenomena encountered in vibrated granular layers, we

summarize transitions displayed in a thin layer of 100 �m bronze, 15 particle diameters

deep [137]. For � < 1:0, the plate never accelerates greater than �g and the layer rests

on the plate as a solid clump. For 1:0 < � <� 2:0, the layer leaves and strikes the plate

every oscillation but the energy input by the shaking plate is completely dissipated and

the grains remain in a compact solid state. The regime from 2:0 < � < 2:5 has been

studied in depth in [137]. In this regime for fd smaller than fd � 70 Hz, the layer is in a

dilated state during some fraction of the cycle and this dilation is large enough for grains

to slip past each other{the layer becomes uidized. For fd > 70, the layer is dilated but

there is not enough room for grains to move past each other; however the top of the layer

remains uidized. For fd > 200, the dilation becomes so small that the layer remains in

a compact solid state.

Above � = 2:5 for fd < 200 hydrodynamic wave patterns oscillating at fd=2 form

(see Figure 1.2), and a phase diagram of the types of patterns is shown in Figure 1.3.

Here fd is normalized f �
d = fd=

p

(g=H), where H is the layer depth. In the presentation

of experimental results, we give layer depth in dimensionless form, N = H=d, where d is

the particle diameter. The system forms stripes for high frequency (f �
d > 0:33) [181] and

squares for f �
d < 0:33. Hexagon patterns oscillating at fd=2 form above � � 4:0 due to a

temporal symmetry breaking in the collision with the plate.
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Figure 1.2: Patterns that form in a vibrated granular layer oscillate subharmonically to
the plate oscillation. Under low angle illumination, peaks are visible and valleys are in
shadow.

The patterns that oscillate at fd=2 exist for � < 4:5. Above 4.5, the at state

returns and now strikes the plate every other plate oscillation, allowing phase discon-

tinuities in the layer to form (for discussion, see Chapter 6). Above � � 5, the at

state bifurcates into patterns that oscillate at fd=4 again forming squares and stripes

and hexagons. Above � > 7:5, a qualitative change in the layer dynamics occurs; a

spatiotemporally chaotic state called a phase bubble state forms and prevents the fd=6

patterns which would be in the series of bifurcations fd=2 ! fd=4 ! fd=6 from forming.

Details are discussed in Chapter 6.

In this dissertation, we will explore the behavior of the vibrated layers in di�erent

regions of the � � fd parameter space. In Chapter 4 we study the time evolution of

order in square patterns following a rapid change in � from a at featureless state. We

�nd that the patterns form in two distinct stages: in the �rst stage, which lasts on the

order of 10 plate oscillations, the amplitude of the pattern rapidly grows and the pattern

displays ordering dynamics that are universal. In the second stage, which can last 104

plate oscillations, the pattern evolves through growth of large domains which eventually

coarsen to a perfectly ordered square pattern; the ordering dynamics in this stage are

not-universal. In chapter 5, we study the dynamics of the square patterns and �nd that

the elements of the patterns act as if they are coupled by Hookian springs. The dynamics

of the square patterns thus resemble a two-dimensional crystal lattice and we �nd that

the normal modes of this crystal can be resonantly excited. The amplitude of excitation

can be made large enough to melt the lattice, and the melting transition is in agreement
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Figure 1.3: Phase diagram for a layer 11 particle diameters deep. Samples of the patterns
seen in the phase diagram are shown for points a-d. f �

d is the normalized drive frequency,
with f �

d = fd=
p

(g=H) where H is the layer depth and g is the gravitational acceleration.

with a criterion used to predict melting in real crystals. Thus, we have developed a new

description of nonequilibrium patterns.

In Chapter 6, we discuss further the dynamics of patterns following a change in

�. We study the evolution of the average wavelength of the pattern and �nd that the

evolution of the pattern wavelength is related to a uidization transition in the layer.

We also study the properties of the vibrating layer below the onset of patterns and �nd

that there is a characteristic length scale in the seemingly randomly excited \at" state.

Finally, we examine the dynamics of phase discontinuities called kinks and phase bubbles.

We �nd that these discontinuities mask patterns which are predicted to oscillate at fd=6

and we have observed transient fd=6 patterns. In addition, we present results in which
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convection roll structures associated with the kinks are able to transport and segregate

grains of di�erent size added to the vibrating layer.
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1.1.3 Dynamics of grains at the onset of uidization

We study a water uidized bed near the onset of uidization. In a uidized

bed, grains are subject to a ow of uid against the direction of gravity. At a critical

volume ow rate Qf , the grains make a transition from solid to liquid like behavior.

The uidized bed system di�ers from the vibrated layer due the presence of the water.

Interaction between the grains is no longer due solely to inelastic contact collisions; grains

now interact by hydrodynamic e�ects which can operate at a distance greater than a grain

diameter. The grains that will be used in the experiments in this dissertation are glass

spheres and an image of the side of a uidized bed is shown in Figure 1.4.

Figure 1.4: 335 �m glass spheres in water

Schematics of the uidization transition are shown in Figure 1.5 and Figure 1.6.

We now describe the basic process of uidization. Fluid is forced through a collection of

grains occupying a solid volume fraction � at a constant volume ow rate Q. In uidized

bed research it is customary to instead use 1 � �, the voidage of the bed1. At low ow

rates (small Reynolds number for the pore), ow through porous media of voidage 1 � �

follows an empirical relation called Darcy’s law; for higher ow rates Darcy’s law must be

corrected and these corrections are called Ergun’s relation [160]. Darcy’s law says that the

1Note that for identical spheres, the voidage cannot be smaller than the value for FCC crystal
packing, 1 � � � 1 � �=(3

p
2) � 0:26. This was conjectured by Kepler in 1609 and proved by Hales

in 1998 [84]. However, practically, the voidage never reaches a value lower than Random Close Packed
(RCP), 1 � � � 0:37. The maximum possible voidage occurs when the solid volume fraction goes to
zero, or 1 � � = 1.
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Q 

Figure 1.5: A schematic illustrating the behavior of grains at three points a-c as the
volume ow rate, Q is increased through uidization.

pressure drop developed by the uid, �P is proportional to Q and inversely proportional

to a monotonically increasing function of 1 � � called the permeability2. To make an

analogy to electrical current ow, the permeability can be thought of as the inverse of

the resistivity of the medium. Thus, for �xed 1 � �, �P increases with increasing Q.

When Q is increased so that that �P equals the buoyant weight of the bed normalized

by cross sectional container area A, a force balance occurs. The system can respond by

allowing all grains to be translated up the container at once. However, the uidization

velocity, Q=A, is roughly a factor of 50-100 times smaller than the sedimentation velocity

of a single particle (see below). Thus when the bottom becomes exposed, particles fall,

�lling in the space that was free of particles. This has the e�ect of increasing the voidage

of the sample as illustrated in Figure 1.5. By Darcy’s law, this restores the force balance.

Thus the net e�ect is that the system responds to uidization by increasing its voidage,

and this is plotted in Figure 1.6.

Above uidization, the relationship between the voidage of the bed and the ow

velocity of uid vf = Q=A has been extensively studied, and di�erent empirical rules

have been proposed [32, 109]. The formula of Richardson and Zaki [152] is perhaps the

best known of these �ts, and proposes a power law scaling,

2In the Kozeny theory of porous media, the permeability is proportional to (1 � �)3 [160]
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Figure 1.6: Schematic plots of the basic measurements and phenomena in uidization
for slow increases of Q. Top panel: �P , the pressure drop of uid through the grains
normalized by the buoyant weight of the grains. Bottom panel: the average void fraction
(voidage) of the particles, 1 � �. Voidages at uidization are typically between 0:37 <
1 � � < 0:45. Points a-c refer to the diagrams in Figure 1.5.

vf

vs

= (1 � �)n (1.2)

where vs is the terminal sedimentation velocity of a single sphere falling in the tube of

diameter D =
p

A. This rule applies to non-bubbling uidized particles of diameter d

with 0:1 < d < 6 mm and particle density �p between approximately 1 < �p < 11 g=cm3

for uids with densities between approximately 0:8 < �f < 3 g=cm3. The Richardson-

Zaki power law is actually quite complicated: the exponent n depends on D, the particle

diameter d, and the Reynolds number at the terminal velocity of the sedimenting sphere

in an in�nite uid, Ret = dvt�f=�, where �f is the uid density and � the uid viscosity.
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Due to wall e�ects, vs is slightly smaller than vt and is related to vt as log vs = log vt�d=D.

The expression given for n is shown in the table,

Exponent Range

n = 4:65 + 20 d
D

Ret < 0:2

n =
�

4:4 + 18 d
D

�

Re�0:03
t 0:2 < Ret < 1

n =
�

4:4 + 18 d
D

�

Re�0:01
t 1 < Ret < 200

n = 4:4Re�0:1
t 200 < Ret < 500

n = 2:4 Ret > 500

Table 1.1: The expression for n in Equation 1.2 for di�erent parameters

For particles used in the experiments that will be described in Chapter 9, typical

Ret � 10 giving a value of n � 4:5. We �nd good agreement with Equation 1.2 below

the onset of bubbling. Thus, for our experiments near onset at 1 � � � 0:42, uidization

velocities are typically a factor of 50 smaller than single particle sedimentation velocities.

Despite the complicated dependence of n, Equation 1.2 is a useful predictor of bed

height as a function of ow rate for non-bubbling beds (See Figure 8.28 in Chapter 8).

However, there is no theoretical derivation of this power law behavior.

Fluidized bed dynamics at onset

While the bulk behavior of uidized beds is well characterized, the dynamical

behavior at the onset of uidization is not as well understood. The �rst systematic study

of gas uidized bed behavior was due to Geldart [63]. Existing data were used to create a

classi�cation scheme of four types of onset behavior. This scheme relates onset behavior

to particle diameter and particle-uid density di�erence. The so-called Geldart diagram

is shown in Figure 1.7. We note that there is no similar diagram for water uidized beds.

There are four regions of behavior on the diagram, A-D. Behavior of Geldart

A \aeratable" particles is de�ned by a smooth expansion of the bed at the onset of

uidization. Geldart A particles are typically small in size and have densities less than

roughly 1.4 g=cm3. The smooth expansion of the bed exists for a range in ow rate, above
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Figure 1.7: The Geldart classi�cation scheme for air uidized particles.

which the system becomes unstable to traveling structures of low particle density [156].

This is called bubbling and is ubiquitous in gas uidized beds. Examples of bubbles are

shown in Figure 1.8. Geldart B particles di�er from those in A, in that bubbling begins

immediately at the onset of uidization.

We note that in liquid uidized beds, the bubbling takes the form of regular trav-

eling waves of low particle density which span the entire cross sectional area, Figure 1.9.

This is one of the main di�erences between the behaviors of gas and liquid uidized beds.

Many studies of bubbling and stability of the uidized state to density waves have been

made [57, 97]. Much work has gone into stability analysis of the two-uid models with

some success in the prediction of onset [4, 93] of bubbling. Two-uid models predict that

the bubble is a secondary instability on the wave structure, but experimental studies are

lacking.

Very small particles for which interparticle interaction is important are grouped

in Geldart C. These beds display cohesive behavior at onset without a transition to a

uniformly uidized state. D refers to spouting beds and will not be discussed here.

As noted, the Geldart diagram was compiled for gas uidization and no similar

classi�cation has been made for water uidized beds. However, water uidized beds

are a convenient experimental tool; unlike in gas uidization, it is straightforward to

vary working uid parameters like uid density and viscosity. With that in mind, in

Chapter 8, we study a water uidized bed in what we might think to be the simplest
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Figure 1.8: (a) A streakphotographshowing a sideview of a bubble in a two dimensional
gasuidized bed, from [97] (b) A top view of a bubbling gasuidized bed. The surface
of the bed resemblesa boiling liquid, from [42].

situation, water uidized glasssphereswhich display uniform uidization at onset. Our
results demonstrate that the dynamics of grains between 0:1 and 1 mm at the onset
of uidization are strongly dominated by friction contact forces. We will describe the
motion of the grains at onset using a variety of techniques that will be described in
Chapter 3. We will alsocompareour results to previousonsetstudiesof gasuidization
of Geldart A particles.
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