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Abstract
Serially connected robots are promising candidates for performing tasks in confined spaces such as
search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize
that the addition of limbs could improve mobility. However, a challenge in designing and
controlling such devices lies in the coordination of high-dimensional redundant modules in a way
that improves mobility. Here we develop a general framework to discover templates to control
serially connected multi-legged robots. Specifically, we combine two approaches to build a general
shape control scheme which can provide baseline patterns of self-deformation (‘gaits’) for effective
locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality
reduction and a biological gait classification scheme to generate cyclic patterns of body
deformation and foot lifting/lowering, which facilitate the generation of arbitrary substrate contact
patterns. Second, we extend geometric mechanics, which was originally introduced to study
swimming at low Reynolds numbers, to frictional environments, allowing the identification of
optimal body–leg coordination in this common terradynamic regime. Our scheme allows the
development of effective gaits on flat terrain with diverse numbers of limbs (4, 6, 16, and even 0
limbs) and backbone actuation. By properly coordinating body undulation and leg placement, our
framework combines the advantages of both limbless robots (modularity and narrow profile) and
legged robots (mobility). Our framework can provide general control schemes for rapid
deployment of general multi-legged robots, paving the way toward machines that can traverse
complex environments. In addition, we show that our framework can also offer insights into
body–leg coordination in living systems, such as salamanders and centipedes, from a
biomechanical perspective.

1. Introduction

Robot performance characteristics can depend on the
number of limbs. Quadrupeds are known for their
agility [1], hexapods and myriapods for their stability

[2, 3], and limbless robots for their ability to fit into
confined spaces [4]. But robots with increasing com-
plexity and numbers of degrees-of-freedom (DoF)
present challenges regarding motion coordination,
which if not addressed, may render them unusable.
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Furthermore, the diversity of shapes and forms makes
it challenging to transfer control insights gained from
one platform onto another. We are left with limited
intuition and physical understanding of how to coor-
dinate the many DoF in diverse and complex robots
to generate effective locomotion.

To address the growing need to control robots
with different shapes, modular robot control11 strikes
a balance between encompassing a variety of shapes
while still being able to precisely control them [6,
7]. Modular robot control has been successfully used
in serially connected limbless robots where a single
control principle can be applied in robots of different
sizes [8]. In contrast, the study of modular control
in general multi-legged robots has been limited. The
challenge in serially connected multi-legged robots
lies not only in designing the stepping patterns of
legs, but also in the coordination between the body
and legs. For example, in robots that combine limbs
and body undulation, if stepping patterns and body
undulations are not properly coordinated, limbs can
interfere with each other, resulting in reduced loco-
motor performance, instability, or even failure [9, 10].

We would like to develop control schemes to gen-
erate effective periodic ‘self-deformation patterns’12

for the general class of serially connected legged and
limbless robots. Over recent decades, many tech-
niques (e.g., gait generation [11, 12], central pat-
tern generators [13, 14], nearest limb synchroniza-
tion [15], and learning methods [1, 16]) have been
developed, each of which can control some specific
robot type [3, 13, 17–19]. In this paper, we take
inspiration from gaits of living systems: organisms
with diverse numbers of appendages and body plans
exhibit effective locomotion on almost all terrestrial
environments [19–21] by making/breaking ground
contact with limbs (e.g., salamanders) and bodies
(e.g., sidewinders) in conjunction with waves of
undulation.

One method used over the last century to under-
stand legged locomotion is a gait classification scheme
called ‘Hildebrand diagrams’. In 1965, Hildebrand
[22] developed schemes to study symmetric gaits13

observed in quadrupedal animals (e.g., horses). These
gaits have two key variables: duty factor, the fraction
of a period that each leg is on the ground over a full
gait cycle, and lateral phase lag, the fraction of a period
that the hind leg leads the foreleg on the same side.
Both key variables are modulated in response to speed
changes in biological systems [23–25]. Using these
gait principles as a reference, a multitude of algo-
rithms have been developed for quadrupedal robot

11 A control framework where the policy structure is conditioned
on the hardware arrangement, and uses just one training process to
create a policy that controls a wide variety of designs [5].
12 We consider self-deformation patterns to be the relative move-
ment of body and limb elements.
13 In symmetric gaits, the contralateral (left and right pair) of legs
are 180◦ out of phase.

locomotion, or to explain why living quadrupeds
choose certain gaits [26–31]. But thus far, these
gait principles have not been applied to robots with
more than four appendages. For multi-legged robots,
there is no systematic gait description framework that
allows us to modulate the balance between locomo-
tion metrics such as speed and stability.

In animals and increasingly in robots, appendages
that make direct contact with substrates are not the
sole contributor to locomotion. Undulatory body
motions play an important role in generating propul-
sive forces in many systems [20, 32–34]. For undu-
latory locomotors, the geometric mechanics (GM)
community [35–42] has developed a gait design
framework to prescribe self-deformations of systems
immersed in continuous media, such as three-link
robots, lizards, and snakes [18, 39, 43]; and in dis-
continuous settings, including sidewinders [44, 45].
While mathematically elegant, GM has limitations. In
particular, it is not directly applicable to systems with
a large number of appendages. Furthermore, despite
recent efforts [43, 46], application of GM in frictional
environments (e.g., rate-independent Coulomb dry
friction) has not been systematically studied. There-
fore, we must develop dimensionality reduction and
physical modeling methods before we can use GM
to design gaits for serially connected multi-legged
robots.

In this paper, we integrate dimensionality reduc-
tion techniques with tools from GM to develop
locomotion control schemes for serially connected
robots. We first extend the Hildebrand gait classifi-
cation scheme to prescribe a wide range of contact
patterns (the sequence of making/breaking contacts
with environments) using the classical Hildebrand
parameters (duty factor and lateral phase lag). We use
the extended Hildebrand scheme to reduce dimen-
sionality and prescribe body undulation as a traveling
wave. In doing so, we can apply GM to coordinate
the lateral body undulation and limb contact pat-
terns. We evaluate gait performance based on speed
and static stability, and investigate the relationship
between these metrics and the Hildebrand parame-
ters. We demonstrate our motion control framework
on robots with four (quadrupedal), six (hexapod),
16 (myriapod-like), and even zero (snake-like) limbs
(figure 1). Our analysis reveals empirical rules to bal-
ance the trade-off between speed and static stability,
and the potential benefit of body undulation in multi-
legged robot locomotion.

Moreover, by properly coordinating lateral body
undulation and leg movement, our framework pro-
vides additional insights into both legged and limbless
robots. Specifically, our framework facilitates cen-
tralized control of serially connected multi-legged
robots by introducing waves in both limb contact and
lateral body undulation. With properly coordinated
lifting and landing body segments, our framework
can also improve the mobility of limbless robots by

2



Bioinspir. Biomim. 17 (2022) 046015 B Chong et al

Figure 1. Legged and limbless robotic models studied in the paper. (a) Quadruped robot [41, 71]. (b) Hexapod robot. (c)
Myriapod robot with eight pairs of legs [72]. (d) Sidewinder robot [45]. All scale bars are 5 cm. See figure S5 for the axis of joint
angles.

giving insights into coordination and trade-offs of
stability and speed in serially connected multi-legged
robots. In this way, our framework offers the potential
to modulate gaits for different tasks by switching
between fast gaits and stable gaits. Further, we show
that our scheme can generate control hypotheses
for diverse living systems including salamanders and
centipedes, thereby offering new insights into the
functional role of body–leg coordination from a
biomechanical and robophysical perspective.

2. Hildebrand gait prescription

2.1. Related work
In the Hildebrand gait formulation [22], symmetric
quadrupedal gaits are categorized by two parameters:
1) duty factor that represents the fraction over a gait
period that each leg is on the ground, and 2) lateral
phase lag represents the fraction over a gait period
that the hind leg leads the foreleg on the same side.
There are three major assumptions in the Hildebrand
symmetric gait family: (1) the duty factor of each leg
is the same, (2) the pairs of contralateral legs are 180◦

out of phase, and (3) the lateral phase lag is the same
for left and right legs.

We use a binary variable c to represent the contact
state of a leg, where c = 1 represents the stance phase
and c = 0 represents the swing phase. The contact
pattern of symmetric quadrupedal gaits can be writ-
ten as

cFL(φc) =

⎧⎪⎨
⎪⎩

1, if mod(φc, 2π) < 2πD

0, otherwise

cFR(φc) = cFL(φc + π)

cHL(φc) = cFL(φc + 2πΦlat)

cHR(φc) = cFL(φc + 2πΦlat + π), (1)

where Φlat denotes the lateral phase lag, D the duty
factor, cFL(φc), cFR(φc), cHL(φc), and cHR(φc) the con-
tact state of the fore-right (FR), fore-left (FL), hind-
left (HL), and hind-right (HR) limbs at the gait
phase φc (defined in radians with a period of 2π),
respectively. Note that in contrast to φc, the lateral
phase lag Φlat represents the fraction of a cycle, so
Φlat has a period of 1. Many common quadrupedal
gaits can be described using the Hildebrand formula.
For example, the lateral sequence (LS) walking gait
(figure 2) can be described by D = 0.75, Φlat = 0.25.
Plotting a diagram of the stance/swing phases of the
feet from just these two parameters shows that in this
gait, each leg is lifted for a quarter of a cycle, only one
leg is lifted at any given instant, and the leg lifting
sequence follows FR, HR, FL, and HR. The trot gait
(figure 2) can be described by D = 0.5, Φlat = 0.5,
where the FR and HL are coupled in phase, as are the
FL and HR pair. Another quadrupedal gait, the pace
gait (figure 2), can be described by D = 0.5, Φlat = 0,
where the FR and HR are coupled in phase, as are the
FL and HL pair. Note that asymmetric quadrupedal
gaits, such as bounding and galloping, exist but
cannot be prescribed by the same gait classification
methods [47].

2.2. Prescription of contact patterns for arbitrary
robots
The first two assumptions of the Hildebrand symmet-

ric gait family can hold in general for nonquadrupedal
systems with discrete contacts. To expand the third
assumption to a broader range of locomotors, we can
generalize the definition of the lateral phase lag to be
the phase lag between two consecutive legs (instead of
only the fore and hind legs) on the same side. Then,
the contact function of a multi-legged system can be
written as:

3
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Figure 2. Modeling multi-legged systems and sidewinders. The contact patterns of some well-known gaits: (a.1) LS walking, (a.2)
trotting, and (a.3) pacing in quadrupeds; (b) alternating tripod in hexapods, (c.1) retrograde-wave and (c.2) direct-wave gaits in
myriapods, and (d) sidewinding in snake-like limbless robots. For each system, these diagrams show the variables included in the
model, such as leg joint angles θN, and body joint angles α(N−1), where N is the number of leg pairs for legged systems or joint sets
in the sidewinder. In the contact sequence diagrams, filled blocks represent stance phase, and open blocks represent swing phase.
(e) A general contact pattern table. The blue arrow represents the duty factor D. The red arrow represents the lateral phase lag,
Φlat. τ denotes gait phase. (f) Hildebrand plots with two parameters D and Φlat to characterize the motions in the vertical plane.
We labeled the region associated with walking, running, LS and DS gaits.

cl(φc, 1) =

⎧⎪⎨
⎪⎩

1, if mod(φc, 2π) < 2πD

0, otherwise

cl(φc, i) = cl(φc + 2π(i − 1)Φlat, 1)

cr(φc, i) = cl(φc + π, i), (2)

where cl(φc, i) (and cr(φc, i)) denotes the contact state
of the ith leg on the left (and the right) at gait phase
φc, i ∈ {1, . . . , N} for 2N-legged systems.

Many common multi-legged gaits can also be
described by this extended Hildebrand formulation.
For example, many hexapod robots and animals use
the alternating tripod gait (figure 2), which couples
FL, middle-right (MR), and HL in phase, and couples
the FR, ML, and HR similarly. The alternating tripod
gait for a hexapod (N = 3) can be described by
D = 0.5 and Φlat = 0.5.

Myriapod gaits can be classified into direct waves
and retrograde waves of limb contact [48] (figure 2).
Typically, for gaits with Φlat < 0.5, the phase of the

hind leg is ahead of the phase of its immediate fore
leg. In other words, the legs move in a wave prop-
agating from tail to head, which we call a diagonal
sequence (DS) gait, and which corresponds to direct
waves in myriapods. On the other hand, when Φlat >

0.5, the phase of the hind leg is behind the phase
of its immediate fore leg. Therefore, the leg wave
propagates from head to tail, which we call a LS
gait, and which corresponds to retrograde waves in
myriapods. Interestingly, on level ground, animals
with four legs (e.g., lizards and salamanders) more
commonly use LS gaits [22, 23, 49, 50], and animals
with more legs (e.g., centipedes) use both DS and LS
gaits [34, 51]. As we will discuss later, we hypothesize
that this difference in gait choice is a result of a balance
between speed and stability.

Our proposed gait formulation can also include
systems without legs, e.g., sidewinding limbless
robots. The seemingly complex mode of limbless
locomotion, sidewinding, can be prescribed as the
superposition of two waves: lateral and vertical body

4
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Figure 3. An example of gait design for a hexapod using
Hildebrand gait principles and geometric mechanics. From
the parameter space (a.1), we select the duty factor D and
lateral phase lag Φlat . We prescribe the contact by its phase
φc (a.2), and the lateral body undulation by its phase φb

(a.3). (b) The gait parameters determine the equations of
motion, which in turn are used to derive a height function,
and design a gait. The gait path (the purple curve) shown
maximizes the volume enclosed in the lower right corner
(in solid shadow) minus the volume enclosed in the upper
left corner (in dashed shadow). The left panel is the toroidal
visualization of the height function, the right panel is the
Euclidean visualization of the height function. Figures
(c.1)–(c.3) illustrate configurations in which the robot is
statically stable (c.1), statically unstable (c.2) and unstable
(c.3).

waves [40]. Similar to legged systems, sidewinders
can regulate their contacts by modulating the vertical
traveling wave [40]. The typical contact pattern of a
sidewinder is shown in figure 2. Note that the contact
pattern during sidewinding locomotion is the same as
one side (either left or right) of the contact pattern of a
legged system. As such, we prescribe the contact state
of the ith link of the sidewinding system as c(φc, i) =
cl(φc, i), where cl(φc, i) is defined in equation (2).

2.3. Prescription of leg shoulder movement

Legs generate self-propulsion by protracting during
the stance phase to make contact with the environ-
ment, and retracting during the swing phase to break
contact. That is, the leg moves from the anterior to the
posterior end during the stance phase and moves from
the posterior to anterior end during the swing phase.

With this in mind, we use a piece-wise sinusoidal
function to prescribe the anterior/posterior excursion
angles (θ, figure 2) for a given contact phase (φc)
defined earlier,

θl(φc, 1) =

⎧⎪⎪⎨
⎪⎪⎩

Aθ cos

(
φc

2D

)
, ifmod(φc, 2π) < 2πD

−Aθ cos

(
φc − 2πD

2(1 − D)

)
, otherwise,

θl(φc, i) = θl(φc + 2π(i − 1)Φlat, 1)

θr(φc, i) = θl(φc + π, i), (3)

where Aθ is the shoulder angle amplitude, θl(φc, i)
and θr(φc, i) denote the leg shoulder angle of ith
left and right leg at contact phase φc, respectively.
Note that the shoulder angle is maximum (θ = Aθ)
at the transition from swing to stance phase, and is
minimum (θ = −Aθ) at the transition from stance to
swing phase. Figure 3 shows an example of a hexapod
gait under this equation.

2.4. Numerical prediction on speed and stability
We numerically calculated the speed of various gaits
over a range of duty factors and lateral phase lags
for quadrupedal, hexapod, myriapod, and sidewinder
systems ([39] and materials and methods). Figures 3
and 4 graphically depict the process, and the materials
and methods section provides details. To explicitly
show the effect of limb-substrate contact on speed,
we fixed the swing angle Aθ when comparing the
displacements of different gait parameters. Note that
in this section, there is no body undulation in any of
the gaits.

The numerical predictions of body speed, mea-
sured in units of body length per cycle (BLC), are
plotted in figure 5 (middle column). We observe that

modulating the lateral phase lag does not significantly
affect body speed. This observation becomes more
apparent for systems with more legs. In the myri-
apod system, the step displacement14, characterized
by displacement (normalized by body length) trav-
eled per cycle, is almost independent of the lateral
phase lag and is uniquely determined by the duty
factor.

In addition to measuring body speed, we uti-
lize other metrics to quantify gait stability. For
instance, the contact pattern of quasi-static gaits
(e.g., quadrupedal walking gaits) need significantly
fewer sensors and less feedback control effort to
be stably implemented on robots than the contact
pattern of dynamically stable gaits (e.g., bouncing
gaits) [26]. In this paper, we separate robots’ config-
urations into three groups: (1) statically stable, (2)
statically unstable, and (3) unstable. In the statically
stable configurations, the center of mass is bounded

14 The absolute speed v is related to the step displacement
d by v = fd, where f is the step frequency.
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Figure 4. Snapshots of the numerical simulation showing examples of two prescribed myriapod gaits. (a) Statically unstable,
Φlat = 0.92, D = 0.5 and (b) statically stable Φlat = 0.5, D = 0.5. We compared the gait with straight fixed body (top) and gaits
with coordinated body undulation (bottom). The displacement, in BLC, are labeled with a red arrow. The black/white circles
show the stance/swing phase of the feet.

within the supporting polygon (figure 3(c.1)). In the
statically unstable configurations, often produced by
unstable diagonal-couplet gaits [49], the center of
mass is outside the supporting polygon but there is
at least one leg in stance phase on the left and the
right side (figure 3(c.2)). Despite not being statically
stable, the statically unstable configurations can be
made dynamically stable when the speed increases
[23] or when combined with a low-level controller
[17, 29, 30]. In the unstable configurations, also
known as unstable lateral-couplet gaits [49], either
the left or the right side of the legs are all in swing
phase (figure 3(c.3)), which makes such gaits more
difficult to stabilize15. We define a static stability met-
ric as the fraction of the gait cycle spent in statically
stable configurations. Note that this measure only
applies to the gaits with statically stable and statically
unstable configurations; the appearance of unsta-
ble configurations will contradict our assumptions.
Therefore, we define the measure of static stability
to be 0 if there exists unstable configurations in the
gait.

We numerically calculated the static stability for
the quadrupedal, hexapod, and myriapod systems in

15 In the case of limbless sidewinding, unstable configurations are
defined as those with no contact, see figure S4.

figure 5. As expected, when comparing the same gait
parameters (duty factor D and phase lag Φlat) among
different systems, the static stability increases with
increasing number of legs. Similarly, an increase in
duty factor results in an increase in static stability.
Moreover, we observe that the DS (Φlat > 0.5) is in
general less stable than the LS (Φlat < 0.5). Thus,
most DS gaits are stable only for systems with many
legs, such as myriapods.

Surprisingly, modulating the lateral phase lag only
affects the static stability, while body speed is not cor-
related with the lateral phase lag. On the other hand,
animals including myriapods [34] and quadrupedal
lizards [20, 52, 53] have been observed to modulate
the lateral phase lag as speed increases. In other words,
in biological systems, the loss of static stability is
compensated by a gain in speed while our findings
indicate that speed is independent of lateral phase lag
modulation. We hypothesize that this discrepancy is
due to differences in body–limb coordination, which
we consider in later sections.

2.5. Testing speed and stability predictions
in experiments
Using robophysical models, we tested the locomo-
tor performance of gaits with a range of lateral

6
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Figure 5. Trade-off between speed and static stability in quadruped, hexapod, myriapod, and sidewinding systems. Theoretically
predicted static stability (left column), displacement in BLC with fixed straight back (middle column), and displacement with
coordinated lateral body undulation (right column) over the space of Hildebrand parameters D and Φlat, for the quadruped (a),
hexapod (b), myriapod (c) and sidewinder (d). White space in all panels represents the regions where unstable configurations
exist (figure 3(c.3)); we defined static stability to be zero in those regions. Note that static stability of the quadruped, hexapod and
myriapod is numerically calculated for configurations with a straight backbone. The static stability of the sidewinder is
numerically calculated for gaits with coordinated lateral body undulation. Note that we only consider gaits where unstable
configurations (figure 3(c.3)) do not occur. Axes in each subfigure are identical. The colorbars in each column are identical.

phase lags for quadruped, hexapod, myriapod, and

sidewinder systems (figure 6). Hexapod, myriapod,

and sidewinder experiments were performed on hard

ground. Since quadrupedal systems in general are less

statically stable, we posited that we would predomi-

nantly observe the effect of stability rather than the

kinematics of gaits. Thus, for quadrupeds we tested

performance on a granular medium (here, poppy

seeds) since the body is in contact with the substrate,

ensuring static stability. The duty factor for the hexa-

pod, myriapod and the sidewinder systems were fixed

to D = 0.5, and the duty factor for the quadrupedal

system was set to D = 0.75 for reference (see the

materials and methods for additional experimental

details). Note that in this section, there is no body

undulation in any of the gaits.
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Figure 6. Verification of the theoretically generated gaits in the robotic models (left column) gait cycle of each robot ((a)
quadruped, D = 0.75 and Φlat = 0.5; (b) hexapod, D = 0.5 and Φlat = 0.3; (c) myriapod, D = 0.5, Φlat = 0.1; (d) sidewinder).
The arrows show the direction of locomotion and T is one gait cycle. The center of mass trajectories (yellow) are given in the last
snapshots. Middle column: comparison of simulations (solid curves) and experimental data (curves with error bar) of
displacement over time for each system. Two gaits with body undulation coordinated with GM are illustrated for each system.
Right column: relationship between the lateral phase lag, Φlat, and the displacement for the same system either with fixed straight
backbone (red) or with coordinated lateral body undulation (blue). The axis labels and legends in (b), (c) and (d) are the same as
in (a).

We measured gait speed as the number of body
lengths traveled per gait cycle. Interestingly, we
observe that for statically stable gaits there is good
agreement between the theory and experiments. Since
our predictions are based on 2D calculations, they
cannot capture 3D unstable behaviors, such as tipping
over and falling to the ground. Therefore, we hypothe-
size that the discrepancy between our hexapod theory
and experiments is caused by static instability. Note
that our experiments on quadrupeds were performed
on poppy seeds, where the ventral surface was often
in contact with the environment. In our myriapod
experiments, configurations tend to be mostly stati-
cally stable given their large number of legs. There-
fore, the effect of static stability was only critical in
our hexapod experiments.

To test our hypothesis that static stability is the
source of the theory–experiment discrepancy, we
characterized unstable behaviors by the roll and
pitch of the robots. We recorded the body pitch and
roll during the course of the robophysical hexapod
gaits. The experimental data for these experiments
over three gait settings (D = 0.5Φlat = 0.15, D =

0.5Φlat = 0.45, D = 0.5Φlat = 0.65) are compared in
figure 7(a). We observed that only the statically stable
hexapod gait (Φlat = 0.45) has both low pitch and
low roll. The unstable hexapod gaits have either high
roll angle (Φlat = 0.15) or high pitch angle (Φlat =

0.65). We calculated the average pitch and roll for
each gait, and compared them with the numerical
predictions of static stability. We observe that the
range of low average pitch and roll overlaps with the
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Figure 7. The effect of static stability on locomotion performance. In the left column (a), the body roll and pitch over the course
of the hexapod experiments are recorded as a function of gait fraction. Three gaits (D = 0.5, Φlat = 0.65 in purple; D = 0.5,
Φlat = 0.45 in red; and D = 0.5, Φlat = 0.15 in yellow) in Hildebrand gait space are compared. In the middle row, we show the
theoretical prediction of static stability as a function of lateral phase lag. In the bottom row, we show the average ±
SD experimental body roll and pitch as a function of the lateral phase lag. In the right column, (b), a similar analysis is performed
for the sidewinder experiments. The top-right shows the trajectory of body motion over six gait cycles, where the color scale
represents the evolution of time. We marked the initial position of the robot in the black circles. In the middle row, we show the
theoretical prediction of static stability as a function of lateral phase lag. In the bottom panel of figure 7(b), the body yaw angle is
recorded as a function of lateral phase lag.

range of statically stable gaits. When the hexapod
body is in configurations with low roll and low pitch,
the experimental data agrees with the theoretical
predictions.

3. Body–leg coordination in Hildebrand
gait formulation

3.1. GM to coordinate lateral body undulation
As discussed in the previous sections, speed is not
correlated with the lateral phase lag when there is
no body undulation. However, previous experimental
gait studies with lizards and myriapods [20, 34] have
found that modulation of lateral phase lag is asso-
ciated with changes in lateral body undulation. For

example, lizards increase the amplitude of their lateral
body undulation during transitions from LS walking
to trotting or even DS gaits [20, 24, 25, 50, 52, 53].
Similarly, myriapods change their leg wave pattern
(lateral phase lag) at high speed while simultaneously
increasing lateral body undulation amplitude [34].
Accordingly, we hypothesize that modulating the lat-
eral phase lag can regulate the balance between speed
and stability if properly coordinated with lateral body
undulation.

To account for these observations, we introduce
the lateral body undulation by propagating a wave
along the backbone from head to tail [54]. Note
that we only consider the format of traveling wave
body undulation here; relative advantages of standing

9
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Figure 8. A scheme to give intuition in body–leg coordination patterns. (a) The relationship between Φlat , lateral phase lag, and
φbc, the optimal phasing between body and leg. φbc is numerically calculated from a height function (figure 3). The empirical data
for the hexapod (blue circle) and myriapod (red circle) are compared. (b) Consider a quadrupedal ‘sub-unit’ (denoted by large
red circle) consisting of two pairs of legs and one body-joint. The Hildebrand prescription allows us to write the phase relation of
each leg and the body bending with respect to the FR leg. (c) To maximize locomotive performance with body-bending, at FL
(fore left) and HR (hind right) touchdown, the body is bent clockwise; and at FR (fore right) and HL (hind left) touchdown, the
body is bent counterclockwise [41]. Given this empirical relation φbc ∼ (Φlat + 1/2)π, the HL/FR and HR/FL touchdown phases
are symmetrically distributed around the peaks of the bending trajectory, which we use to coordinate body-bending with foot
contacts.

and traveling waves are discussed in [55]; and for
quadrupeds, the number of body undulation DoF
drops to 1, where the format of traveling wave body
undulation essentially reduces to a standing wave. The
body undulation wave is

α(φb, i) = Aα cos(φb − 2π(i − 1)Φb
lat), (4)

where α(φb, i) is the angle of ith body joint at phase
φb, 2πΦb

lat is the phase lag between consecutive joints.
For simplicity, we assume that the spatial frequency
of the body undulation wave and the contact pattern
wave are the same16, i.e. Φb

lat = Φlat. In this way,
gaits of multi-legged locomotors by superposition of
a body wave and a leg wave can be described as
the phase of contact, φc, and the phase of lateral
body undulation φb. These two independent phase

16 In most biological and robotic systems, the body undulation and
the contact waves in general share the same spatial frequency. In
some cases, such as sinus lifting in snakes [56], the body undulation
and the contact waves differ.

variables represent a reduced shape space (see mate-
rials and methods) on a two-dimensional torus on
which we can apply GM gait design techniques to
optimize body–limb coordination.

The GM gait design framework [39, 42, 57] sep-
arates the configuration space of a system into two
spaces: the position space and the shape space. The
position space represents the location (position and
orientation) of a system relative to the world frame,
while the shape space represents the internal shape
(joint angles) of the system. The GM framework then
establishes a functional relationship to map velocities
in the shape space into velocities in the position space;
this functional relationship is often called a local
connection. The curl of the local connection, which we
call a ‘height function’, can then be used to design,
analyze, and optimize gaits.

Using GM tools, we derived height functions
and designed gaits (materials and methods).
Figures 3 and 4 show examples of coordination
between the lateral body undulation and contact
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Figure 9. Analysis of salamander (Salamandra salamandra) locomotion using the Hildebrand framework and geometric
mechanics (a.1) estimation of the duty factor, D, and lateral phase lag, Φlat from animal joint angle trajectories. Curves with error
bars are the average leg shoulder (hip) angle over three cycles. The lighter-color solid curves are piece-wise linear sinusoidal
functions (defined in equation (3)) fit to the tracked data. (a.2) Estimated D and Φlat for animal locomotion under different
speeds. (b.1) Estimating φbc from body bending angle trajectories. (b.2) Relationship between φbc and speed, measured in body
lengths per cycle. The prediction made with geometric mechanics is shown as dashed curves. The measured salamander data are
shown as crosses in the same color as their corresponding prediction curves, where the length and height of the crosses denote the
standard deviation of the measured animal data. The scale bar near the salamander photo indicates 30 mm.

phase derived with GM. We also provided an

example of coordinating the body undulation
and contact pattern for sidewinding in figure S4
(https://stacks.iop.org/BB/17/046015/mmedia).
Once we design a coordination pattern φc → φb in
the reduced shape space, we can convert that pattern
into both a contact pattern and body undulation.

We quantified the body–leg coordination by its
phase lag: φbc : φc − φb. Interestingly, we observed
that the empirically calculated φbc has a linear rela-
tionship with Φlat (figure 8). We next seek the

physical intuition behind this relationship. We first
decomposed the body–leg coordination to a single
‘subunit’, which we define as two pairs of legs and
one body joint. Our Hildebrand-based approach then
allows us to prescribe the phase of each feet and
the body bending. Previous work [41] found that at
the optimal body–leg coordination, the body is bent
clockwise when the HL/FR feet land (respectively,
counterclockwise for HR/FL). Deviation from this

coordination can lead to a loss in speed. We can
encode this relation by φbc ∼ (Φlat + 1/2)π. Then,
the FR and HL foot touch-down are symmetrically
distributed around the peak of the clockwise body
bending angle, and the touch-down of FL and HR
feet are symmetrically distributed around the peak of

counterclockwise body bending angle. Via this rela-
tionship, we posit that despite the seemingly com-
plicated whole-body motion, the optimal body–leg
coordination is achieved by locally coordinating each
sub-unit of two legs and a body joint.

3.2. Numerical prediction of speed and stability
We used numerical simulation to predict the gait
speed and stability at a range of lateral phase lags and
duty factors for the quadrupedal, hexapod, myriapod
and sidewinder systems. We observed that modu-
lating the lateral phase lag can regulate the balance
between speed and stability if properly coordinated
with lateral body undulation. The loss of static sta-
bility is compensated by a gain in speed only when
the body and limb phases are properly coordinated.
These observations were derived by plotting gait
speed and stability against the extended Hildebrand
gait parameters, shown in figure 5. The addition of
body undulation slightly changes the static stability,
as depicted in figure S1.

3.3. Testing predictions for body–leg
coordination in experiments
We tested the locomotion performance of systems
with discrete contact and coordinated lateral body
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Figure 10. Analysis of centipede (Scolopendra polymorpha) locomotion using the Hildebrand framework and geometric
mechanics (a.1) estimation of the duty factor, D, and lateral phase lag, Φlat from animal joint trajectories. The colorbar here
denotes the shoulder joint angle for each leg on the right hand side. (a.2) Estimated gait parameters D and Φlat for the centipede’s
locomotion. (b.1) Estimating φbc from body phase and leg phase. (b.2) Relationship between φbc and the speed, measured in BLC.
The prediction made with GM is shown as solid curves. The measured centipede data are presented by crosses in the same color as
their corresponding prediction curves, where the length and height of the crosses denote the standard deviation of the measured
animal data. The scale bar near the centipede photo indicates 30 mm.

undulation using robophysical models (see materials
and methods for details). We recorded the displace-
ment over time for two gaits in each system (figure 6).
Our numerical predictions quantitatively agree with
experiments not only in the average displacement
per gait cycle, but also in the time evolution of the
displacement.

The only notable theory–experiment discrepan-
cies occur in the hexapod and the sidewinder sys-
tems. As discussed earlier, static instability can lead
to theory–experiment discrepancy for hexapods and
sidewinders due to the planar assumptions made in
our theoretical model. To investigate this discrep-
ancy further, we studied the effect of static insta-
bility on sidewinders and observed that some gaits
result in significant yaw (figure 7(b)), such that
the robot’s path deviates from the desired straight-
line course. Comparing the net yaw change per
gait cycle with the numerical predictions of static
stability reveals that significant yaw only occurred
in gaits with low static stability. As static stabil-
ity increases (for sidewinding, stability increases
with the lateral phase lag), the unmodelled turning
vanished.

4. Body–leg coordination in biological
locomotors

Symmetric gaits in quadrupedal animals can be cat-
egorized using Hildebrand analysis [22, 49]. Recent
work revealed that a GM framework predicted opti-
mal body–leg coordination for fire salamanders
(Salamandra salamandra) [41, 58]. However, the
means by which salamanders modify their leg move-
ments and body–leg coordination in response to
speed changes was previously unstudied. In this work,
we recorded fire salamanders moving on sand. Five
individuals were recorded, and their foot placement
and backbone positions tracked. For simplicity, we
only consider the body movement between the shoul-
der and the hip, for which salamanders exhibit a
standing wave [59]. From the tracking data we mea-
sured gait parameters such as duty factor, lateral phase
lag, amplitude of body bending, and amplitude of leg
movements. We then used GM to predict the optimal
body–leg coordination for salamanders walking at
various speeds. We observed quantitative agreement
between the GM prediction and the biological mea-
surements (figure 9).
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Beyond quadrupedal animals, our methods can
also be applied to study animals with various num-
bers of legs and backbone segments. Centipedes are
known to be fast-moving locomotors: certain cen-
tipedes are the fastest-running terrestrial arthropods
[34, 51]. Given their high speeds, past work often
used dynamic models to analyze their locomotion
[60, 61]. We hypothesized that despite their high
speeds, centipede locomotion could be analyzed with
our quasi-static geometric model because of the high
damping from many leg contacts. To test this hypoth-
esis, we recorded videos of centipedes (Scolopendra
polymorpha) moving at different speeds. Three indi-
viduals were recorded, their leg and body positions
tracked, and their gait parameters estimated. We then
used GM to predict the optimal body–leg coordina-
tion. We once again observed quantitative agreement
between GM predictions and the biological measure-
ments (figure 10).

5. Discussion and conclusion

5.1. Principles of gait modulation
In this paper, we developed a general gait design
framework for a broad class of locomotors: multi-
legged robots (with an arbitrary number of pairs of
legs) with an articulated backbone, including limbless
sidewinding. Specifically, we extended the Hildebrand
gait formulation [22, 49], originally used to categorize
symmetric quadrupedal gaits, and combined it with
modern GM tools to investigate optimal leg–body
coordination. We showed that the symmetry in Hilde-
brand quadrupedal gaits is conserved for other loco-
motors. The framework is not only simple enough to
enable physical interpretation of the gait parameters,
but also covers a range of potentially interesting gaits,
offering a scheme to modulate gaits in a diverse
range of robot shapes. These properties enable our
framework to link well-studied locomoting systems
like quadrupeds and hexapods with less-studied sys-
tems like myriapods, generating new opportunities to
transfer insights among, and compare between, dif-
ferent locomoting morphologies. Given a new robot
with arbitrary pairs of legs or without legs, our
framework can immediately provide effective open-
loop gaits, which can serve as the basis for closed-
loop adaptive or data-driven/learning-based control
algorithms.

Our gait identification and dimensionality reduc-
tion principles reveal insights into proper contact
scheduling. These principles could serve as a starting
point for additional layers within in a robot’s control
architecture or even for mechanical design iterations.
[62] found that while direct application of gait design
tools can prove ineffective in rough terrain, adding
passive leg compliance can greatly improve perfor-
mance in this environment. Our proposed framework
can not only simplify the gait design and modulation

process for robots with different morphologies in
various homogeneous environments, but can also
be used to test hypotheses and therefore give novel
insights into the control principles behind gaits in
biological systems.

Finally, our framework facilitated testing
hypotheses about the role of body undulation
in multi-legged systems. These observations can act
as guidelines in the control of a variety of legged
robots. For example, in RHex [3], a hexapod with
flexible legs attached to a rigid body, the duty factor
(e.g., the relationship between swing and stance
phase dynamics) is the primary tuning parameter
that can regulate the balance between speed and
stability. In other cases, such as in [63], a segmented
robot with a flexible backbone and contralateral
legs mechanically coupled to have opposite contact
states (and therefore, to have a fixed duty factor
D = 0.5), the lateral phase lag acts as the salient
parameter to balance between speed and stability
when properly coordinated with lateral body
undulation. Additionally, body undulation also plays
an important role in turning motions. Although not
explicitly studied in this work, our framework can
also be used to investigate the coordination between
body movement and contact patterns during turning
motions in both legged [41] and limbless [46]
systems.

5.2. Insights from robotics to biological systems
We also demonstrated that once two gait parameters
(duty factor and lateral phase lag) are specified, the
gait can be prescribed and then analyzed with geomet-
ric tools. To explore gait tuning principles for loco-
moting systems, we quantitatively investigated the
effect of modulating gait parameters on locomotor
performance. As shown in figure 6, we found that in
robots with a fixed straight backbone, the displace-
ment per gait cycle is nearly invariant to the changes
in the lateral phase lag, Φlat. On the other hand,
in gaits where body undulation is properly coordi-
nated with leg motions, Φlat affects the displacement.
This seemingly counter-intuitive observation can
help us develop hypotheses about gait modulation
principles.

In addition to these robotics applications, our
proposed control principles can also offer explanatory
power to some hypotheses about biological locomo-
tion. For example, biological myriapods (Chilopoda)
can be categorized into direct-wave myriapods [34]
and retrograde-wave myriapods [34]. Direct-wave
myriapods propagate their leg contact wave from tail
to head (corresponding to Φlat < 0.5 in our modi-
fied Hildebrand formulation) while retrograde-wave
myriapods propagate their wave from head to tail
(Φlat > 0.5) [48]. Interestingly, Manton [34] showed
that there is no significant lateral body undulation
in direct-wave myriapods regardless of their speed;
instead, the only significant gait modulation at high
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Table 1. The Ground Reaction Force (GRF) formulas used to
model quadrupeds, hexapods, myriapods, and sidewinders
robophysical systems.

Robot GRF formula References

Quadruped Poppy seed RFT [41, 64]
Hexapod Anisotropic Coulomb friction [65, 66]
Myriapod Anisotropic Coulomb friction [65, 66]
Sidewinder Isotropic Coulomb friction [43, 67]

speed is a decrease in duty factor. On the other
hand, gait modulation in retrograde-wave myriapods
is much more complicated: they not only decrease
the duty factor, but also increase the lateral phase lag.
More importantly, they exhibit characteristic lateral
body undulation at high speeds [34, 51]. This obser-
vation is consistent with the principles discovered via
our gait analysis methods, where we found that tuning
the lateral phase lag can only improve the speed if
accompanied with properly coordinated lateral body
undulation (table 1).

6. Materials and methods

6.1. Geometric mechanics
We used tools from geometric mechanics, the appli-
cation of differential geometry concepts to rigid body
mechanics, to design the coordination between body
undulation and contact patterns. In this section,
we provide a concise overview of the tools used to
design the coordination patterns. For a more detailed
and comprehensive review, we refer readers to
[41, 42, 57].

The GM gait design framework separates the
configuration space of a system into two spaces: the
position space and the shape space. The position space
represents the location (position and orientation) of
a system relative to the world frame, while the shape
space represents the internal shape (joint angles)
of the system. The GM framework then establishes
a functional relationship to map velocities in the
shape space into velocities in the position space;
this functional relationship is often called a local
connection.

6.1.1. Reduced equation of motion
In kinematic systems where frictional forces domi-
nate inertial forces, the equations of motion can be
approximated by:

ξ = A(Φ)Φ̇, (5)

where ξ = [ξx ξy ξθ]T ∈ g denotes the body velocity
in the forward (x), lateral (y), and yaw (θ) directions;
Φ denotes the internal shape variables. In this work,
Φ = [φc φb]T, representing the contact phase and
the lateral body undulation phase. A(Φ) is the local
connection matrix, which encodes environmental
substrate interactions.

6.1.2. Numerical derivation of the local connection
matrix
The local connection matrix A can be numerically
derived via force and torque balances [18]. The force
and torque balance equations require a model of the
ground reaction forces (GRF), such as granular mate-
rial interaction and ground friction. We summarize
the GRF formula for our four robots in Table 1.
Further details on the local connection derivation can
be found in the supplementary material.

6.1.3. Connection vector fields and height
functions
Once we obtain the local connection matrix, we can
further analyze the system kinematics during loco-
motion. Each row of the local connection matrix A
corresponds to a component direction of the body
velocity. Each row of the local connection matrix over
the shape space then forms a connection vector field.
Then, the body velocity can be computed via the dot
product of connection vector fields and the shape
velocity Φ̇.

A periodic gait can be represented as a closed curve
in the shape space. The displacement resulting from a
gait, ∂χ, can be approximated by:

⎛
⎝Δx
Δy
Δθ

⎞
⎠ =

∫
∂χ

A(Φ)dΦ. (6)

According to Stokes’ theorem, the line integral
along a closed curve ∂χ is equal to the surface integral
of the curl of A(Φ) over the surface enclosed by ∂χ:

∫
∂χ

A(Φ)dΦ =

∫∫
χ

∇×A(Φ)dφc dφb, (7)

where χ denotes the surface enclosed by ∂χ. The
curl of the connection vector field, ∇× A(Φ), is
referred to as the height function. The three rows of the
vector field A(Φ) can thus produce three height func-
tions in the forward, lateral and rotational directions,
respectively.

The height function derivation simplifies the
gait design problem to drawing a closed path in a
Euclidean shape space. The body displacement from
a path can be approximated by the integral of the
surface enclosed by that path.

6.1.4. Toroidal shape spaces
In our gait prescription, the two shape variables are
parameterized as cyclic phases, resulting in a toroidal
shape space (T2) [68]. Examples of height functions
on toroidal shape spaces are shown in figure 3(b). The
shape variables Φ = [φc, φb]T ∈ T2 correspond to
the phase of contact and the phase of the lateral body
undulation, respectively. A gait is a closed curve in the
toroidal shape space (solid purple curve figure 3(b)),
but as it is a non-Euclidean space, there is no clear
‘surface’ enclosed by the path.
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To form an enclosed surface, Gong et al [42] intro-
duced the notion of ‘assistive lines’ in the Euclidean
parameterization of the toroidal shape space. This
method allows a surface integral to be calculated. In
figure 3(b), the surface integral is the area within
solid lines subtracted from the area of the surface
enclosed in the upper left corner. For simplicity, in our
optimization we assumed that the mapping between
the two phase variables is linear and that the body
and legs share the same temporal frequency, i.e.,
φb = ∂χ(φc) = φc + φ0, where φ0 is the phase offset
between lateral body undulation and contact pattern
to be optimized.

6.2. Simulation
We performed a numerical simulation to predict
locomotive performance, and compared these results
to those obtained from robophysical experiments.
Specifically, we prescribed the contact state and the
joint angle of each leg by a single variable, φc, using
equations (2) and (3). Similarly, we prescribed the
lateral body undulation by another variable, φb, using
equation (4). The amplitudes of leg and body joint
angles are listed below.

Robot Aθ Aα

Quadruped 30◦ 30◦

Hexapod 10◦ 10◦

Myriapod 12◦ 17◦

Sidewinder N/A 5.6L (rad)

Note that the amplitude of sidewinder body undu-
lation is related to the lateral phase lag, such that the
‘relative curvature’, that is, the maximum curvature
of the backbone of limbless locomotors [43, 44, 69],
remains constant.

Given the body–limb coordination function
∂χ : φc → φb as described above, the shape variable
Φ and shape velocity Φ̇ can be rewritten as:

Φ =

[
φc

∂χ(φc)

]
, Φ̇ =

⎡
⎣ 1
d∂χ(φc)

dφc

⎤
⎦ φ̇c. (8)

The body displacement is computed by integrat-
ing the following ordinary differential equation [39]:

g(t) =

∫ t

0
TeLg(φc)A(Φ)dΦ (9)

=

∫ t

0
TeLg(φc)A(

[
φc

∂χ(φc)

]
)

⎡
⎣ 1
d∂χ(φc)

dφc

⎤
⎦dφc,

(10)

where g = (x, y,α) ∈ SE(2) represents the body
frame position and rotation [70]. Note that TeLg is
the left lifted action with respect to the coordinates

of g:

TeLg =

⎡
⎣cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎤
⎦ . (11)

Integrating the ordinary differential equation
throughout one period (from φc = 0 to φc = 2π)
results in the body trajectory, from which we can
determine the predicted displacements in the for-
ward, lateral, and rotational directions over one gait
cycle. Note that we neglect any inertial effects in this
simulation.

6.3. Robophysical experiments
6.3.1. Robotic models
All of the robophysical models were designed in Solid-
works and printed using Stratasys dimension Elite
3D printer. They are powered with an external power
supply (12 V, 5 A) and controlled via the MATLAB
DYNAMIXEL SDK, interfacing with the servo motors
through a Robotis USB2Dynamixel controller. All the
robots have open-loop control such that gait param-
eters are not changed during an experiment, and the
control signals (servo positions) continue to be sent
as a function of time, regardless of external forces or
the tracking accuracy of the servos.

The quadruped robot (figure S4(a), 450 g,∼40 cm
long [71]) has four legs and an actuated trunk. Each
limb is actuated with two Dynamixel XL-320 servos
(stall torque 0.39 (N m)) to control the vertical
position and the step size of the leg (45 mm-high
steps, figure S4(a)). The body joint servo (Dynamixel
AX-12) controls the horizontal bending. The legs have
a cube shape with 24 × 24 mm2 surface area.

The hexapod robot (figure S4(b), 300 g, ∼25 cm
long) has a segmented body (three segments) with
pairs of legs in each segment. The vertical and hor-
izontal motion of the legs in a segment are cou-
pled (out-of-phase) and controlled by two Dynamixel
XL-320 servos (figure S4(b)). The body joint servos
(Dynamixel XL-320) controls the horizontal bending
of the segments. The legs have pointed feet.

The myriapod robot (figure S4(c), ∼1000 g,
∼72 cm long) has a eight body segments, similar to
the segments of the hexapod robot [72]. Each segment
has a pair of rigidly connected legs 12 cm in length.
There are three servos (Dynamixel XL-320) in each
segment; one controls horizontal body bending and
two control the fore/aft and up/down motion of the
legs (figure S4(b)).

The sidewinder robot has seven segments, each
of which contains two joints connected at an angle
of 90◦ (figure S4(c)). Each joint is comprised of a
AX-12 servo motors (stall torque = 1.5 (N m)).
The horizontal motors vary the lateral wave, and the
vertical motors create a changing contact pattern.

6.3.2. Experimental setups and data analysis
We used an Optitrack motion capture system (includ-
ing 4–6 Naturalpoint, Flex13 cameras, 120 fps and
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Motive software) to capture the position and orien-
tation of the reflective markers attached to the robots.
The data was analyzed in Matlab.

Quadruped robot experiments were performed
on a trackway filled with ∼1 mm diameter poppy
seeds [71]. Before each experiment we fluidized the
bed using four vacuums to prepare a uniform loosely
packed state. Each experimental condition, consisting
of the quadruped robot and a set of gait parameters
was repeated three times for a total of nine gait cycles.

The hexapod and myriapod robot experiments
were performed on a cardboard and particle board
surface, respectively. Before each experiment, the
joints were set to their neutral positions. The robots
were allowed to run for three cycles (five trials/gait).

Sidewinder experiments were performed on a
foam mat surface to reduce slip. Each experiment was
started from the same position and repeated three
times, for five to six gait cycles per trial.

6.3.3. Salamander data analysis
In the salamander experiments, individual animals
walked along a straight trackway filled with 300
μm glass particles. Three cameras (GoPro Hero3+,
720 pixel resolution) were positioned around the
trackway and recorded synchronized videos at 120
FPS. All experiments were approved by the Royal
Veterinary College’s Clinical Research Ethical Review
Board, approval number 2015 1336. Salamanders
were captured under collection permit # 2016/001092
provided by the Government of the Principality of
Asturias. No animals were harmed for the experi-
ments, and animals had rest periods in between data
collection trials. Experiments were conducted in a
humidity-controlled laboratory at the University of
Oviedo, Spain. The temperature (18 ◦C) and light
cycle (12 h dark, 12 h light) were maintained at
constant levels.

At least three gait periods were recorded in each
experiment. Limb positions, body angles, and footfall
timing are manually extracted from each recording.
We fitted the animal body angles with the first two
terms of Fourier series as in [41].

6.3.4. Centipede data analysis
In the centipede experiments, individual animals ran
along a flat, hard trackway. One overhead camera
recorded centipede locomotion. Positional data were
extracted from videos with animal pose estimation
software DeepLabCut (DLC) [73]. Ten frames from
each video were extracted and manually labeled. DLC
would then provide positions for labeled points on all
of the other frames. The positions of feet and body
segments were labeled.
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