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Abstract—

Simple mathematical models or ‘templates’ of loco-
motion have been effective tools in understanding how
animals move and have inspired and guided the design
of robots that emulate those behaviors. This paper de-
scribes a recently proposed biologically-based template
for dynamic vertical climbing, and evaluates the feasibil-
ity of adapting it to build a vertical ‘running’ robot.

‘We present the results a simulation study suggesting
that appropriate mechanical and control alterations to
the template result in fast stable climbing that preserves
the characteristic body motions and foot forces found
in the template model and in animals. These design
changes should also allow the robot to operate with com-
mercially available actuators and in the same power to
weight range as other running and climbing robots.

I. INTRODUCTION

Vertical climbing robots, much like their horizontal
walking counterparts, have traditionally been restricted
to slow, quasi-static gaits on benign surfaces. For cur-
sorial robots the era of fast, dynamic robots began with
the hopping machines pioneered by Raibert and his col-
leges in the early 80s. The motions and ground reac-
tion forces of these robots, as well as those of a wide
range of animals, can be characterized by the Spring-
loaded Inverted Pendulum (SLIP) model [1], [2], [3],
[4]. This simple planar model has been used for inspi-
ration and guidance in the design and development of
a number of recent polypedal robots, such as RHex [5]
and Sprawl [6], that are capable of fast (multiple body-
lengths/second) locomotion even over rough and broken
terrain.

These robots actively manage their kinetic energy
during running by using spring/dampers in series with
their motors. They have a limited number of power-
ful actuators and run primarily open loop, simplifying
their control. Stable operation is provided by appropri-
ate tuning of the passive elements.

Thus far, vertically climbing robots have lacked such
an enabling template to guide their development. Until
recently most climbing robots have relied upon suction
or electromagnets to achieve the required adhesive foot
forces|[7], [8]. More recently some robots have been de-
veloped that use foot-holds [9], [10] or vectored thrust
[11], [12] to cling to walls. The last few years have also
seen the revival [13], [14] of a design introduced by [15]
that used rimless wheels with sticky toes to intermit-
tently ‘roll’ up smooth walls.

Another recent biologically inspired legged robot,
RiSE, has been developed that uses claws, micro-spines,

and dry adhesives to extend its range of traversable ver-
tical surfaces to include rough man-made and natural
terrain [16].

While these developments entail significant advances
in attachment mechanisms and the control strategies
that derive advantage from them, the agility and speed
of these climbers pales in comparison to their biological
counterparts. Geckos can climb walls at speeds of up to
0.77 m/s [17] and cockroaches have been measured to
climb at five body-lengths per second [18]. Recent com-
parative biological studies suggest compelling similari-
ties between animals with vastly different morphologies
and attachment mechanisms. The emergence of these
patterns has led to a proposed two-legged dynamic tem-
plate for climbing (Fig. 2) [18]. It is this model that we
use to guide the development of what may be the world’s
first dynamic legged vertical climber.

Animals, however, enjoy roughly an order of mag-
nitude greater power density relative to commercially
available actuators [19] and the question arises whether
this dramatic advantage places their dynamical climb-
ing strategies out of reach of contemporary robotics.
In this paper, we introduce the preliminary design of a
simple robotic ‘anchor’ for the proposed animal climb-
ing template (Fig 9). This prototype design features the
sprawled posture and series springs characteristic of the
template, but adopts a scale (from 2g to 2kg) and mass
distribution closer to the RiSE robot to better enforce
engineering constraints. We evaluate the effectiveness
of adding parallel leg springs and a force-based control
strategy as proposed in [20] to replace the template’s
clock driven feed forward limb trajectories in compen-
sation for the dramatically reduced power budget.

This paper describes the conclusions of a simulation
study designed to guide the physical construction of the
robotic anchor, and is organized as follows: Section II
introduces the template model and describes how it was
developed from animal studies. In section III we scale
the template model to our target robot mass, and eval-
uate the effect of the changes in length, stiffness, and
frequency on the locomotion dynamics. Section IV com-
pares the power consumption of this scaled template to
the range of the best commercial off-the-shelf actua-
tors. Here we attempt to answer the question: with
a limited power budget what happens to the dynam-
ics of locomotion? In section VI, we apply some of the
techniques from our 1 DOF numerical study on climb-
ing to make more efficient use of the available motor



power and describe the effect of these changes on the
resulting dynamics. We conclude by describing a pro-
posed robot morphology and some of the issues associ-
ated with translating our model into three dimensions.

II. TEMPLATE MODEL

The recent biomechanical analysis of the rapid verti-
cal climbing of the cockroach Blaberus discoidalis shows
striking similarities to early studies of geckos running up
walls. Although these animals are from distinct phyla
(Arthropoda and Chordata) and have a different num-
ber of legs, body morphology, and attachment mecha-
nisms, their locomotion patterns (see Fig. 1 A&B) are
strikingly similar. They both create large lateral in-
pulling forces with their legs, and their center of mass
velocities are phase delayed from the forces by approxi-
mately 7/2. These similarities have led to the develop-
ment of a proposed dynamic climbing template shown
in Fig. 2 and detailed in [18].

This proposed template model features a pair of vir-
tual legs rigidly attached to the body that alternate in
pulling the robot upwards. The inclusion of a lateral
sprawl angle § in the model helps create the charac-
teristic lateral forces, and appears to contribute signifi-
cantly to the climbers rotational stability [18]. Each leg
also features a spring/damper in series with the sinu-
soidally oscillating leg actuators. These springs reduce
the peak wall reaction force felt by the feet, and affect
the phasing of the motions. In this model the actuator
is commanded to follow a sinusoidal trajectory and the
foot contact is modeled as a pin joint with an attach-
ment duty factor of 46%. With the actuation scheme
and parameter set specificied in Fig. 2, the template
climbs at 18 em/s and with force and velocity patterns
similar to the animals that inspired it (see Fig. 1C).

III. SCALING OF TEMPLATE

The first task in evaluating the viability of this tem-
plate as a basis for RiSE-scale robot design is to devise a
scaling method that preserves its dynamics in a regime
with at least two and possibly three orders of magnitude
greater mass.

A. Scaling Rules

The motivation behind the particular set of scaling
rules employed here is to preserve the dynamic similar-
ity of the system, in particular the relative frequencies of
the body pendulum, the wrist-spring, and the overall leg
actuation frequency. If dynamic similarity is preserved
then all of the resulting displacements, times, and forces
are scaled versions of the original [21], and the stabil-
ity characteristics are invariant. [22]. A more detailed
discussion of dynamic similarity and a derivation of the
associated scaling laws adapted below is given in [23].

All linear dimensions of the body were scaled geomet-
rically by («r) which in our case equals 10. Mass was
assumed to scale as the cube of length, the total mass of
the robot increasing by (ar)? from 2g to 2kg. Similarly

the rotational inertia was increased by (ar,)®.

In order to sustain the relationship between body os-
cillation and foot alternation, the gait driving frequency
was scaled down to match the longer period of a pen-
dulous body oscillating about the pinned stance foot.
Since this pendular frequency is proportional to \/g/l,
the leg actuation frequency scale factor (o, ) was defined
to be:

1
— =0.316
ar,

Q=

This results in the driving frequency changing from 9
Hz to 2.85 Hz.

The stiffness of the wrist springs was scaled such
that the maximum force exerted by the spring at full
deflection matched the increased weight of the body
F = mg = kx. Consequently the stiffness scale fac-
tor () is:

3
g = L =100
ar
This also preserves the relative frequency of the wrist
spring-body oscillation, wepring = 1/k/m, such that:

ay = (ay)? - (arp)® =100

In fact, this scaling approach results in a constant
Strouhal Number (Str):

wl
Str = —
T

which it has been argued is necessary for any spring-
based or cyclic scaling system that preserves dynamic
similarity [23].

Since the overall velocity of the scaled climber is
based on the speed of the leg actuator, the scaled robot
velocity (V') should be:

ay = aq -ap = 3.16

This method of scaling preserves the non-dimensional
Froude number (F'r) used by some researchers [24], [25]
to characterize scale independent running speed.

In consequence of dynamic similarity, the resulting
Froude number is precisely same for both the template
and the scaled version of the climber [23]. Note how-
ever, if we calculate speed using the body-lengths per
second (bl/s) metric, the template climbs at 4.5 bl/s,
and the scaled version at only 1.4 bl/s. This reveals
the under-determined nature of the Froude number as
a basis for speed comparison between different robotic
designs: there is still a design decision to be made re-
garding the the characteristic length, [. It is often de-
scribed as the ‘leg length’ or the distance from the hip to
the foot, however it is not clear that this convention has
the same effect in upright as in sprawled posture run-
ners. For example, in our climber if the stroke length
of the actuator is used as the characteristic leg length
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Fig. 1. Force, vertical velocity, lateral velocity, and foot fall patterns for the cockroach, gecko, and template model.
Broken lines indicate body weight. Data are shown for a normalized stride, with black bars representing foot
contact. In each force plot F, is the magnitude in the vertical direction and Fj is in lateral direction.

Fig.

Reproduced with permission from [18]

pin joint contact
B s linear spring

actuator L(t)=Ly(1+ zsin( ft))

rigidly attached shoulder

2. Diagram of the two degree of freedom climbing
template. The spring acts in series with the sinu-
soidal linear actuator. The model was built and in-
tegrated in Working Model 2D (Design Simulation
Technologies, Inc). The parameters used to gener-
ate Fig. 1C were: body mass = 2 g, body dimen-
sions =4 ¢m x 0.95 cm, Iy = 0.71 ¢m, Iy = 0.84 c¢m,
0 = 10°, Ly = 1.54 cm, actuator fractional length
change z = 0.6, stiffness k = 6 Nm~!, damping
v = 0.09 Nsm™!, frequency f = 9 Hz. Moment
of inertia = 8X10~7 kgm?. The attachment duty
factor in the model is 0.46. Adapted from [18].

then the template and scaled climber have a character-
istic speed of 0.73, if the length from the ‘hip’ to the
foot is utilized, the Froude number becomes 0.45, and
if the body height is used it drops to 0.28. Perhaps the
intermediary value would be most appropriate, but re-
gardless of which length is chosen the Froude number
remains invariant to scale as long as the motions are
dynamically similar.

The damping in the wrist spring was also scaled
such the the force exerted by the damper balances the
increased mass and decreased velocity of the climber
F=mg=2>5-V, such that:

3
_ o

Qap : = 316

ay
B. Comparison of Scaled Template

Figure 3 presents a typical simulation output in the
steady state regime illustrating the effects of increased
size on template behavior under the scaling model pro-
posed above. The overall speed of the scaled template
(both laterally and vertically) is just over three times
faster, as expected. The wall reaction forces generated
by this larger version of the template are also three or-
ders of magnitude larger, again, as expected. It appears
that the phasing of the motions and forces and the reg-
ular oscillatory pattern have also been preserved.

C. Scaling and Power

Biological actuators (muscles) differ from and are in
many ways superior to current commercially available
power generators. A nice overview of the properties of
and physics behind a variety of possible robotic actua-
tors is given in [26]. For the purpose of this paper, we
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Fig. 3. Force, vertical velocity, and lateral velocity
for the template model and the robot scaled ver-
sion. The heavy dashed horizontal lines represent
the weight of the robot and the light dashed lines
are the mean velocities.

will restrict ourselves to DC motors, and assume that
their power scales directly with mass. This presents the
major problem in scaling up a dynamic system. When
we increase the length by a factor of 10, we also increase
the needed power to weight ratio by:

Apower  F-V o -ay

3
ay,

=3.16

Aweight  mg

Since the power density of actuators does not in-
crease with mass, it becomes more difficult to provide
the power necessary to achieve the template-based dy-
namics as our scale increases.

The historically achievable power density of climb-
ing and running robots varies greatly, but as a point
of reference both the hexapedal RiSE and RHex robots
have a specific power of about 10W /kg per tripod. The
template model, at the roach scale, requires a peak of
6.3W /kg per leg. However, scaling to a 2kg climber
increases this power demand by 3.16 to 20W /kg per
leg. Thus the model requires the availability of twice as
much peak power from the motors as has been available
in these previous robotic designs.

Consequently, at the scale of interest we are required
to either dramatically increase the power density of our
robots, find a method to deliver the power much more
efficiently, or settle for slower speeds. Assuming that
the power density in a robot with a significant compu-
tational payload is relatively inflexible, we proceed in
the next section to discuss the effects of reducing the
available input power on the dynamics, and then con-
sider ways to optimize available power.

IV. POWER LIMITATIONS

There are a number of possible methods for reconcil-
ing the difference between desired and available power.
We will first consider the two simplest strategies: reduc-
ing the actuation frequency and reducing the required
actuator force by shortening the crank moment arm. In

each case the naive expectation is that the net result
will be climbing speeds that are one half of the nominal
case.

The potential problem with altering the actuation fre-
quency is that it will disrupt the dynamics of climbing
by producing a detrimental interaction with the body’s
natural dynamics. Simulations show that decreasing the
stride frequency by a factor of two does result in stable
motions, but there is much greater body swing dur-
ing each stride. This dramatically increases the lateral
forces seen at the feet, and lateral velocity of the robot,
as shown in Fig. 4A. This larger rotation reduces the
vertical component of each stride, dramatically (over
10x) reducing the upward speed of the climber. Peak
required power is reduced from 40W to 23W.
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Fig. 4. Force, vertical and lateral velocity for two sim-
ple approaches to reducing the power of the scaled
template model. Note that the tick marks for force
and velocity have been preserved from Fig. 3 to
ease comparison.

The second simple strategy, cutting the stride length
in half by shortening the crank, does change the pendu-
lar frequency of the body slightly, but this does not seem
to significantly affect the stability of the gait. As shown
in Fig. 4B, the forces and velocities of the climber with
a reduced crank length are essentially the same as in
the nominal case with the exception of slightly larger
lateral forces. The net vertical velocity is, however, re-
duced to 20-25% of the scaled template’s speed. The
deterioration of upward velocity is exacerbated by the
increased slip due to the sub 50% duty factor prescibed
by the attachement stratagy. The peak power, however,
is reduced to 18W.

In both cases we see that using these simple ap-
proaches to reducing the peak power required from the
actuator result in serious compromises in the perfor-
mance of the template. There are, of course, other
methods to deal with limited actuator power.

One such method is the intermittent use of the motors
at speeds and loads exceeding their limits for recom-
mended continuous use. For short periods the motors
can be ‘overrun’, but this produces more heat than can
be effectively dissipated, resulting in eventual overheat-



ing of the motors—unless the power draw is subsequently
decreased. This ‘thermal borrowing’ can be used for
short periods if mean power draw is low enough. This
has been successfully used in RHex for rough terrain,
stair climbing, etc. but only for very limited durations.
In vertical climbing, however, the high power demand
is constant. Nevertheless this approach allows us to ex-
ceed the specified maximum continuous torque levels, if
only for short segments of the cycle.

Another approach to decreasing the total required
motor power is to mechanically couple multiple joints
or limbs to be driven by a single motor. This technique
has been employed by iSprawl[27], MechaRoach [28],
and several toy robots. This approach, however, pre-
scribes rigidly fixed leg synchronization, which in climb-
ing can be a serious problem. In addition, this would
further hinder any future development into a more ver-
satile runner/climber.

There are two additional ideas for dealing with a lim-
ited power budget suggested in [20]. The application of
these to the scaled template will be discussed in section
VI. Before proceeding with that discussion is is nec-
essary to address some implementation and modeling
issues for the robot and actuator.

V. MASS DISTRIBUTION AND LINKAGE DESIGN

Due to geometric constraints associated with magnet-
ics and electromechanics, it is possible to build rotary
motors with much higher power densities than linear
motors. If standard rotary motors are to be used on the
robot, the question then arises how to convert the out-
put of a real DC motor into the linear motion prescribed
by the climbing template. The approach we have taken
is to utilize a simple crank-slider mechanism (similar to
the piston/crank used in automobile engines), as shown
in Fig. 5. Thus the transformation from linear to ro-
tational coordinates is specified by the geometry of the
mechanism.

To account for the need to have a mechanism to at-
tach/detach from the wall, and the necessary strength of
the crank-slider mechanism, we have distributed some
of the mass (as shown in Fig. 5) of the robot from
the body to the legs. The total mass and length of the
climber, has, however remained unchanged.

This addition of mass to the rotating links does in-
troduce some added dynamics to the system. The more
massive the cranks, the more energy can be stored in
this part of the system (as a small fly-wheel) helping to
smooth out the resulting motions of the legs. The sim-
ulation suggests, however, that the results of the next
section hold, even with a less-favorable mass distribu-
tion than that shown above.

In addition, a degree of freedom and lateral compli-
ance have been added to each of the hips. This removes
the kinematic singularity associated with double sup-
port phase. The stiffness and damping of the hips are
set equal in magnitude to the wrist springs, but since
they are typically orthogonal to gravity, their deflec-
tion primarily occurs when both legs are attempting to

Prismatic DOF
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Fig. 5. Schematic of the crank-slider mechanism used
to convert rotary (motor) output into linear mo-
tion. The relative lengths and masses of the links
are indicated.

simultaneously contract during double support.

The results of switching to the crank-slider morphol-
ogy with realistic leg masses is that the peak speed is
reduced to 0.53 m/s and the peak power is 35 W, as
compared to 0.56 m/s and 40 W for scaled template.
The dynamics are nearly the same as for the scaled tem-
plate, and are shown in Fig. 8A.

VI. SPRINGS AND FORCE BASED CONTROL
A. Parallel springs

One way to assist climbing with a limited power bud-
get is using passive-elastic elements in parallel with
the leg actuators to store energy during the swing-
recirculation phase of the leg motion, and then to re-
lease the energy during stance to aid with accelerating
the body upwards.

As suggested in [20] this can substantially increase
the overall climbing speed of a one-dimensional climber
by creating a second peak in the demanded power curve
for each motor. Figure 6 shows a schematic of how the
spring is used, and a plot of motor power as a func-
tion of time. The shaded areas represent the changes in
the commanded torque with the addition of a spring in
parallel with the actuator connecting each foot to the
body.

The spring is at its unloaded, or rest, position when
the foot is at its lowest position. As the foot extends
in preparation for reattachment to the substrate the
spring is stretched, significantly increasing the torque
required from the actuator. The maximum available
motor torque, and the length of the crank linkage define
the upper limit on the stiffness of this spring.

With the addition of these legs springs (k=130 N/m,
b=3 N-s/m) the peak power required for each legs drops
to 25W during steady state climbing. Since the veloc-
ity of the cranks is still constant, the dynamics of the
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Fig. 6. Schematic of model with leg spring and the
effect of the spring on the nominal torque profile.
The ‘+’ region represents the effect of the spring
assisting the motor, and the ‘-’ region is when the
motor is stretching the spring.

system are the same as without the spring.

One problem that the addition of springs in parallel
with the actuator does not address is that over 40W
of power are still required to accelerate the robot from
rest. After the first few strides the power requirement
drops to an almost-achievable level. Even though the
maximum, or stall, torque that motors can produce is
often more than twice that available for continuous op-
eration, this value can only be delivered at very low
speeds. Thus, the use of a real 20W motor in the ini-
tial transient stage of operation would fail to follow the
prescribed trajectory either stalling or introducing a sig-
nificant limb coordination problem.

B. Force Maximization Control

A second approach to increasing the use of a robot’s
on-board power is to switch from a position-based con-
trol scheme to forced-based approach. By explicitly reg-
ulating the motors’ output rather than relying on posi-
tion tracking errors, the actuators could be much more
effectively utilized during a stride. This control frame-
work also enables the robot to build up speed over a
number of strides, further increasing the performance
gains.

The feasibility of using a ‘force-maximizing’ control
scheme to actuate the robot was tested in the one-degree
of freedom numeric simulation in [20]. The results from
this one-dimensional numeric study suggest that the ap-
propriate addition of a force-based controller and leg
springs could double the robot’s speed, and that climb-
ing at about 2 bl/s should be achievable.

The use of this scheme also allows for the frequency
of the legs to fluctuate, helping to solve the problem of
large transient forces required at the initial start up.

B.1 Motor model

In order to maximize the output power of the motors,
a model of their behavior must be incorporated into the
control scheme. Fig. 7 depicts the simple model model
used in our controller. The slope of the torque/speed

curve depends on the particular motor chosen, and on
the resulting gear reduction ratio used in the power
train.

For our model we used the specified values for Maxon
20W DC motors [29]. The gear box reduction (G =
48) was chosen to match the template dynamics and
maximize speed.

Rated Power

Power / Curve

(ko)1 (G,

Velocity (m/s)

0,/ G
0, /G

Safe continuous ’ Constant Voltage

operation range

| Torque (Nm)
1

G (Tgar)

Gt

max, cont)

Fig. 7. Simplified geared motor model based on data
from Maxon motors. The dashed power curve
shows that maximum power output corresponds to
loads equal to one half of stall.

The controller varies applied current/torque so that
the operation point stays on the boundary of the shaded
continuous operation zone shown in Fig. 7. Thus the
applied torque from the motor is given by:

) w
T =min (Tmaw,cv (1 - W) GTstall>

It should be noted that the introduction of this motor
model provides a serious constraint on both the maxi-
mum power deliver by the motor and on the achievable
speeds/torques. Thus in the simulations no ‘thermal
borrowing’ is allowed.

B.2 Leg coordination

A new issue arising from the introduction of the force-
maximization controller is the challenge of ensuring the
proper anti-phase coordination of legs. An earlier an-
alytical study of coupled oscillatory climbing systems
has shown that the limbs of these systems naturally
phase lock, resulting in extremely large double support
and aerial phases [30]. Our two-dimensional model ex-
hibits the same tendency, with potentially catastrophic
consequence for a physical climbing machine machine
whose attachment mechanics are likely to preclude re-
covery from conditions of free-fall [31], [32]. Conse-
quently some sort of mechanism is require to ensure
proper phasing of the legs. We are in the process of
adapting the formal phase regulation scheme of [33] to
the new situation of coupled oscillators for generating
reference limit cycles in the presence of forbidden ob-
stacles (double flight phases). Temporarily, a braking
heuristic is implemented to help prevent double sup-
port, and is given by:



if((8; <€) and (8; <)) then T; = —CpTimaz

Where € is about 7/10, and gait transitions occur
when the leg phase angle § = w. This attempts to
ensure a nominal duty cycle of less than 50%. In the
template model a duty factor of 46% is enforced.

The solution described above is somewhat ‘brittle’.
The value for (¢) is empirically chosen, and results in
unstable climbing, and a change in the actuator model
or system dynamics could easily result in either ex-
tended duty factors, or significant aerial phases. It is
also sub-optimal in terms of performance since it ac-
tively brakes just before stride transitions, rather than
appropriately reducing the input energy throughout the
swing phase.

Another problem with this approach is that it often
results in a very slight asymmetry in touchdown condi-
tions, inducing an undesired net lateral motion. The de-
velopment of a robust control scheme to more effectively
coordinate the legs should help mitigate these problems.

B.3 Results with force-maximizing control

Figure 8B shows the effects of switching to a max-
force based control scheme on the performance of the
simulated climber.
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Fig. 8. Force, vertical velocity, lateral velocity, foot
fall patterns, and speed for the original template
model, the scaled version, and with the final pro-
posed force-based control scheme.

A comparison of the dynamics reveals that the force-
based case has some subtle differences from the previous
template versions. The slopes of the force loading and
unloading curves are different and more significantly the
overall stride frequency is higher. The switch from a
trajectory-tracking to a force-based control scheme re-
leases our control of the resulting actuation frequency.
While this frequency shifting during climbing can in-
crease the performance of robot, it also complicates the
dynamic coupling between the leg switching, body ro-
tation, and the wrist-spring extension. While this could

alter the motion and efficiency of the model, the simu-
lation results suggest that for the motor model chosen
the resulting steady-state trajectories work well. In any
case, the transients of the dynamics are an additional
factor to consider when designing the controller.

The net result, however, is a realistically sized and
powered dynamic climber that is very close to the tem-
plate derived from animal studies. The overall projected
speeds of 0.55 m/s compare very favorably to those of
the scaled template (0.60 m/s). Some changes to the
structure and actuation scheme are necessary, but the
resulting performance is far superior to the ‘naive’ ap-
proaches discussed in Sec. IV.

The performance gain from switching to this type of
controller is, however, less than that predicted from the
earlier study of a one-dimensional climber. This is due
in part to the sub-optimal leg coordination scheme im-
plemented. The low gear ratio motor settings that the
simple model predicts will give the best speeds often fail
to synchronize in the 2D simulations. Another potential
cause for the decreased performance is the braking that
occurs just before leg transition. Currently this is due
to a sub 50% duty factor and the details of the leg co-
ordination scheme, but this deceleartion at touchdown
may also reflect the physical constraint associated with
attaching the robot’s feet to the substrate.

VII. CONCLUSION AND FUTURE WORK

In general the simulation results are encouraging.
The addition of a force-assist spring in parallel with
the actuator in the legs and the switch to a force-
maximizing control scheme should allow for a dynamic
climber to climb at our target mass of 2kg. In addi-
tion it appears that the characteristic force and motion
patterns of the animals and the steady gaits exhibited
by the template should be reproducible in our anchored
version. A preliminary CAD model of our proposed
robot is shown in Fig. 9.

/ Dactyl Claws

Series leg spring —

Power leg spring ———> &
Crank-Slider Mechanism

Force based control

Fig. 9. Preliminary CAD model of proposed robot.

Furthermore, our scaling study suggests that this tar-
get size is about as large as this dynamic template can
be instantiated with the current power density of mo-
tors, while preserving the percentage of mass of the



robot dedicated to actuators. Since absolute speed
scales with the square root of length, or at the same
rate at which the power/weight ratio must increase to
preserve dynamic similarity, any increase in size will re-
sult in an under-powered robot. As shown in section
IV, attempting to climb when underpowered has a se-
vere effect on upward speed. Thus it appears that with
our present power density this anchor represents the
approximate upper limit on speed with this template.

Future theoretical work is required in the develop-
ment of a robust leg synchronization scheme and in un-
derstanding how the structure and control scheme of
the robot contribute to its lateral stability.

Once a robot has been built, additional future exper-
imental work will need to be carried out including: in-
vestigating the effect of increased climbing speed on the
attachment and detachment of feet, determining how to
deal with pitch and roll without significant losses, and
developing methods to deal with foot slippage or failed
attachment.

Despite the significant amount of work remaining to
transform this two-dimensional simulation into a three-
dimensional climber, we believe that the results de-
scribed here represent an encouraging step toward the
development of a dynamic vertical climbing robot.
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