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SUMMARY

Biological systems can use seemingly simple rhythmic body and limb undulations to

traverse their complex natural terrains. We are particularly interested in the regime of lo-

comotion in highly damped environments, which we refer to as geometric locomotion.

In geometric locomotion, the net translation is generated from properly coordinated self-

deformation to counter the drag forces, as opposed to inertia-dominated systems where in-

ertial forces dominate over frictional forces (thus coasting/gliding is possible). The scope

of geometric locomotion include locomotors with diverse morphologies across scales in

various environments. For example, at the macroscopic scale, legged animals such as fire

salamanders (S. salamandra), display high maneuverability by properly coordinating their

body bending and leg movements. At the microscopic scale, nematode worms, such as

C. elegans, can manipulate body undulation patterns to facilitate effective locomotion in

diverse environments. These movements often require proper coordination of animal bod-

ies and/or limbs; more importantly, such coordination patterns are environment dependent.

In robotic locomotion, however, the state-of-the-art gait design and feedback control al-

gorithms are computationally costly and typically not transferable across platforms and

scenarios (body-morphologies and environments), thus limiting the versatility and perfor-

mance capabilities of engineering systems. While it is challenging to directly replicate the

success in biological systems to robotic systems, the study of biological locomotors can es-

tablish simple locomotion models and principles to guide robotics control processes. The

overarching goal of this thesis is to (1) connect the observations in biological systems to

the optimization problems in robotics applications, and (2) use robotics as tools to ana-

lyze locomotion behaviors in various biological systems. In the last 30 years, a framework

called “geometric mechanics” has been developed as a general scheme to link locomotor

performance to the patterns of “self-deformation”. This geometric approach replaces la-

borious calculation with illustrative diagrams. Historically, this geometric approach was
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limited to low degree-of-freedom systems while assuming an idealized contact model with

the environment. This thesis develops and advances the geometric mechanics framework to

overcome both of these limitations; and thereby generates insight into understanding a vari-

ety of animal behaviors as well as controlling robots, from short-limb elongate quadrupeds

to body-undulatory multi-legged centipedes in highly-damped environments.

vii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Conventional legged locomotion . . . . . . . . . . . . . . . . . . . 2

1.1.2 Unconventional legged systems . . . . . . . . . . . . . . . . . . . 5

1.1.3 Geometric mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Generalizing geometric mechanics to diverse locomotion systems . . . . . . 10

Chapter 2: Geometric mechanics and its application in limbless locomotion . . . 18

2.1 Introduction to geometric mechanics . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Three link swimmer in viscous environment . . . . . . . . . . . . . 19

2.1.2 Shape space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Spatial velocity and body velocity . . . . . . . . . . . . . . . . . . 20

2.1.4 Force and torque balance . . . . . . . . . . . . . . . . . . . . . . . 22

viii



2.1.5 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.6 Gait in the shape space . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.7 Minimal Perturbation Coordinate . . . . . . . . . . . . . . . . . . . 25

2.2 Three link swimmer in granular media . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Ground reaction force in granular media . . . . . . . . . . . . . . . 29

2.2.2 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Predictions from height functions . . . . . . . . . . . . . . . . . . 32

2.3 N-link swimmer in granular media . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Two modes in biological locomotors . . . . . . . . . . . . . . . . . 33

2.3.2 Limbless robot in granular media . . . . . . . . . . . . . . . . . . . 39

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 N-link sidewinding swimmer: contact function . . . . . . . . . . . . . . . . 43

2.4.1 Straight sidewinding . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Differential Turn . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Modulating contact function using geometric mechanics . . . . . . . . . . . 50

2.5.1 Geometric mechanics with toroidal and cylindrical shape spaces . . 50

2.5.2 Modulating the contact function . . . . . . . . . . . . . . . . . . . 55

2.5.3 General Sidewinding Gait Formula . . . . . . . . . . . . . . . . . . 66

2.6 Obtaining contact functions using geometric mechanics . . . . . . . . . . . 70

2.6.1 Effect of drag anisotropy on translational locomotion . . . . . . . . 70

2.6.2 Contact scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6.3 Optimal Contact Scheduling . . . . . . . . . . . . . . . . . . . . . 76

2.6.4 Applications to more than 3 contact states . . . . . . . . . . . . . . 80

ix



2.6.5 Application: modulating sidewinding angle of motion . . . . . . . . 81

2.6.6 Sidewinding of a 6-link Robot . . . . . . . . . . . . . . . . . . . . 84

2.7 Design gaits for obstacle aided locomotion . . . . . . . . . . . . . . . . . . 86

2.7.1 Modeling Interaction with Obstacles . . . . . . . . . . . . . . . . . 87

2.7.2 Direction of ẏb
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Cr. cerastes. Black bar denotes 1 cm. (right) Schematic illustrating sidewind-
ing locomotion. If the animal does not slip, displacements, ∆ = λs cos φ,
can be predicted from geometry. (B) Time-resolved kinematics are ob-
tained from high-speed cameras. (C) Two relative curvature modes (de-
termined from PCA) account for 42.4% and 37.3% of variance observed
in in-plane body configurations of 4 animals throughout 18 trials. (D) 2D
probability density map of animal data projected onto two dominant cur-
vature principal components. (E) Depiction of coupling between in-plane
and vertical waves (adapted from [16]). (F) Shape space showing body
configuration-dependent animal-environment contact model for an animal
with 1.5 waves along its body. . . . . . . . . . . . . . . . . . . . . . . . . 45
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2.15 Geometric mechanics of sidewinding. (A) Connection vector fields and
(B) x- and y- height functions (shown here as contour plots with color scales
multiplied by 100) for movement on sand with n = 1.5 waves along the
body. The blue circle shows average animal performance of Cr. cerastes
on sand. (C) Comparisons of RFT simulations (dashed tan curve) and ge-
ometric mechanics calculations (solid tan curve) for movement on sand.
Biological data: Cr. cerastes on a 7.6-cm layer of sand (blue); N. fasciata
on a 5-cm layer of sand (dark purple). Cr. cerastes on an oak board rough-
ened by a layer of adhered glass beads (dark magenta); Cr. cerastes on a
smooth oak board (light magenta); Cr. cerastes on a 1.5-cm layer of sand
(light purple) [132]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.16 PCA analysis of differential turn Snapshots of Cr. cerastes body config-
urations performing (A.1) gradual (A.2) sharp differential. (B) One cycle
of tracked midline of differential turn colored by time. Rotation (Rot) and
displacement are labelled. (B) Two relative curvature modes (determined
from PCA) account for 44.7% and 24.5% of variance observed in in-plane
body configurations of 4 animals throughout 47 trials. (C) A typical projec-
tion of body curvature onto two dominant curvature principal components
colored by time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.17 Geometric mechanics analysis of differential turn (A) x, y, and θ- height
functions (shown here as contour plots. Color scales in x, y- height func-
tions are multiplied by 100) for movement with n = 1.2 waves along the
body. The blue circle typical CW and CCW differential turn in Cr. cerastes
(B) The comparison between direct RFT, GM (surface integral in height
functions), and animal data (light blue dots) with its linear fit (p < 0.001). . 49

2.18 Cylindrical shape space (left) Height function on cylindrical shape space.
(mid) Height function on the Euclidean parameterization space of the cylin-
drical shape space. We illustrate two gaits with solid and dashed blue
curves. Note that the solid blue gait enclosed three disjoint areas with the
assistive lines. The area above the assistive line (solid shadow) and the area
below the assistive (dashed shadow) line have different handedness. (right)
The illustration of height function on Euclidean shape space of the same
system. Note that middle and right panel are identical subject to different
parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.19 Toroidal shape space (left) Height function on toroidal shape space. (mid)
Height function on the Euclidean parameterization space of the cylindrical
shape space. We illustrated a gait with solid purple curves. Note that the
solid purple gait enclosed two disjoint areas with the assistive lines. The
area above the assistive line (dashed shadow) and the area below the assis-
tive line (solid shadow) have different handedness . . . . . . . . . . . . . . 52
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2.20 Theoretical Model and Experimental Robot. (a) The theoretical model
for the sidewinder robots. The filled black ovals indicate the ground contact
phase while the white ovals indicate a no ground contact phase. The contact
state is labelled in black (c(i)). The joint angle in blue indicates pitch joints
and the joint angle in red indicates yaw joints. (b) The serial elastic actuated
robot used to test the effectiveness of our stabilization approach. . . . . . . 56

2.21 Examples of Statically Stable and Unstable Configurations. (a) (left)
The contact state pattern and an example of a statically stable configuration
for gaits with high spatial frequency in both the horizontal wave and the
vertical wave. (mid) The contact state pattern and an example of a stati-
cally unstable configuration for gaits with low spatial frequency in both the
horizontal wave and the vertical wave. (right) Stabilizing the statically un-
stable configuration by increasing the vertical spatial frequency. The label
and the axis are identical. (b) Example of an unstable configuration (left)
and an unexpected touchdown (right) . . . . . . . . . . . . . . . . . . . . . 59

2.22 Effect of spatial frequency on static stability in sidewinding. (Left) The
figure on top panel shows the relationship between the spatial frequency
(Kv = Kl = K) and the static stability. Robot experiments showed that
significant turning (Left, bottom) was observed in gaits with low static sta-
bility (Left, top) and the turning vanished at gaits with high static stability.
(right) We directly plotted the relationship between the body rotation and
static stability. The curve appeared to be a piece-wise linear function. In
the range where the static stability is less than 0.5, the body rotation grows
almost linearly with the loss of static stability (R = 0.99). Whereas in the
range where the static stability is higher than 0.5, the body rotation is al-
most negligible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.23 Discrepancy between robot experiments and simulation at low spatial
frequency. (left) the trajectories of body motion in 6 gait cycles. The
colors represent gait periods. Initial positions of the robot indicated by the
black circles. (right) comparisons of time evolution of displacement of the
simulation and robot experiments. We compared the low spatial frequency
gait (a) and high spatial frequency gait (b). The simulation-experiment
discrepancy occurs in low spatial frequency gaits. The unit and the axis
labels in all panels are the same. . . . . . . . . . . . . . . . . . . . . . . . 61

2.24 Temporal frequency dependency of unstable gaits. Dependence of the
rotation angle (per cycle) on the temporal frequency of (a) statically un-
stable translational sidewinding gaits and (b) statically unstable rotational
sidewinding gaits on robot experiments. The subplots (i) and (ii) show the
snapshots of robot implementing gaits in low temporal frequency (0.2Hz,
red) and high temporal frequency (2.0Hz, blue) over three gait cycles. . . . 62
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2.25 Height functions to design gaits to produce motion in the desired di-
rection. Height functions on torus (left) and on unfolded Euclidean param-
eterization space (right) are shown. The height function for (a) horizontal
spatial frequency Kl = 1.5, V-L ratio Kv/Kl = 1.3 in lateral direction (the
direction perpendicular to body axis) and (b) horizontal spatial frequency
Kl = 0.9, V-L ratio Kv/Kl = 1.2 in rotational direction. The purple curve in
each plot maximizes the surface integral enclosed in the upper left corner
(marked in solid lines) minus the surface integral enclosed in the lower left
corner (marked in the dashed lines). The assistive lines are shown as lines
with green arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.26 Robustness of statically stable gaits as a function of temporal frequency.
Dependence of the rotation angle (per cycle) on the temporal frequency of
(a) the stabilized translational sidewinding gaits and (b) the stabilized rota-
tional sidewinding gaits on robot experiments. In both cases, the rotation
angle is steady over a range of temporal frequencies. The unit and the axis
labels in all panels are the same. The subplots (i) and (ii) show the snap-
shots of robot implementing gaits in low temporal frequency (0.2Hz, red)
and high temporal frequency (2.0Hz, blue) over three gait cycles. . . . . . . 66

2.27 Extended sidewinding gait formula. (a) Height functions for different
V-L ratio with fixed Kl = 1.0. We show that while we change the V-L ra-
tio, the optimal phase φ0 emerged to increase linearly from height function
predictions. We then ran regression and find that φ0/2π linearly correlates
with V-L ratio Kv/Kl, under slopes a = −0.44 and intercept b = 1.2. (b) We
then test how the slopes and intercept correlates with the horizontal spatial
frequency Kl. It turns out that both the slope a and the intercept b linearly
correlate with Kl (a ∼ −0.439Kl + 0.001, b ∼ 0.439Kl + 0.750). (c) A
model to explain the empirical equations. We develop our model in CoM
frame, neglecting the forward displacement (along the direction) of body
segments, and only investigate the effect of lateral displacement. . . . . . . 67

2.28 Vector fields and height functions for an 8-link robot on granular me-
dia and frictional ground with continuous contact. (a) A schematic
sketch, vector field, and height function for an 8-link robot moving on gran-
ular media (poppy seeds). The height function has a large magnitude. (b)
The sketch, vector field, and height function for a 8-link robot moving on
frictional ground. The axes of all shape space are identical. The color bar
of height functions in (a) and (b) are identical. The units of the color bar in
the height functions are BL/π2. . . . . . . . . . . . . . . . . . . . . . . . . 71
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2.29 Example of a mixed contact pattern. (a-c) The vector fields and height
functions for three contact states I1, I2, and I3. Corresponding robot links
which are in contact with the environment are denoted by red, black and
grey. The color bar of height functions in (a), (b), and (c) are identical. (d.1)
The contact pattern prescribed by (Equation 2.43). (d.2) The vector field
prescribed by (Equation 2.44). (d.3) The corresponding height function.
The axes of all shape space are identical. The units of the color bar in all
height functions are BL/π2. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.29 Example of a mixed contact pattern (continued) (d.3) The corresponding
height function. The axes of all shape space are identical. The units of the
color bar in all height functions are BL/π2. . . . . . . . . . . . . . . . . . . 74

2.30 Illustration of a contact pattern optimization. (a) The vector field and its
curl-free component and divergence-free component by the Hodge Helmholtz
decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.30 Illustration of a contact pattern optimization (continued). (b) The po-
tential functions for P1, P2 and P3. Note that, in curl-free components,
the line integral is path independent, allowing us to compute the potential
function to estimate the line integral between any points. (c) The potential
function difference for Pγ = P2 − P1, Pα = P3 − P2, and Pβ = P1 − P3.
The axes of all shape spaces are identical. The units of the color bar in all
potential function differences are BL/π2. . . . . . . . . . . . . . . . . . . . 75

2.31 Experiments on angle of motion modulation. (a.1) Snapshots of robot
implementing sidewinding gaits with different amplitudes using sinusoidal
templates ((Equation 2.33,Equation 2.33)). The solid yellow arrow indi-
cates the direction of motion lt and the dashed blue line, lc indicate the
central body axis. The angle between lc and lt is then defined as the angle
of motion. (a.2) For the sidewinding gaits using sinusoidal templates, the
angle of motion is almost independent of the amplitude for robot moving in
isotropic environments. The blue solid line represents simulation and the
black line with error bars is robophysical experimental data. (b.1) Compar-
ison of snapshots of the robot experiment and the simulation implementing
the gait to modulate the angle of motion. (b.2) Modulation of the motion
angle by controlling the convex coefficient ε. . . . . . . . . . . . . . . . . . 78
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2.32 Modulating the angle of motion using contact pattern optimization.
The potential function difference (PFD) in forward (a), lateral (b) and rota-
tional (c) directions. The black circle indicate our joint angle limit: ||[r1, r2]||2 ≤
π/3. The set of extreme points (Qx = {qx

γ, qx
α, qx

β, }) are chosen to maxi-
mize the sum of PFD in forward directions. The set of extreme points
(Qy = {qy

γ, qy
α, qy

β, }) are chosen to maximize the sum of PFD in lateral di-
rections. The axes of all shape spaces are identical. The color bar of PFD
in (a) are identical. The units of the color bar in all PFDs are BL/π2. . . . . 80

2.32 Modulating the angle of motion using contact pattern optimization
(continued). The potential function difference (PFD) in forward rotational
directions. The units of the color bar in all PFDs are BL/π2. . . . . . . . . . 81

2.33 Sidewinding with fewer number of links. (a) Snapshots of a 6-link robot
implementing the sidewinding gait with the sinusoidal templates ((Equa-
tion 2.33), (Equation 2.33)). (b) Snapshots of a 6-link robot implementing
the sidewinding gait with our optimization method. (c) The sidewinding
speed (in unit BL per cycle) as a function of link numbers (sidewinding gait
is prescribed using the sine wave template). The blue solid line represents
simulation and the black line with error bars is robophysical experimental
data. The speed decreases as the link number decreases until N = 10. For
N < 10, the configuration is unstable and turning emerged. The speed of
the gait with our optimization method is highlighted as a diamond marker. . 82

2.34 Designing sidewinding gaits for a 6-link robot. (a) Three stable contact
patterns and their corresponding vector fields. . . . . . . . . . . . . . . . . 83

2.34 Designing sidewinding gaits for a 6-link robot (continued). (b) The PFD
of lateral and rotational directions. The color bars of PFD are identical in
three illustrations. The black circle indicates the robot’s joint angle limit:
||[r1, r2]||2 ≤ π/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.34 Designing sidewinding gaits for a 6-link robot (continued). (c) The
boundary of each contact state, the vector field, and the height function
with the optimal contact pattern, determined from the obtained transitional
points. The units of color bar in height function are BL/π2. . . . . . . . . . 85

2.35 Modeling interactions between robot and obstacles (a) (Left) The vector
field V1 assuming the obstacle has interactions with the head link (io = 1).
(Right) Force relationship illustrations for interactions between robot and
obstacle. (b) (Left) The vector field V2 assuming the obstacle has interac-
tions with the head link (io = 1). (Right) The two conditions (Sec.subsubsection 2.7.1
and Sec.subsubsection 2.7.1) . . . . . . . . . . . . . . . . . . . . . . . . . 87
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2.36 Identification of gaits (a) Numerically computed effective gait paths for
i0 = {1, 2, 3}. In (left) and (mid) panels, we showed the effective gait
paths with weight higher than 0.1 body length. In (right) panel, we showed
the gait path with the highest weight (0.06 body length). (b) Comparison
between circular-wave (φc), elliptical-wave (φe), and standing-wave (φs) gaits. 89

2.37 Single post experiments (a) The half-cycle displacements for different
gaits are measured. We illustrated configurations before and after inter-
action with the obstacle. The net forward displacement d (net displacement
along the direction of motion) is labelled with a dashed arrow. The net dis-
placement (forward and lateral) is labeled with a solid arrow. BL denotes
body length. The purple arrows indicate the direction of motion over the
half gait cycle. (b) The ranges of beneficial obstacles are measured. We
illustrated the starting and ending configuration where the interaction with
the obstacle is beneficial. γ is measured to quantify the ranges of beneficial
obstacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.38 Multiple posts experiments We illustrated snapshots of robots implement-
ing (a) circular, (b) elliptical, and (c) standing wave gaits on wide-distributed
posts (0.3 BL) and narrow-distributed posts (0.2 BL). Elliptical-wave gait
outperformed standing-wave and circular-wave gaits in both posts. Purple
arrows indicate the direction of motion over two gait cycles. On the right
panel, we illustrated the definition of attack angle ψ and contact duration τ. 93

2.39 Experiment data for multiple post experiments (Left panel) The speeds
of standing-wave (σ = 0.1), elliptical-wave (σ = 0.5), and circular-wave
(σ = 1) gaits are compared in (a) wide-distributed posts and (b) narrow-
distributed posts. (Right panel) The attack angle and contact duration for
all cases are measured and compared. ∗∗ denotes p < 0.01 . . . . . . . . . 94

2.40 Unevenly distributed post experiments A sequence of video frames of
the robot executing the elliptical-wave gait in an unevenly arranged planar
peg board over two gait cycles. . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 The animal, robot and theoretical models studied in the chapter. (a)
top view of a Fire salamander. The body angle, αb, is defined as an angle
between the center lines that are parallel to the front and the back part of
the body. (b) top view of the robophysical model. It has two body parts
connected with a servo, four 2 DoF legs, and a tail. The metal part at the
center is used to pick up the robot with an electromagnetic gripper. All
legs and tail have the same foot geometry (24X24 mm cube shape). (c) the
theoretical model with shape variables and body velocities labeled. . . . . 102
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3.2 The connection vector field and the height functions in the cylindri-
cal shape space. The connection vector field (top) and the height function
(bottom) in a cylindrical shape space corresponding to the forward motion
of a quadruped robot moving with a four-beat walking gait on the surface
of ∼ 1 mm poppy seeds. We show the vector field and height function on
a cylindrical space and on the Euclidean parameterization of a cylindrical
space. The blue curve represents a sample gait in the corresponding cylin-
drical shape space. Orange lines represent the assistive lines to form closed
loops with the gait path in the unfolded cylindrical shape space. The area
in the blue shading represents the area where the gait path and the assis-
tive line form a clockwise loop; the area in the green shading represents the
area where the gait path and the assistive line form a counterclockwise loop.
Red, white, and black colors indicate positive, zero and negative values in
the height function respectively. . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 The leg contact variables ci and joint angles βi prescribed by gait phase
τ for (a.1) (forward) slow walk, (a.2) (forward) fast walk, (a.3) (forward)
trot (b.1) (rotational) lateral sequence with no modulation (LS NM), (b.2)
(rotational) lateral sequence with differential drive modulation (LS DDM),
(b.3) (rotational) rotary sequence with no modulation (RS NM), (b.4) (rota-
tional) rotary sequence with differential drive modulation (RS DDM), and
(c) (lateral) sideways leg movements. The “cartoon sequence” shows the
leg joint angles and contact states (solid means contact; open in air) at dif-
ferent gait phases. A row of eight boxes indicates the contact state of a
leg at eight different phases of the gait, where filled gray color represents
contact and open white color represents non contact state. The blue curves
indicate the joint angles of the leg “shoulders” (shoulder for fore-legs and
hip for hind legs). The initials F, H, L, R represent front, hind, left and
right leg, respectively. All the panels have the same ordinate range (from
−π3 to π

3 ) as in (a.1). The dashed lines in (a.2) and (a.3) indicate two legs
are simultaneously in the air, which could only occur for diagonal leg pairs. 106

3.4 The flow chart of our gait design process . . . . . . . . . . . . . . . . . . . 110
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3.5 Height functions (a) Forward height functions associated with trot (a.1),
fast walk (a.2) and slow walk (a.3) leg movements. The units of the color-
bars are cm per step, i.e., cm/4π2. (b) Rotational height functions associ-
ated with lateral sequence no modulation (LS NM) (b.1), lateral sequence
differential drive modulation (LS DDM) (b.2), rotary sequence no mod-
ulation (RS NM) (b.3) and rotary sequence differential drive modulation
(RS DDM) (b.4) leg movements. The units of the colorbars are rad per
step, i.e., rad/4π2. (c) Lateral height function associated with sideways leg
movements. The blue curves are the identified “optimal” gait paths. Red,
white and black indicate positive, zero and negative values respectively.
The ordinate range is the same for all panels. The units of the colorbars are
cm per step, i.e., cm/4π2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Snapshots of robot experiment (b and d), RFT simulation (a and c) and an-
imal experiments (e). Body bending coordinated with leg movements (a-b)
changes the orientation of the body or increases forward displacement. In
(a) and (c), the green dots identify the head and the solid blue line repre-
sents the trajectory of center of mass. In (b) and (d), the module connected
to hanging tail (not making contact with the ground) indicates the hind
body module. We compared our designed forward gaits (c and d) with the
forward locomotion observed in animal experiments (e) . . . . . . . . . . . 112

3.7 Sample trajectories of robot experiments and RFT simulations implement-
ing (a) fast walk gait, (b) rotary sequence no modulation gait, and (c) side-
ways gait, showing close agreement between RFT simulations and robot
experiments. In these gaits, body undulations are properly designed to im-
prove (a) forward, (b) rotational, and (c) lateral displacements. . . . . . . . 113

3.8 Comparison of displacement in RFT simulations (blue bars) and robot ex-
periments (orange bars with error bar, representing 1 standard deviation)
results of (a) forward, (b) rotational and (c) lateral gaits, showing close
agreement between RFT simulations and robot experiments. Each gait is
tested for ∼ 3 experiment trials; each trials containing at least ∼ 3 gait
periods. The “optimal”, “neutral” and “worst” respectively represent the
optimal body bending, no body bending (fixed straight back) and the worst
body bending. We indicate statistically significant improvement comparing
the ’optimal’-’neutral’, as well as ’optimal’-’worst’ gaits. The gait compar-
ison with a horizontal bracket with ∗∗∗ represents statistically significant
improvement ( p < .001); the gait comparison without a horizontal bracket
represents no statistically significant improvement ( p > .05). For rotational
gaits in (b), we show both transitional and rotational displacement values
for completeness only: body bending is optimized with respect to rotation
only, and displacement changes are not optimized. . . . . . . . . . . . . . . 115
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3.9 (a) Snapshots of robot simulation following a circle. Rotation with forward
motion will lead to an arc in center of mass trajectory. R is the curvature
radius of the center of mass trajectory; θ is the stride rotation and D is the
stride displacement. (b) Body undulation amplitude vs. robot turning radii
(the curvature radius of the center of mass motion trajectory). We hypoth-
esize that by modulating the body undulation amplitude, we can control
the turning radius of the robot. Robot experimental data (blue) and RFT
simulation data (black) validate our hypothesis. . . . . . . . . . . . . . . . 116

3.10 Height functions for salamanders, namely experimentally-measured gaits
for (a) slow walk, (b) fast walk and (c) trot, with salamander gait in blue
curves and geometric mechanics predicted gait in green curves overlaid.
All the panels have the same body angle range as in the middle panel. . . . 118

4.1 Target and model systems for understanding the role of body undula-
tion in the lizard body elongation and limb reduction continuum (Left)
(from top to bottom) fully limbed lizards (U. scoparia and S. olivaceus) in
comparison with extant short limbed, elongate lizards (B. kadwa, B. taylori,
and B. muntingkamay) and limbless/almost limbless species (L. praepedita
and C. occipitalis). Scale bars indicate 2 cm. (Right) An illustrative dia-
gram of the thrust generation in short limbed, elongate lizards: the thrust
generated by limb retraction is labeled in red arrows, the thrust generated
by body undulation is labeled in yellow arrows. . . . . . . . . . . . . . . . 124

4.2 The diversity of body waves in the body elongation and limb reduction
continuum. (top) Photos of species and the snapshots of their body motion
during one period (at a scale of seconds) of locomotion. Seven species were
studied (from left to right): U. scoparia, S. olivaceus, B. kadwa, B. taylori,
B. muntingkamay, L. praepedita, and C. occipitalis. The relative limb size
(l: the hind limb length normalized by SVL) and number of presacral verte-
brae (V) for each species are labeled [173, 105]. (bottom) The projections
of body curvature into the reduced shape space and the estimation of σ for
each animal. Units of axes are identical to the left panel. . . . . . . . . . . 125

4.2 The diversity of body waves in the body elongation and limb reduction
continuum. (top) Photos of species and the snapshots of their body motion
during one period (at a scale of seconds) of locomotion. Seven species were
studied (from left to right): U. scoparia, S. olivaceus, B. kadwa, B. taylori,
B. muntingkamay, L. praepedita, and C. occipitalis. The relative limb size
(l: the hind limb length normalized by SVL) and number of presacral verte-
brae (V) for each species are labeled [173, 105]. (bottom) The projections
of body curvature into the reduced shape space and the estimation of σ for
each animal. Units of axes are identical to the left panel. . . . . . . . . . . 126
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4.3 From standing wave to traveling wave (a) Comparison between the orig-
inal body curvature profile of B. taylori and the reconstructed body curva-
ture profile over a gait cycle from the estimated wavelength λ and flatness
σ. The units of the colorbar are SVL−1. (b) The relationship between the
locomotion parameters (σ and λ) and morphology parameter (the relative
hind limb length l). Red points with error bars correspond to the locomotion
parameters of U. scoparia and S. olivaceus on an aerated granular medium
to reduced the resistive force of the media. Note that we use l = 0.01 for L.
praepedita on the plot and that the abscissa is reversed (descending left to
right) to correspond to Fig. 2. . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (a) The limb movement in short limbed, elongate
lizards follows the lateral couplet sequence (FR-HL-FL-HR). The phase
relationship of hip bending and hind limb movements are plotted in the
right side panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (b) The shape space for short limbed, elongate
lizards. The body movements are prescribed by the reduced shape variable
w1 and w2, and the limb contact states are inferred from the body move-
ments. Gaits can be represented by closed-loop paths in the shape space.
A standing wave gait path, a traveling wave gait path, and an intermediate
wave gait path are compared. . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (c) Height functions to investigate the body un-
dulation in lizards with intermediate limbs. (left) Two strips emerged in
the height function for short limbed, elongate lizards, such that a circular
gait path can enclose significantly more surface than a flattened elliptic gait
path. To further understand the two stripes, we calculated the height func-
tion for hypothetical lizards with one pair of limbs near the head (middle
panel) and near the tail (right panel). Each stripe is associated with a pair of
limbs, in which case a flattened elliptic gait path can enclose sufficient sur-
face in the height function. The units of the colorbar are (10−3×SVL−1/rad2).129

4.5 The weight distribution role of limbs in lizard locomotion (a) The body
weight can be supported by the limbs and the body; γ indicates the fraction
of body weight supported by limbs. (b) Three typical gaits: the pace gait
(duty factor = 0.5, leg phase shift = 0) implemented by lizards with short
limbs, the LS (lateral sequence: duty factor = 0.5, leg phase shift = 0.25)
gait implemented by lizards with intermediate limbs, and the trot gait (duty
factor = 0.5, leg phase shift = 0.5) implemented by lizards with long limbs. . 131
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4.5 The weight distribution role of limbs in lizard locomotion (c) The rela-
tionship between γ and speed for (solid black curves) pace, (dashed blue
curves) LS, and (dashed red curves) trot gaits on lizards with (c.1) short,
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CHAPTER 1

INTRODUCTION

1.1 Overview

The transport of physical matter is an important aspect in human society and biological

systems. Locomotion as a means of matter transport has been thoroughly studied in various

forms [1, 2, 3, 4], where a core concept is to actively generate thrust against drag to develop

“self-propulsion”. In aerial and aquatic environments, locomotors are often submerged in a

continuous medium where the thrust is generated from continuous interaction between the

locomotor and the media [5, 6]. In other words, the thrust is continuous with respect to both

time and position on a locomotor body [7]. In those cases, inertial forces typically dominate

over the frictional forces, a regime we will refer to as the inertia-dominated locomotion.

Terrestrial locomotion is particularly interesting because it occurs at the interfaces

among multiple media [11] where the heterogeneous spatial terrestrial structures can in-

terfere with thrust generation. To counter the terrestrial heterogeneity and its effects on

locomotion, humans have built costly flat platforms, such as tracks and roads. In particu-

lar, the conveyance arising from wheels on tracks/roads is believed to be one of the most

efficient terrestrial matter transportation schemes [5]. This wheeled terrestrial locomo-

tion, however, shares a property of continuous thrust akin to aerial and aquatic locomotion,

where thrust generation relies heavily on the homogeneity of the established platforms [12]

and lacks generality towards more complex terrestrial environments [13]. In environments

where construction of homogeneous platforms is inconvenient, researchers have either in-

creased the size of the wheels [14] or have developed appendage based self-propulsion,

such as legs [15] and vertical waves of contact in limbless locomotors [16].
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Figure 1.1: Aerial, aquatic, and terrestrial locomotion (a) Aquatic locomotion of fish
swimming [8]. (b) Aerial locomotion of bird flight [9]. In both cases, the reaction force
from the interaction between locomotor and environment is continuous temporally and
spatially. (c) Terrestrial locomotion of human [10], where appendages (legs) periodically
make and break contact with substrate.

1.1.1 Conventional legged locomotion

A simple self-propulsion principle to govern conventional legged locomotion (e.g., bipeds

or quadrupeds) is to protract1 during stance phase (which makes contact) and retract2 dur-

ing swing phase (which breaks contact) [17, 15]. The challenges of conventional legged

locomotion then lie in properly controlling the dynamics of appendages to avoid potentially

catastrophic loss of stability and thereby execute such self-propulsion principles. Given the

importance of stability in legged locomotion, legged locomotion is stereotyped as stability-

driven locomotion, where the coordination of body inertia can be important for balance and

self-righting [18, 19, 20, 21, 22, 23, 4, 24]. State-of-art legged systems tend to be classified

into one of several categories, including planning for appropriate foot contacts to maintain

1Limbs generate thrust by swinging from anterior to posterior.
2Limbs restore their positions from posterior to anterior.

2



static stability during each phase of the step [18, 19, 20, 21, 22], or relying on dynamical

stability by proper inertia management [23, 4, 24].

Figure 1.2: Footfall pattern planning on rigid flat terrain Front view of OSU hexapod
vehicle and the footfall pattern planning algorithm. Figures are adapted from [18].

One of the most popular approaches is to plan for foot contacts to enforce the static sta-

bility of the locomotor. Foot placement determines a sequence of locations on the ground

where a system places the distal-most portion of its limbs. McGhee and Iswandhi [18] in-

troduced a heuristic gait-planning algorithm for legged robots by maximizing the stability

margin (the distance from the center of mass to the supporting polygon in the direction of

travel) and minimizing kinematic margin (the distance that the foothold of a given leg can

travel in the opposite direction of motion before reaching the boundary of its workspace).

Although this algorithm was adequate for hexapods, it is not as well suited to quadrupeds

because quadrupeds have more strict stability criteria. Bai et al. [25] applied a similar

approach to quadrupeds, which took a lateral sequence walk (leg lifting follows the se-

quence: left hind leg, left front leg, right hind leg, right front leg [17]) as a primary gait

and successfully adapted it to the environment. These ideas were applied to the Little Dog

platform [19, 22], where the footsteps are planned and implemented across rough terrain in

the presence of disturbances.

More recently, machine learning tools and algorithms have been applied to design leg

movements during locomotion. Kim et al. [26] applied Powell’s minimization method [27]
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to design a periodic footfall pattern for quadrupedal robots that was faster and more sta-

ble than previous hand-optimized gaits in the RoboCup soccer competition. Kohl and

Stone [28] parameterized leg movements based on locus foot trajectory [29], then opti-

mized these parameters to improve locomotion speed by some established machine learn-

ing algorithms. With improved physical simulator and learning robust policies, Tan et

al. [30] trained robot control policy in simulation and successfully implemented trotting

and galloping gaits on agile quadrupedal robots in real world.

Figure 1.3: Machine learning in legged locomotion (Left) Early work using reinforce-
ment learning to optimize quadruped gait [18]. (Right) Recent work of legged locomotion
using deep reinforcement learning [30].

Inspired by analogous ideas from biology, the central pattern generator (CPG) approach

uses periodic signals to drive body joint trajectories in shape space for locomotion or other

repetitive tasks [1, 31, 32, 33, 34] to augment the performance of an existing footfall pat-

tern. Ijspeert et al. [35] showed that CPGs can produce body-limb coordinated movements

for the locomotion of a salamander robot, as well as generate gait transitions among dif-

ferent forward gait motions of varying speed. Using CPG analytic tools, prior work [36,

37, 38] demonstrated that the body-limb coordination used by salamanders optimizes their
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forward speed and produces turning motion. Following this idea, Owaki et al. [39] in-

vestigated the mechanisms of inter-limb coordination which exhibited good adaptability to

changes in walking speed of a quadrupedal robot.

1.1.2 Unconventional legged systems

Locomotion is also an essential behavior observed in biological systems [40, 41, 42].

Animals can use seemingly simple rhythmic body (and/or leg) movements to traverse

their natural terrains. In organisms as diverse as galloping horses [17], fast-walking cen-

tipedes [43], sidewinding snakes [44, 45], and undulatory lizards [46], properly coordinated

self-deformation can generate thrust through interactions with substrates and cause self-

propulsion. A major challenge in locomotor biology (which is echoed in design of robots

with life-like capabilities [47, 48]) is to discover general principles of self-propulsion which

govern how organisms generate and control fast, stable, or energetically efficient locomo-

tion.

However, aside from extensive studies on conventional bipedal and quadrupedal loco-

motors, the principles of unconventional locomotors, such as centipedes and sidewinders as

we listed earlier, are less studied. Specifically, because of additional legs or belly contact,

the stability of centipedes or sidewinders have limited impact on the overall locomotion be-

havior. It remains unclear how centipedes or sidewinders coordinate their body appendages

to generate thrust.

To explore such principles, researchers divide general locomotion control into templates

and anchors [15, 49, 50, 51, 52, 53, 54]. Specifically, a template is the simplest locomotion

model with the least number of variables and parameters and a anchor is the elaborated

model with morphological and physiological details. The template approach ignores the

complexity of organisms and seeks to discover broad (cross taxa) and relatively simple

patterns of dynamics. For example, the spring-loaded inverted pendulum is a template for

legged locomotion, which guided the development of various agile legged robots [55, 56,
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Figure 1.4: Central pattern generator (CPG) for locomotion (Left) Early work of CPG
to study body-limb coordination by oscillation coupling of a salamander robot [35]. (Right)
Recent work of CPG to study inter-limb coordination [39].

57, 58] and generate insight into biological legged locomotion [59].

Despite the simplicity of the template-anchor approach, in some cases, the morpho-

logical features can also affect the overall locomotion strategy/performance. For example,

stereotyped snakes and lizards have distinct body movement patterns: snakes primarily use

traveling wave body undulations to generate thrust [60, 61, 62, 63]. Lizards use a standing

wave to assist limb retraction [64, 65]; and employ traveling waves of axial body undula-

tion at high speed [66, 67, 65], believed to help the limbs in transmitting forces along the

axis of progression [65]. Notably, the body morphology in lizards spans from fully limbed

and short bodied to elongate and limbless [68]. In lizards with short limbs and elongate

bodies, because of the proximity to the substrate, both the body and limbs directly con-

tribute to generating thrust and overcoming drag [65]. Since the short limbs of elongate

lizards typically cannot support the animal’s body weight, the two propulsive mechanisms

(limb retraction and body undulation) can coexist, requiring proper coordination. Further,

the support of body weight must be properly distributed between the ventral surface of the

body and the limbs to facilitate effective thrust-generation mechanics. In other words, the

morphological features (anchors) of lizards can in turn affect the coordination between the
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self-propulsion templates of body undulation and limb retraction.

Figure 1.5: Template-anchor for locomtoion (a) A template (spring-loaded inverted pen-
dulum) for legged locomotion [15]. (b) Application of template-anchor approach to study
robot legged locomotion [58]. (c) Application of template-anchor approach to study human
locomotion [59]

To elaborate our argument, we illustrate another example. Locomotion is typically sep-

arately studied in continuous media where bodies and legs experience forces generated by

the flowing medium, or on solid substrates dominated by friction. In the former, centralized

whole-body coordination is believed to facilitate appropriate slipping through the medium

for self-propulsion. In the latter, slip is often assumed minimal and thus avoided by (lo-

cally) intra-limb coordination. While the bulk of prior work on terrestrial locomotors [69]

focused on systems with two or four legs, many biological, and increasingly robotic device,

possess multiple sets of limbs (e.g., cockroaches have six and centipedes can have up to 40

legs). In contrast to the few-legged systems in which an assumption of no-slip contact is

often feasible [70], for systems with more than four legs, there is a high possibility that

some slip has to occur during locomotion [71] because of kinematic constraint violations,
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(e.g., the BigAnt [71]). As we will discuss in Chapter 6, instead of avoiding slipping, multi-

legged locomotors can actively coordinate slips for effective propulsion. In other words,

as the number of legs increases (changes in anchors), locomotion in myriapods shifts from

slipping-avoidance to slip-driven (changes in templates).

In this way, on top of the sequential template-anchor hypothesis, there should also be a

reverse anchor-to-template adaptation where we can systematically explore the relationship

between the detailed morphology (what they have) and the governing locomotion principles

(how they move). In this thesis, we seek to elaborate such reverse anchor-to-template adap-

tation using a comparative biological, robophysical, and theoretical modeling approach.

Such comparative analyses allow us to predict and analyze animal and robot locomotion

behaviors according to their “anchors” (morphological and physiological features).

1.1.3 Geometric mechanics

To simplify the self-propulsion modeling, we assumed that the frictional forces dominate

over the inertial forces, which we will refer to as highly-damped locomotion. Here, cyclic

patterns of self-deformations solely dictate performance, in contrast to inertia dominated

systems where gliding (movement without shape changes) and stored/returned elastic en-

ergy can be utilized. An approach for analyzing such highly-damped locomotion, which

integrates thrust and drag forces over the body, was introduced in the early-to-mid 20th

century and goes by Resistive Force Theory (RFT). This method has successfully modeled

the kinematics of organisms in highly damped hydrodynamic and granular terradynamic

environments, like microorganisms and sand-swimmers [72, 63, 73, 11].

Despite the effectiveness of the RFT framework, its analysis typically involves labo-

rious calculations. For example, even in simple artificial systems [76, 77, 78] to identify

parameters that result in optimal performance requires considerable computational effort,

comparing movements arising from an infinite combination of shape change sequences.

In the last 30 years, a framework referred to as “geometric mechanics” has been devel-
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Figure 1.6: Resistive Force Theory (RFT) for locomotion (a) Early work in mid 20th
century to study self-propulsion in limbless locomotors[61]. (b) Recent work using RFT to
study locomotion on granular media [74]. (c) Recent work combining RFT and geometric
mechanics [75]

oped [79, 80, 81] as a general scheme to link locomotor performance to patterns of “self-

deformation”. This scheme replaces the laborious calculation with a geometric approach

to gain qualitative and quantitative insights into how animals and robots can generate op-

timal high level control templates to affect a desired behavior. In the geometric mechanics

framework, the motion of a self-propelling system is separated into a shape space3 and a

position space (position and orientation of the locomotor in the world frame). The relation-

ship between velocities in a shape space (joint angle velocities) and velocities in a position

space (body velocities of the locomotor) is called the local form of the connection. A gait

then maps a periodic path in the shape space to a displacement in the position space. A

visualization tool known as height functions (the curl of the connection) [75, 82] is used

to analyze and design gaits. Prior work successfully advanced this scheme to enable gait

design for a limbless undulatory swimming system (a 3-link simmer) in highly damped

3Shape space describes the collection of all possible body-postures. Example of shape space include joint
angle space for limbless locomotors.
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situations like dry, frictional granular media [75]. Importantly, the theoretical predictions

are in quantitative agreement with experimental measurements [75], demonstrating that the

geometric mechanics framework can be accurately and successfully applied to real-world

systems.

Height functions from geometric mechanics enable a comparatively simple, diagram-

matic approach. That is, the key utility of height functions is that they simplify the gait

design problem: providing ready identification of gaits that maximize performance in the

desired directions (e.g., forward speed or turning rate) in diverse systems. Height functions

also give a geometric understanding of benefits and trade-offs of different self-deformation

patterns, without need for significant calculation. Most relevant to our interests, height

functions can aid the search in finding and optimizing control templates in the form of

families of closed curves in the configuration space.

1.2 Generalizing geometric mechanics to diverse locomotion systems

This thesis is organized in the following manner.

• Chapter 2, which advances and uses geometric mechanics to study general limbless

locomotion, and

• Chapter 3, which advances geometric mechanics to study body-leg coordination in

sprawled posture quadrupedal locomotion, and

• Chapter 4, which applies geometric mechanics to study the lizard terrestrial swim-

ming in the context of lizard limblessness, and

• Chapter 5, which uses geometric mechanics to study body-leg coordination in the

general multi-legged locomotor, and

• Chapter 6, which advances geometric mechanics to study the slipping in multi-legged

locomotors.
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• Chapter 7, which takes inspiration from information theory to illustrate the suffi-

ciency of using redundant legs to counter terrain roughness.

The 3-link swimmer is one of the simplest systems that can generate self-propulsion.

In biological systems, swimmers can have many more internal degrees of freedoms [46].

In Chapter 2, we will advance concepts and tools within geometric mechanics to study

limbless locomotion. From principal component analysis (PCA) of forward motion in di-

verse biological limbless locomotors, we show that the essence of limbless locomotion

can be reduced to a two-dimensional configuration space. Aided by this low dimensional

representation, we can numerically calculate the height functions. Interestingly, parame-

ters governing the animals’ chosen amplitude (of undulatory wave) nearly maximize the

forward speed according to our geometric analysis, which indicates that the animals are

controlling their self-deformation patterns to achieve near-optimal locomotor performance.

Although mathematically elegant, the use of geometric methods presumes idealized

constant contact between the system and the environment. In reality, many biological limb-

less locomotors are observed to lift a portion of their body, and therefore periodically make

and break contacts during locomotion [45]. In Chapter 2, we further introduce the concept

of contact function to couple the body-environment contact to shape space. With a proper

contact function [16], we can use geometric mechanics to explain a variety of limbless lo-

comotion behaviors, from straight sidewinding, to gradual differential turns, and to sharp

differential turns. Furthermore, using robot experiments, we show that the modulation of

contact function can lead to novel behaviors such as stable in-place turning. Towards the

end of Chapter 2, we will also discuss using geometric mechanics to design contact pat-

terns.

However, geometric mechanics has been mainly limited to study limbless locomo-

tion [83]. Legged animals, and increasingly robots, can use limbs to propel themselves

to maneuver across a variety of terrains [18, 19, 22, 23, 4]. In addition to these appendages,

undulatory body motions can also contribute to locomotor propulsion, even when not di-
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Figure 1.7: Robotic and biological systems studied in this thesis (a) Body-leg coordina-
tion in quadrupedal systems. Two robots were studied: a quadrupedal robot with a single
DoF body bending joint and an elongate quadrupedal robot with two DoF body bending
joint. We studied five quadrupedal animals: (from top to bottom) Salamandra salamandra,
Uma scoparia, Brachymeles kadwa, Brachymeles taylori, and Brachymeles muntingkamay.
(b) Body-leg coordination in hexapodal systems. We studied the body-leg coordination of
hexapod robot. (c) Body-leg coordination in centipede systems. We studied a centipede
robot with 8 pairs of legs and the biological centipede (Scolopendra polymorpha). (d) The
undulatory motion in limbless locomotors. We studied limbless locomotors in macroscopic
scale (Crotalus cerastes) and in microscopic scale (Caenorhabditis elegans ) and use robots
to test our analysis. Scale bars are 5 cm unless otherwise labelled.

rectly in contact with the environment. For example, salamanders [84, 66, 85, 86], lizards

[87], and some mammals [88] use lateral body undulation in coordination with their legs for

effective locomotion. While previous studies have elucidated the benefits of using lateral

body undulation in conjunction with quadrupedal limb motion for individual tasks such as

walking, running, or turning [66, 85, 35, 88], no general framework yet exists to system-
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atically explore coordination and performance in quadrupedal systems that employ body

undulatory motion, or more specifically back bending. The challenge lies in the fact that

it requires not only coordinating many degrees of freedom (DoF), but also coordinating

different types of DoF (i.e., body bending and the leg movements) in different types of

behaviors (i.e., forward, turning and sideways motion).

To address these challenges, we require a dimensionality reduction scheme to prescribe

the complicated quadrupedal behaviors. One method used over the last century to un-

derstand legged locomotion is a gait classification scheme called “Hildebrand diagrams”.

Hildebrand [17] developed schemes to study symmetric gaits4 observed in quadrupedal an-

imals (e.g., horses). These gaits have two key variables: duty factor, the fraction of a period

that each leg is on the ground over a full gait cycle, and lateral phase lag, the fraction of

a period that the hind leg leads the foreleg on the same side. Both key variables are mod-

ulated in response to speed changes in biological systems [89, 90, 91]. Using these gait

principles as a reference, a multitude of algorithms have been developed for quadrupedal

robot locomotion, or to explain why living quadrupeds choose certain gaits [92, 25, 39, 93,

94, 95].

In Chapter 3, we prescribe the leg contact states by their phase according to Hildebrand

analysis [17, 96, 97, 89, 98]; this phase, together with the body-bending angle, forms the

shape space, in which we can apply geometric mechanics tools. We demonstrate that proper

body undulation, obtained from geometric mechanics, can improve the locomotion perfor-

mance of our quadrupedal robots in forward, rotational and lateral directions. Furthermore,

experimental data collected from Fire salamanders (Salamandra salamandra) reveal that

our geometric-based approach closely predicts motion observed in this biological system.

Note that we only consider a single DoF body bending in Chapter 3, partially because

the animals of interests (salamanders and lizards) are stereotyped to have short bodies and

thus use one DoF standing-wave body bending. However, lizards and salamanders have

4In symmetric gaits, the contralateral (left and right pair) of legs are 180◦ out of phase.
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evolved diverse body plans including elongate trunks with tiny limbs which are hypothe-

sized to aid locomotion in cluttered/fossorial environments [99, 100, 101, 99].

Such transitions in body morphology are just one of many aspects of evolutionary adap-

tations for cluttered or fossorial habitats. Another crucial but less studied aspect in such

adaptation is how animals can use these diverse morphologies during locomotion. In Chap-

ter 4, we will investigate the role of body movements for a spectrum of lizard morphologies

in field and laboratory environments. In particular, we will show that there is a diversity of

body movements in lizards, exhibiting a linear combination of standing wave body bend-

ing and traveling wave body undulation. Species with more elongate bodies and reduced

limbs used a greater ratio of traveling wave. The fact that these animals move in highly

damped environments, where frictional forces dominate over inertial forces, allows the use

of the geometric mechanics framework to explain body wave dynamics and body-limb co-

ordination. The geometric mechanics theory rationalizes the advantage of using traveling

waves in short limbed elongate lizards, and predicts that such advantages emerge when the

primary thrust generation source shifts from the limbs to the body. We will illustrate the

verification of our hypothesis by numerical/biological/robophysical experiments. In this

way, our geometric analysis not only establishes a relationship between what they have

(the body morphology) and how they move (the body-limb coordination) [32, 102, 103,

104], but also facilitates our understanding of the locomotion implications of the evolution

of snake-like forms [105, 106].

So far, the power of Hildebrand analysis and therefore the application of geometric me-

chanics were limited to systems with up to 4 appendages. For multi-legged locomotors,

there is a lack of a systematic gait description framework that allows us to modulate the

balance between locomotion metrics such as speed and stability. In multi-legged animals

and increasingly in robots, appendages that make direct contact with substrates are not the

sole contributor to locomotion. As discussed earlier, undulatory body motions play an im-

portant role in generating propulsive forces in many systems [88, 87, 84, 43]. We aim to use
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geometric mechanics to investigate the role of body undulatory motion in the general multi-

legged locomotors. However, geometric mechanics has limitations. In particular, it is not

directly applicable to systems with a large number of appendages. Furthermore, despite

some recent efforts [83, 107], application of geometric mechanics in frictional environ-

ments (e.g., rate-independent isotropic Coulomb dry friction) has not been systematically

studied. In Chapter 5, we develop dimensionality reduction and physical modelling meth-

ods and we use geometric mechanics to design gaits for serially connected multi-legged

robots.

We integrate extended Hildebrand analysis with tools from geometric mechanics to

develop locomotion control schemes for multi-legged locomotors. Our analysis reveals

empirical rules to balance the trade-off between speed and static stability, and the potential

benefit of body undulation in multi-legged robot locomotion. In this way, our framework

offers the potential to modulate gaits for different tasks by switching between fast gaits

and stable gaits. Further, we show that our scheme can generate control hypotheses for

diverse living systems including salamanders and centipedes, thereby offering new insights

on the functional role of body-leg coordination from a biomechanical and robophysical

perspective.

Centipede robots serve as alternative agile robots to quadrupedal and bipedal robots.

However, up to this point, our analysis of centipede robots was limited to low-speed quasi-

static locomotion. In geometric mechanics framework, one of the major assumptions is

that the inertia is negligible compared to frictional forces. In other words, we assume that

there is no acceleration (instantaneous force and torque balance) throughout the course of

locomotion. Prior work showed that in viscous environment, because of the negative lin-

earity between velocity and reaction force, viscous swimming can converge to quasi-static

locomotion even when operated at high speed [108, 109, 110]. However, in frictional en-

vironment (rate-independent Coulomb friction), it is controversial whether the assumption

of geometric locomotion still holds.
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In Chapter 6, we investigate the terradynamics of multi-legged locomotors on rigid hard

terrains. From robophysical experiments, we will show that the multi-legged locomotion

has a property of geometric locomotion (the effect of inertia is negligible) even when oper-

ated at high frequency on a low-friction substrate. We use resistive force theory to study the

slipping and ground reaction forces in multi-legged systems and propose a new principle of

effective viscous friction. Specifically, by periodic lifting and landing of body appendages,

the nonlinear and isotropic Coulomb friction experienced on each limb can be simplified

into a velocity-dependent whole-body drag, similar to that of organisms at low Reynolds

number. This effective viscous friction can then allow us to use geometric mechanics to

analyze centipede locomotion without the concern of inertial effects. Similar to our study

in intermediate lizards, centipedes also have two self-propulsion mechanisms: body undu-

lation and leg retraction. In an effort to unify the body-driven and leg-driven mechanism,

we establish a performance space, and discuss the relative advantage (i.e., higher speed and

less sensitivity to obstacle-rich environments) of body-driven over leg-driven centipede

locomotion by robophysical experiments. Finally, we use our scheme to analyze the lo-

comotion of a biological multi-legged system. Similar to our predictions on robophysical

experiments, we observe a smooth gait transition from leg-dominated to body-dominated

locomotion as speed increases.

In Chapter 6, we notice that myriapod robots with up to 16 legs demonstrate remark-

able progress towards robust open-loop operations in diverse environments. It is different

from state-of-the-art legged robots (mostly bipedal and quadrupedal systems), whose in-

creasingly agile locomotive performance relies heavily on accurate sensors and properly

designed control frameworks [3, 111]. However, it remains unclear what mechanism drives

such robustness and, more importantly, whether redundancy in leg numbers can be gener-

ally sufficient to counter the terrain noise for self-propulsion.

During the last century, Shannon predicted that signals could be reliably transmit-

ted over noisy channels based on digital redundant coding in the form of binary bit se-
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quences [112]. Such prediction has become increasingly critical in modern communica-

tion. Inspired by the principles which facilitate signal transmission on noisy channels, we

hypothesize that there exist general principles of matter transportation by which, for a com-

plex terradynamic task, we can “guarantee” that multi-legged robots can self-transport over

distance with error rate (e.g., loss of stability or thrust deficiency) arbitrarily close to zero,

even without environmental awareness. The key idea is to digitize thrust-generation via

basic active contacts. In Chapter 7, from theory and experimental analysis, we demon-

strate that appropriate gait design can facilitate reliable transport of multi-legged systems

on laboratory and field rugose terrains without the need for complex sensing/control. We

hypothesize that the analogy between signal and matter transportation can accelerate de-

velopment of devices with mobility approaching that of living systems.
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CHAPTER 2

GEOMETRIC MECHANICS AND ITS APPLICATION IN LIMBLESS

LOCOMOTION

In this chapter, we will extend the geometric mechanics to study the general limbless lo-

comotion. Specifically, we will use basis function to describe the locomotion of N-link

swimmer. Further, we will illustrate that, by properly coupling the contact function, we

can increase the maneuverability of limbless locomotors, and enable behaviors including

sidewinding, steering, and in-place turning. Then, we will introduce a geometric mechan-

ics framework to design the contact function. Finally, we will briefly discuss the use of

geometric mechanics in heterogeneous environments (obstacle-aided locomotion).

Part of this chapter is adapted from an arXiv preprint1, two peer reviewed conference

papers2 3, a journal article4, and a journal article under review5.

Note that the core of this chapter is based on the mathematical tool of geometric me-

chanics. We provide a concise overview of the geometric tools needed for this chapter

below:
1“Geometric phase predicts locomotion performance in undulating living systems across scales”

(1906.11374)
2“Geometric motion planning for systems with toroidal and cylindrical shape spaces.” Dynamic Systems

and Control Conference. Vol. 51913
3“Optimizing coordinate choice for locomotion systems with toroidal shape spaces.” 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems
4“Frequency modulation of body waves to improve performance of sidewinding robots.” The International

Journal of Robotics Research 40.12-14 (2021): 1547-1562
5“Optimizing contact patterns for robot locomotion via geometric mechanics” The International Journal

of Robotics Research
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2.1 Introduction to geometric mechanics

2.1.1 Three link swimmer in viscous environment

In this section, we will briefly introduce geometric mechanics and its applications. Note

that most content in this section is adapted from prior works [75]. Specifically, we will

introduce the concepts of the shape space, the local connection and the height function

using 3-link-swimmer locomotion as an example.

2.1.2 Shape space

Consider a planar three link swimmer (Figure 2.1). The configuration (position and orien-

tation) of each link (with respect to the world reference frame) can then be characterized

by gi = [xi, yi, θi]. The configuration of a three link swimmer is then the collection of

positions and orientation in each link6:
{
gi, i = {1, 2, 3}

}
(Figure 2.1a).

Each module is connected by a rotational joint. Thus, one can relate the configuration

of a link gi to the next link gi+1 by:


cos(θi+1) − sin(θi+1) xi+1

sin(θi+1) cos(θi+1) yi+1

0 0 1

 =


cos(θi) − sin(θi) xi

sin(θi) cos(θi) yi

0 0 1

 DR(αi)D (2.1)

where

D =


1 0 L/2

0 1 0

0 0 1

 , R(α) =


cos(α) − sin(α) xi

sin(α) cos(α) yi

0 0 1

 ;

L is the length of a link, and αi is the joint angle between two links. Because of Equa-

tion 2.1, there are only 5 independent variables in the configuration of a three link swim-

6Each link is considered as a rigid body
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Figure 2.1: Geometry of 3-link swimmer (a) The position and orientation of each link.
(b) The position of the first link and the joint angles. (c) Spatial velocity, body velocities,
and the viscous friction. (d) Body reference frame.

mer,
{
[xi, yi, θi], i = {1, 2, 3}

}
: the position and orientation of the first link7 (g1), and the

joint angles ([α1, α2]) (Figure 2.1b). Geometric mechanics separates these independent

variables into two groups, the position variable (g1) and the shape variable (α = [α1, α2]).

The former determines the relative position of the 3-link swimmer with respect to the world

reference frame, and the latter determines the internal shape of the locomotor. The shape

space is then defined as the collection of all possible shape variables.

2.1.3 Spatial velocity and body velocity

Consider the position and orientation of each link being time-dependent

gi(t) = [x1(t), y1(t), θ1(t)],

which indicates that there is a velocity associated with each link. Naturally, the velocity

is considered with respect to the world reference frame. The spatial velocity is defined as

ġi(t) = [ẋi(t), ẏi(t), θ̇i(t)], meaning the velocity of each link expressed in the world reference

frame (Figure 2.1c). From definition, one can relate the spatial velocity to instantaneous

position changes by:

7As suggested by Equation 2.1, the information of position variables of the first link is equivalent to that
of the second link, third link, or any arbitrary chosen body reference frame.
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xi(t + dt)

yi(t + dt)

θi(t + dt)

 =


xi(t)

yi(t)

θi(t)

 +


ẋi(t)

ẏi(t)

θ̇i(t)

 dt (2.2)

The instantaneous velocity profile of the 3-link swimmer is defined as the collection

of spatial velocities of all links:
{
ġi(t), i = {1, 2, 3}

}
. From geometry, ġi(t), the spatial

velocity of link i, can be separated into two components: the spatial velocity of the first

link (ġ1(t)), and the relative velocity from link i to the first link (v1i). The relative velocity

v1i is then invariant to the choices of world reference frame, thus is only dependent on the

shape variable (α) and shape velocities (α̇):

ġi(t) = ġ1(t) + J(α)α̇. (2.3)

where J is the spatial Jacobian matrix8 [113]. Given Equation 2.3, there are only 7 inde-

pendent variables of velocity profiles: the spatial velocity of the first link, ġ1(t), the shape

variables, α, and the shape velocity α̇.

In addition to spatial velocity, it is also important to analyze the velocity in the body

reference frame. The body reference frame of a link is defined from the position and

orientation of the link (Figure 2.1d). The body velocity is then defined as the projection of

spatial velocity into the body frame: ġb
i (t) = [ẋb

i (t), ẏb
i (t), θ̇b

i (t)] (Figure 2.1c). Note that

angular velocity is invariant to frame transformation: θ̇b
i (t) = θ̇i(t). Similar to Equation 2.2,

the one can also calculate the instantaneous changes in configuration of a link from its

body velocity. However, because of the reference frame transformation, the simple linear

formula in Equation 2.2 becomes:

8Jacobian matrix provides the relation between angular velocities of joints to link velocities
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cos

(
θi(t + dt)

)
− sin

(
θi(t + dt)

)
xi(t + dt)

sin
(
θi(t + dt)

)
cos

(
θi(t + dt)

)
yi(t + dt)

0 0 1


=


cos

(
θi(t)

)
− sin

(
θi(t)

)
xi(t)

sin
(
θi(t)

)
cos

(
θi(t)

)
yi(t)

0 0 1

 exp
(

0 −θ̇b
i (t) ẋb

i (t)

θ̇b
i (t) 0 ẏb

i (t)

0 0 0

dt
)

(2.4)

2.1.4 Force and torque balance

Consider a viscous environment where the frictional force is linearly related to the body

velocity:  fx

fy

 =

γx 0

0 γy


ẋb

i

ẏb
i

 , (2.5)

where γx and γy are frictional coefficient in parallel and perpendicular directions respec-

tively (Figure 2.1c). Consider the environment to be isotropic if γx = γy, where translational

locomotion can be challenging [114, 115]. The essential physical property for locomotors

to translate in viscous fluid is the the drag anisotropy: γx > γy [115]. In the analysis in

this section, we will assume γx = 2γy unless otherwise stated, because it is a reasonable

approximation in low Reynolds number system [116, 117].

In quasi-static motion, there is no net force and torque (thus no linear and angular

acceleration) acting on the center of mass throughout the course of locomotion. In other

words, there are three equality constraints in the equation of motion: the force balance in

x direction and in y direction, and the torque balance. From force and torque balance, one

can numerically calculate the body velocity of the first link (3 independent variables) from

the shape variable α and the shape velocity α̇:
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ẋb

1

ẏb
1

θ̇b
1

 = h(α, α̇) = hα(α̇) (2.6)

2.1.5 Linearity

Figure 2.2: Visualization of hα(α̇): Relationship between body velocities (ẋ1 (left), ẏ1

(mid), and θ̇1 (right)) and shape velocities (α̇1 and α̇2).

In Equation 2.6, one can obtain a function relating the shape variable and shape veloc-

ity to the body velocity. With fixed shape variable α = [−0.85, −1.14], the relationship

between the body velocity ġb
1 and the shape velocity α̇ is plotted. From Figure 2.2, one can

notice that function between ġb
1 and α̇ is linear:


ẋb

1

ẏb
1

θ̇b
1

 = A(α)α̇, (2.7)

where A(α) ∈ R3×2 is called the local connection matrix. Each row of the connection matrix

can be viewed as a vector field in the shape space. In Figure 2.3b, the local connection

matrix is displayed in the x (forward, first row of A(α)), y (lateral, second row of A(α)), and

θ (rotational, third row of A(α)) directions, respectively.
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2.1.6 Gait in the shape space

A gait is a periodic sequence of shape changes. In geometric mechanics framework, a

gait can be viewed as a simple closed curve in R2 in the shape space. An example of a

gait is shown in Figure 2.3a. During locomotion, a periodic change in shape variables

(implementation of a gait) can lead to net tranlation in world reference frame. One then

seek to predict the net displacement that results from one period of the gait.

Figure 2.3: Shape space, vector field, and height function (a) The shape space of 3-link
swimmer and an example gait. (b) The vector field and height functions in forward (left),
lateral (mid), and rotational directions.

Unfortunately, the nonlinearity in Equation 2.4 makes such predictions complicated and
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computationally expensive. To simplify the problem, the spatial velocity can be approxi-

mated by body velocity. In other words:


xi(t + dt)

yi(t + dt)

θi(t + dt)

 ≈

xi(t)

yi(t)

θi(t)

 +


ẋb

i (t)

ẏb
i (t)

θ̇b
i (t)

 dt

=


xi(t)

yi(t)

θi(t)

 + A(α)α̇ (2.8)

Given Equation 2.8, the displacement from a gait (∂φ) can then be formulated as a line
integral along the vector field: 

δxi

δyi

δθi

 ≈
∫
∂φ

A(α)α̇. (2.9)

According to Stokes’ theorem, the line integral of a vector field over a loop is equal to

the surface integral of its curl through an enclosing surface:


δxi

δyi

δθi

 ≈
"

φ

∇ × A(α)dα, (2.10)

where φ is the area bounded by the gait ∂φ, and ∇× A(α) is then called the height function.

Therefore, one can directly use the height function to estimate the net displacement resulted

from one period of gait cycle.

2.1.7 Minimal Perturbation Coordinate

Height functions, discussed in subsection 2.1.6, offer an intuitive and visual tool to analyze

the locomotion. However, one of major assumptions in the analysis is to approximate the
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complicated nonlinear equation (Equation 2.4) by a linear equation (Equation 2.8). In this

section, we will show that the accuracy of this approximation and illustrate a framework to

optimize the accuracy of the approximation.

Figure 2.4: The importance of choices in body reference frame (Left) Forward height
function computed with (a) first link and (b) center of mass as body reference frame. (Mid)
The comparison between surface integral and numerical computation of circular gaits under
different amplitudes. (Right) The illustration of rotational oscillation of body reference
frame during the course of a gait period.

Consider predicting the optimal amplitudes for circular gaits that can lead to highest

forward displacements. In circular gaits, the gait path follows the following trajectories:

∂φ(r) =
{
[α1, α2] | α1 = r sin(τ), α2 = r cos(τ), τ ∈ [0, 2π)

}
, (2.11)

where r is the amplitude of the gait path and τ is the phase of the gait trajectory. As shown

in Figure 2.4, one can numerically calculate displacement (per gait cycle) of different am-

plitudes using the nonlinear equation Equation 2.4, and then compared it to the surface

integral over the height function. Surprisingly, one can only obtain accurate predictions at

low amplitude regime (Fig.Figure 2.4).

In Equation 2.8, the spatial velocity is approximated by body velocity. In other words,
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the line integral in Equation 2.9 can only give us the integral of forward, lateral, and ro-

tational velocity in the body reference frame instead of the net displacement (in world

reference frame).

Figure 2.5: Hodge-Helmholtz decomposition of rotational vector field (Left) The orig-
inal rotational vector field with first link as the body reference frame. (Mid) The curl-free
component of the original rotational vector field. (Right) The divergence-free component
of the original rotational vector field.

To better understand the approximation, we take the parallel parking car as an example.

The body velocity of a car has constantly zero lateral velocity: ẏb = 0. However, with

proper combination of the forward and rotational velocities, it is possible to have lateral

translation in the world reference frame. More formally, the sequenced combination of

rotational body velocity and forward velocity can cause translation in lateral direction;

and similarly the sequenced combination of rotational body velocity and lateral velocity

can cause translation in forward direction. In other literature, such effect is called the Lie

bracket effect [118].

In an effort to minimize the Lie bracket effect, one should aim to minimize the net

rotational oscillation throughout the gait. Notably, the choice of body reference frame can

have a significant effect on the magnitude of rotational oscillation. Figure 2.4a illustrates

that while the first frame experienced significant rotation throughout the gait, the body

reference frame of CoM (center of mass) has almost a steady orientation (Figure 2.4b).
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The body reference frame is defined as:

gcom =
1
3

3∑
i=1

gi (2.12)

Thus, in prior work [118], it is posited that by properly choosing the body reference

frame, one can minimize the rotational oscillation and improve the accuracy of the linear

approximation in Equation 2.4. To identify the optimal body reference frame, prior work

investigated the vector field in the rotational direction. The rotational vector field can be

vastly different depending on the choice of body reference frame. The rotational height

function, however, is invariant to the choices of body reference frame because the rotational

body velocity is identical to the rotational spatial velocity, θ̇i(t) = θ̇b
i (t), as discussed earlier.

In other words, the rotational vector field obtained from different body reference frames

has the same curl; and the difference between rotational vector fields is curl-free.

To minimize the rotational oscillation throughout the gait, any addition of curl-free

vector field will only contribute to higher rotational oscillation. In this way, one can find

the optimal body reference frame by removing the curl-free component of the rotational

vector field. Hodge-Helmholtz decomposition [119] is used to to remove the curl-free

component of the vector field and then use it to identify the optimal body reference frame

(Figure 2.5).

The height functions obtained in the original body reference frame and the optimal

reference frame are compared in Figure 2.4. Surprisingly, the optimal reference frame can

give us accurate predictions on displacement across different amplitudes, which then allows

us to analyze gait with reasonable amplitudes and effective locomotion performance.
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Figure 2.6: 3-link swimmers in granular media (adapted from [75] (a) (left) The robot
resting on a granular medium, a bed of plastic spheres. (Mid) Analytical three-link model.
The reaction force from the granular media (F⊥ and F‖) and the attack angle (γ) are labelled.
(b) The visualization of hα(α̇) In Equation 2.15. The body velocities are almost linear
functions of the shape velocity.

2.2 Three link swimmer in granular media

2.2.1 Ground reaction force in granular media

While the geometric analysis of 3-link swimmer in viscous fluid is elegant, it has limited

real-world applications. Specifically, the ground reaction force is often much more com-

plicated than the linear relationship as in Equation 2.5. In this section, we will introduce

the granular resistive force (RFT) theory and extend geometric mechanics to study the lo-

comotion of a three-link swimmer in granular media. Note that most content in this section

is adapted from prior works [75].

RFT [120, 72, 121] assumes that environmental disturbances induced by the movement

of a single body segment are highly localized, therefore decoupled from interactions with

neighboring body segments. Prior work showed that granular RFT can successfully de-

scribe movement in highly-dissipative dry granular environments [72, 121, 122]. In partic-

ular, RFT assumes that a swimmer can be divided into different segments (in this example,
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the three links in the 3-link swimmer) that can be analyzed independently. Similar to Equa-

tion 2.5, the reaction force on a link can be decomposed to F⊥ and F‖, acting perpendicular

and parallel to the surface of the link respectively (Figure 2.6a). The reaction forces are

then determined from experimental measurements as a function of the attack angle γ, the

angle between the direction of movement and the link orientation. For example, on 6 mm

diameter spherical glass beads, the following empirical functions are used to approximate

F⊥ and F‖:

F⊥ = Cs sin (β0)

F‖ = CF cos γ + CL(1 − sin γ) (2.13)

where tan (β0) = c sin(γ), Cs = 3.21, CF = 1.34, CL = −0.82, c = 2.79 are the empirically

[123] fitted function to characterize the granular media resistive force.

2.2.2 Linearity

In highly-damped environments where inertial effects are negligible, the net force on a

body is assumed to be zero at every moment in time, giving

F =

3∑
i=1

(Fi
⊥ + Fi

‖) = 0. (2.14)

Similar to analysis in subsection 2.1.4, one can numerically calculate the body veloci-

ties from shape variable and shape velocity:


ẋb

1

ẏb
1

θ̇b
1

 = hα(α̇) (2.15)

Figure 2.6b visually shows the shape of the function hα(α̇). To simplify the calculation,
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Figure 2.7: Geometric mechanics analysis for three-link swimmer on granular media
(adapted from [75] (a) Height functions for the three-link swimmer in granular media. The
units of the field values are 100×(body-lengths) for forward and lateral height functions;
100×(radian) for rotational height functions. (b) Predictions from geometric mechanics.
(Left) Height function estimate of displacement compared to experimental and DEM results
as a function of r. Dashed horizontal lines indicate displacements for the butterfly gait in
DEM and resistive force theory. (Mid) Illustration of the butterfly gait and the figure-eight
gait. (Right) Height function estimate of net rotation for figure-eight gait of different stroke
amplitudes. Temporal frequency was 0.5 Hz in (left) and 0.17 Hz in (right)

it is assumed reasonable to approximate Equation 2.15 using a linear plane despite the

nonlinear relationship between velocity and reaction forces:


ẋb

1

ẏb
1

θ̇b
1

 ≈ A(α)α̇, (2.16)

where A(α) ∈ R3×2 is the local connection matrix which can be numerically approximated
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by fitting a plane to Equation 2.15.

2.2.3 Predictions from height functions

Circular gaits for forward motion

Figure 2.7 shows the forward and rotational height functions. By visualizing gaits as paths

in the shape space, the height functions provide an intuitive and visual overview of how gait

patterns can cause net displacements. Similar to analysis in subsection 2.1.7, good agree-

ment are observed between numerically calculated displacement and the surface integral

from the height function. For low-amplitude circular gaits, the net forward displacement

scales approximately quadratically with amplitude. At high amplitudes, the gait includes

negative regions near the corners of the height functions, which reduces the area integral.

These observations suggest the best forward locomotion performance occurs at intermedi-

ate amplitude.

To verify the theoretical predictions, robophysical experiments and DEM simulation

were conducted [75]. Specifically, the robot (0.56 kg) consists of three wooden segments

connected by two motors (Hitec, HSR 5980SG). The segments are covered by a thin latex

sleeve giving the robot a body-particle coefficient of friction of 0.4. The robot is fully

immersed in a large bed of 5.7 ± 0.06mm diameter plastic beads. Robot locomotion is

tracked using the lit masts at the ends of the links as markers. Each link of the robot

has dimension: 5.4 × 2.8 × 14.7 cm3. Details of DEM simulation can be found in [123].

Good agreements are observed between robot experiments, DEM, and theory, specially at

low-amplitude regime.

Further, one can also identify the zero-height contour on the height function such that it

will have the highest surface integral. The zero-height contour has the shape of a butterfly,

thus it is referred to as the butterfly gait. As confirmed by DEM simulation, such butterfly

gaits produce more displacement than any circular gaits.
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Circular gaits for turning motion

The height functions can also bring insights to movements that are relatively less studied,

such as turning in place. To design this gait, it requires zero surface integral in the forward

height function and finite surface integral in rotational height function. From the symmetry

of the height functions, it is posited that the figure-eight gait (Figure 2.7) can produce a net

rotation by connecting two loops enclosing oppositely signed regions from opposite direc-

tions (therefore uni-direction contribution). The hypothesis was tested using robophysical

experiments and DEM simulation.

2.3 N-link swimmer in granular media

The content in this section is adapted from a collaborative project with Dr. Jennifer M

Rieser. My role in this section is to assist Dr. Jennifer M Rieser for the analysis.

2.3.1 Two modes in biological locomotors

Shape basis function

The 3-link swimmer is one of the simplest system that can generate self-propulsion. In

biological systems, swimmers can have many more internal degrees of freedoms. Now we

consider a general N-link swimmer. Similar to our analysis in the three-link swimmer, the

shape variable of a N-link swimmer has (N − 1) degrees of freedom (DoF). In the extreme

case where the swimmer has continuous body (N → ∞), we can represent the shape of the

swimmer by its curvature: κ(s), s ∈ [0, 1], where κ(s) is the curvature at position s, and s

is the position along the body (Figure 2.8). In this way, we can consider the shape variable

of the N-link swimmer as the discretization of κ(s) into N − 1 curvatures.

Despite some recent efforts to extend geometric mechanics to higher dimensions [124,

125], the two dimensional shape space can offer more visual and intuitive insights than the

higher dimensional shape spaces. For example, the visualization of curls as flux [125] in 3-
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Figure 2.8: Low dimensional representation of animal movement through sand. (Left)
Photos of (A) the nematode worm (Caenorhabditis elegans) in S-basal buffer (B) the sand-
fish lizard (Scincus scincus) 7.6 cm below the surface of and fully immersed in 300-µm
glass beads, and (C) Chionactis occipitalis moving on the surface of 300-µm glass beads.
(Mid) Solid lines show the two dominant relative curvature (κλs) PCA modes account for
(A) 96.7%, (B) 94.7%, and (C) 79.7% of the variation in observed body configurations.
Dashed lines show best fits to sin and cos functions (see text). (Right) 2D probability den-
sity map of projections of curvatures onto the two PCA modes with the largest eigenvalues.
This figure is adapted from [83].

dimensional shape space can often be abstract and counter-intuitive to interpret in compar-

ison to the height functions in 2-dimensional shape space. Thus we seek a dimensionality

reduction framework for the general N-link swimmer.

Lateral undulation is one of the most commonly observed modes locomotion in these
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swimmers. Previous studies of biological elongate locomotors revealed relatively simple

wave patterns behind the seemingly complicated behaviors [46, 126]. For example, to de-

scribe the shapes during C. elegans locomotion, [46] used Principal Components Analysis

(PCA) to identify a set of orthonormal basis functions. We refer to this set of orthonor-

mal basis functions as the Principal Components (PCs). The time series of weights in PCs

can be used to capture observed animal posture changes. For steady-state forward motion,

Stephens et. al. [46] showed that it is sufficient to capture most of the shape changes us-

ing two PCs and the essence of forward motion could be represented in a two-dimensional

space by projecting time series of body postures profiles onto these PCs. Inspired by the

dimensioanlity reduction methods in C. elegans, we studied a variety of elongate swim-

mers (the sandfish lizard Scincus scinus [122], the shovel-nosed snake, Chionactis occipi-

talis, [122, 127], and the mm-scale locomotor C. elegans), and seek to represent the body

shape changes using a low dimensional shape space.

Figure 2.9: Geometric mechanics of undulatory locomotors. Columns show the dimen-
sionality reduction for (A) the nematode (B) the sandfish, and (C) the shovelnose snake
on the surface of sand. (Top) Dominant two modes of body curvatures determined from
PCA. (Bottom) Space of shapes spanned by the two modes. The directed circle on each
plot represents a particular gait. This figure is adapted from [83].

35



We apply PCA to the entire data set to identify an orthonormal set of curvature ba-

sis functions (Figure 2.8). We observe that two PCs capture most of the variation in the

body postures of each species for the forward motion of lizards, snakes, and nematodes.

Therefore, we can use the space spanned by the first two PCs as our two-dimensional rep-

resentation for each animal.

Further, we find that the two dominant PCs in the lizards, snakes, and nematodes are

well-fit by sinusoidal functions: κ1(s) = sin (2πs/λs) and κ2(s) = cos (2πs/λs), where λs is

the wavelength of the PC. Within each two-dimensional shape space, the body postures are

represented by a linear superposition of PCs:

κ(s, t) = w1(t)κ1(s) + w2(t)κ2(s). (2.17)

We defined w = [w1, w2] as the new shape variable. The new shape space is then defined as

the collection of all feasible w. Notably, a circular path (centered at origin) in the new shape

space can be prescribed as: w1 = wm cosωt, w2 = wm sinωt, where wm is the amplitude

of the wave, and ω is the temporal frequency. Combined with Equation 2.17, we have

κ(s, t) = wm sin (2πs/λs + ωt), a standard traveling wave of body curvatures (Figure 2.9).

Linearity

Figure 2.10: Visualization of the connection plane Hw(ẇ) The body velocities are almost
linear functions of the shape velocity, which allows us to approximate Equation 2.18 by
Equation 2.19

From Equation 2.17, we can rewrite Equation 2.15 as:
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ẋb

1

ẏb
1

θ̇b
1

 = hw(ẇ). (2.18)

Similar to our analysis in prior sections, we visualized hw(ẇ) in Figure 2.10. The detailed

force formula can be found in [83]. Interestingly, from the structure Figure 2.10, it is

reasonable to assume the linearity in local connection matrix:
ẋb

1

ẏb
1

θ̇b
1

 = A(w)ẇ, (2.19)

where A(w) is the new local connection matrix.

Height function predictions

We show the height functions for lizards, snakes, and nematodes in Figure 2.11. Note

that the unit of axis in the height function is κλs, a dimensionless quantity to measure the

magnitude of body curvatures. We calculate the surface integral over a range of circular

gaits with different amplitudes. We also perform the direct simulations for each system to

compare with surface integrals in our geometric framework (Figure 2.11).

For the subsurface movement of the sandfish lizard S. scincus in a frictional fluid and

for swimming of C. elegans in buffer, comparisons of animal performance, direct RFT sim-

ulations, and height function surface integrals reveal that displacements per cycle are close

to predictions (Figure 2.11). It is important to note here that because of power limitations in

living (or synthetic) systems, displacement per cycle is not necessarily equivalent to speed.

Since power generation capabilities of a swimmer are finite (e.g., muscles are not infinitely

strong), larger shape changes (and therefore larger amplitude cycles) require more time to

execute [129]. As a result, in the case of the sandfish, the peak power-limited speed occurs
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Figure 2.11: Geometric mechanics of lateral undulation. (Top) Height functions (con-
tours; here, color scale multiplied by 100) and average animal gait (blue circles); and (bot-
tom) Animal performance (average ± standard deviation, represented by the blue crosses),
geometric mechanics (solid black curve), and RFT (dashed red curve) predictions for (Left)
C. elegans in S-basal buffer, (mid) S. scincus in 300-µm glass beads, and (right) Ch. oc-
cipitalis on the surface of 300-µm glass beads. Crosses in A-(ii) show average animal gaits
from different data sets. In [72], curvatures were measured manually once per cycle (dark
blue cross); in [122], curvatures were measured throughout time [128] (light blue cross).
The light blue cross in B-(ii) represents the postural dynamics as defined by projections
onto the two dominant PCs, and the dark blue cross shows postural dynamics measured
directly from kinematic data. This figure is adapted from [83].

at a slightly smaller amplitude. In contrast, in low viscosity regimes C. elegans is not power

limited [130].

The surface waveform used by Chionactis occipitalis, which has more waves and lower

curvatures, produces low-slip movement that leaves behind a well-defined track of depth

≈ 5 mm [127]. Given that RFT measurements for movement at the surface used a flat plate

intruder, we added an additional term to the measured RFT relations to account for the

kinetic Coulomb friction drag that opposes the motion of the local segment. Predictions
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from direct RFT simulation and height function surface integrals are in agreement with

animal performance (Figure 2.11).

2.3.2 Limbless robot in granular media

Inspired by the biological elongate locomotors, we used shape basis function to design gaits

for snake robots (with more than 3 links). Similar to our analysis in biological systems, we

consider the shape variable of N-link snake robot to be:

α(i, t) = w1(t) sin
(2πKsi
N − 1

)
+ w2(t) cos

(2πKsi
N − 1

)
, (2.20)

where i = {1, 2, ..., N − 1} is the joint index; Ks is the number of spatial waves; w1(t)

and w2(t) are the reduced shape variables. In this way, we can represent the original N − 1

dimensional shape space by a 2 dimensional shape space. Note that we use sinusoidal

shape basis functions similar to our analysis in biological systems; the identification of

other useful shape basis functions can be found in [82].

Figure 2.12: N-link swimmer (a) A 16-link robot. (b) The waveforms of a N-link swimmer
in the shape space are visualized. (c) Snake robot executing a gait. Time interval between
each snapshot is five seconds. Figures are adapted from [82, 131].

We consider the case of a snake robot swimming in granular materials (6 mm plastic

particles) (Figure 2.12). The number of spatial waves, Ks is chosen to be 1. From our prior

analysis, we numerically approximate the relationship between body velocity and the shape

velocity with a linear function:
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ẋb

1

ẏb
1

θ̇b
1

 = A(w)ẇ,

The resultant height functions are shown in Figure 2.13.

Figure 2.13: Geometric mechanics of a N-link swimmer and numerical simulation (a)
The height function for a 16-link robot in (a.1) the forward, (a.2) the lateral, and (1.3) the
rotational directions. (b) The comparison between the surface integral and RFT simulation
for (b.1) circular gaits and (b.2) elliptical gaits with different amplitudes, and (b.3) turning
gaits with different offset from origin.

Circular gaits

We first consider circular gaits centered at the origin of the shape space with different

amplitudes. Figure 2.13 plots the displacement of each gait as a function of its amplitude.

Note that the surface integral from geometric mechanics agrees with RFT simulation.
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Elliptical gaits

From the structure from the forward height function, we noticed that an elliptical gait path

could better bound the positive areas on the height function. To verify our hypothesis, we

tested gaits with different eccentricity. Specifically, we parameterized the elliptical gaits

as:

α1(t) = r sin (t)

α2(t) = r sin (t + ψ), (2.21)

where r is the amplitude of the elliptical gaits, and ψ determines the eccentricity of the gait

path. For example, ψ = π/2 denotes a circle (thus a traveling wave) and ψ = 0 denotes a

flattened ellipse (and thus a standing wave). Note that our parameterization prescribed a

family of elliptical gaits with long axis oriented with an angle 45◦ from the w1 axis, which

aligns with the structure in the forward height function.

From the structure of the height function, we notice that an ellipse with ψ = π/4 op-

timally bounds the positive areas. We then tested the effect of amplitudes while fixing

ψ = π/4. Similar to our analysis in circular gaits, we observed good agreements between

surface integral and RFT simulations. Interestingly, we noticed that the peak displacement

from elliptical gaits outperformed those in circular gaits, which agrees with our observation

from the structure in height functions.

Turning gaits

Finally, we consider rotation in the limbless robot (from numerical simulation). From the

structure of rotational height functions, we noticed that an oriented ellipse off-center from

the origin can cause the highest rotation per cycle. We posited to modulate turning by

controlling the center of the gait path. Specifically, we parameterize the gait path as:
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α1(t) = π/3 sin (t) + rc

α2(t) = π/3 sin (t + 0.65π) + rc, (2.22)

where rc is the offset from center of elliptical gait to the origin. We verified our prediction

by numerical RFT simulation, and robophysical experiments. Surface integral prediction

from the height function have good agreement with both RFT simulation and robophysical

experiments.

2.3.3 Summary

In this section, we introduced the shape basis function such that we can apply geometric

mechanics to systems with higher DoF. Specifically, from PCA analysis at biological elon-

gate locomotors, we showed that the essence of lateral undulation in these animals can be

prescribed by a two dimensional shape space spanned by tw0 shape basis functions. The

linearity of local connection is preserved in such dimensionality reduction, which allows

us to use geometric mechanics.

While we are confined with the two dimensional representation of the original high DoF

locomotion systems, there can still be many novel and interesting observations. With the

help of height functions, we can identify the optimal amplitude for the undulatory motion;

further, by investigating the structures in the forward and rotational height functions, we

can analyze forward motion, turning, and steering in a continuous spectrum; finally, in the

application to robot (robophysical) systems, we showed that the elliptical gait (intermedi-

ate between traveling wave and standing wave) outperformed the pure traveling wave. All

combined, geometric mechanics can offer intuitive and visual insights to practical biologi-

cal and robotics locomotion systems instead of laborious calculation.
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2.4 N-link sidewinding swimmer: contact function

The content in this section is adapted from a collaborative project with Dr. Jennifer M

Rieser. My role in this section is to assist Dr. Jennifer M Rieser for straight sidewinding

analysis and leads the differential turn analysis.

2.4.1 Straight sidewinding

Thus far in the chapter, the systems studied maintain continuous full-body contact with the

environment during self-propulsion. However, many animals lift limbs or body portions as

they move, changing their contact state throughout a gait cycle [17, 132]. Here, we chose an

organism that modulates environmental contact while using lateral traveling waves and in-

habits a flowable environment, the sidewinder rattlesnake, Crotalus cerastes (Figure 2.14),

which encounters sandy substrates in its native North American desert habitat. Sidewinders

locomote on homogeneous substrates [133, 134] by propagating a wave of lateral body un-

dulation coupled to an offset wave of body lifting, resulting in each body segment being

cyclically lifted clear of the substrate, moved forwards, placed into a nearly static contact,

then lifted again, with a slight phase offset between successive segments [135, 136, 137,

132]. Thus, the snake generates multiple head-to-tail propagating regions of lifted move-

ment and nearly static ground contact (Figure 2.14) [135, 136, 137, 132, 107].

Despite the apparent complexity of these movements, our previous work indicated that

the self-deformation pattern of Cr. cerastes could be characterized as a template consisting

of a superposition of a lateral and vertical traveling wave [16], with a phase shift of ±π/2

between them (Figure 2.14). The modulation (e.g., changes in the maximum amplitude)

of these waves can lead to diverse behaviors such as turning [45, 16, 107]. However,

sidewinders tend to use relatively consistent horizontal waves during forward motion and

are typically thought to regulate forward speed using temporal frequency changes of the

wave [133, 132, 45].
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Indeed, when we applied PCA analysis to horizontal wave dynamics of previously col-

lected Cr. cerastes data, we discovered that across trials, the dynamics of the horizontal

wave consist of a circular path in a two sinuous mode configuration space (Figure 2.14)

of a characteristic radius (and therefore maximal body curvature). We thus posit that this

circle forms a control template enabling these animals to move rapidly over loose granular

surfaces.

Although the vertical body dynamics have not been carefully experimentally resolved [45],

they are assumed to be a traveling wave (and thus described by two modes) that sets the

periodic contact pattern (Figure 2.14A-B). On level granular media [45, 16], parameters

describing the vertical template remained approximately constant. Therefore, to model the

vertical wave interaction, as in [16, 103, 107] we introduced a weighting prefactor, c, that

specified how much of the environmental force each infinitesimal segment experienced.

Specifically, we modify the resistive force balance in Equation 2.14 as:

F =

∫
body

(cdF⊥ + cdF‖) = 0. (2.23)

Previous work [16] revealed that the three-dimensional pose of Crotalus cerastes could

be represented by a horizontal wave coupled to a phase-shifted vertical wave that sets

the environmental contact condition. To properly couple the vertical wave to the in-plane

shape, we introduced δ(s)

δ(s) = sin
[
2πns

L
+ tan−1

(
w2

w1

)
−
π

2

]
, (2.24)

where s is the position along the body, n is the number of waves on the body, L is the total

length of the body, and w1 and w2 describe the in-plane wave shape. To set the contact

using the vertical wave description, δ, we defined the smoothly-varying function, c

c(δ(s)) =
1

1 + exp[a(δ(s) + b)]
. (2.25)
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Figure 2.14: Sidewinder rattlesnake substrate contact. (A) (left) A sidewinding snake
Cr. cerastes. Black bar denotes 1 cm. (right) Schematic illustrating sidewinding loco-
motion. If the animal does not slip, displacements, ∆ = λs cos φ, can be predicted from
geometry. (B) Time-resolved kinematics are obtained from high-speed cameras. (C) Two
relative curvature modes (determined from PCA) account for 42.4% and 37.3% of variance
observed in in-plane body configurations of 4 animals throughout 18 trials. (D) 2D proba-
bility density map of animal data projected onto two dominant curvature principal compo-
nents. (E) Depiction of coupling between in-plane and vertical waves (adapted from [16]).
(F) Shape space showing body configuration-dependent animal-environment contact model
for an animal with 1.5 waves along its body.

Here, c ∈ [0, 1] sets the local fraction of the environmental force experienced as a function

of position, s, along the body, b sets contact width, and a sets the sharpness of the on/off

ground transition along the body. To be consistent with previous observations, a = 15 and

b = 0.5 are chosen so that, when averaged over a completed gait cycle, approximately 34%

of the animal’s body is on the ground [45].

Figure 2.14 shows four RFT simulation snapshots throughout one undulation cycle.

Contact patches (dark regions) originate near the head and are propagated toward the tail.

As shown in previous work [16, 103], the prefactor c can be coupled to the in-plane shape,

which allows us to use geometric mechanics to make sidewinding predictions. Given the

experimentally observed oblique direction of travel (relative to the head-to-tail body axis),

we expect the kinematics in our modeling to produce significant displacements in both the

x- (forward) and y (lateral) directions. We therefore numerically computed height functions
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Figure 2.15: Geometric mechanics of sidewinding. (A) Connection vector fields and (B)
x- and y- height functions (shown here as contour plots with color scales multiplied by 100)
for movement on sand with n = 1.5 waves along the body. The blue circle shows average
animal performance of Cr. cerastes on sand. (C) Comparisons of RFT simulations (dashed
tan curve) and geometric mechanics calculations (solid tan curve) for movement on sand.
Biological data: Cr. cerastes on a 7.6-cm layer of sand (blue); N. fasciata on a 5-cm layer
of sand (dark purple). Cr. cerastes on an oak board roughened by a layer of adhered glass
beads (dark magenta); Cr. cerastes on a smooth oak board (light magenta); Cr. cerastes on
a 1.5-cm layer of sand (light purple) [132].

describing motions along both the x and y directions (Figure 2.15), and we define the total

predicted displacement is given as ∆ = (∆2
x + ∆2

y)1/2, where ∆x and ∆y are displacements

predicted from x- and y- height functions, respectively.

Figure 2.15C shows that, for movement on granular media, direct RFT simulations

(dashed tan curve) and geometric computations (solid tan curve) predict similar maximal

displacements. Despite the differences in predicted gait amplitude, the displacement curves

predicted are not highly sensitive to gait amplitude variation over a broad range. Note that

the discrepancy between RFT simulation and geometric mechanics for sidewinding on sand

can be a result of the non-commutativity of body velocities. As shown in Figure 2.15B, the

body velocity in x− and y− directions have comparable magnitudes, which can lead to
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relatively large non-commutativity effects in body velocities [138].

2.4.2 Differential Turn

Figure 2.16: PCA analysis of differential turn Snapshots of Cr. cerastes body configura-
tions performing (A.1) gradual (A.2) sharp differential. (B) One cycle of tracked midline
of differential turn colored by time. Rotation (Rot) and displacement are labelled. (B) Two
relative curvature modes (determined from PCA) account for 44.7% and 24.5% of variance
observed in in-plane body configurations of 4 animals throughout 47 trials. (C) A typical
projection of body curvature onto two dominant curvature principal components colored
by time.

To navigate in complex terrains, effective turning behaviors are as important as the

translation. However, turning behaviors in animals are less studied than translational be-

haviors. Often, the turning behaviors are thought to be distinct from translational behaviors,

and therefore would require additional analytical tools. Here, we used geometric mechan-

ics as a unified framework to study a spectrum of behaviors from translation to turning.

Specially, we studied the differential turn observed in Cr. cerastes.

During differential turn [16], the animals imposed an amplitude modulation in the hori-
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zontal wave (Figure 2.16a). Depending on the magnitude of amplitude modulation, animals

can thus control the degree of turning. Moreover, animals also modulate the net transla-

tional displacement associated with the degree of turning. Specifically, sharp turns are often

accompanied by reduced translational displacement, and gradual turns by large translation.

Therefore, unlike in straight sidewinding where the animals use relatively consistent hor-

izontal waves, animals exhibit a variety of horizontal waves during differential turns. We

used PCA to analyze the modes during differential turns. We noticed that the two modes

of sidewinding were preserved in differential turns: the first two principle components can

account for over 69.1% of the variance (Figure 2.16b); and the two modes for straight

sidewinding are almost identical to those for differential turns.

We then project curvatures (of differential turn) onto the first two PC modes. We noticed

that the trajectory in PC space emerged as a circle, and the center of the circle is off from the

origin. We posited that the offset of center from the origin can serve as an indicator of the

degree of turning and translation. We then measured the rotation for each cycles (95 cycles

over 47 trials) and plotted the (Figure 2.17B, left) translation and the (Figure 2.17B, right)

rotation as a function of w1 offset of the trajectory center (arithmetic average) from the

origin. We ran a linear regression between w1 offset and rotation, and observed significant

relationships (translation: r2 = 0.20, p < 0.0001; rotation: r2 = 0.50, p < 0.0001).

We used the geometric mechanics to explain such correlation. We numerically com-

puted the height functions using the same contact function as described in Equation 2.24-

Equation 2.25. We observed that the clusters of positive and negative volumes are dis-

tributed along the axis of w2 = 0 in θ- height function, indicating that the introduction

of offset in w1 direction can indeed lead to rotation. We used the following equations to

prescribe the off-centered circle in geometric mechanics calculation:
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Figure 2.17: Geometric mechanics analysis of differential turn (A) x, y, and θ- height
functions (shown here as contour plots. Color scales in x, y- height functions are multiplied
by 100) for movement with n = 1.2 waves along the body. The blue circle typical CW
and CCW differential turn in Cr. cerastes (B) The comparison between direct RFT, GM
(surface integral in height functions), and animal data (light blue dots) with its linear fit
(p < 0.001).

λsκ(t, s) = w1(t)v1(s) + w2(t)v2(s)

w1(t) = (κmλs − |xc|) sin (t) + xc

w2(t) = (κmλs − |xc|) cos (t). (2.26)

We then performed surface integrals of circular gaits over height functions and com-

pared it with direct RFT simulation and the fitted linear regression, and observed good
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agreement.

2.5 Modulating contact function using geometric mechanics

2.5.1 Geometric mechanics with toroidal and cylindrical shape spaces

The content in this subsection is adapted from a collaborative project with Dr. Chaohui

Gong and Dr. Bo Lin. My contribution in this subsection is to identify the importance of

minimal perturbation coordinate in toroidal and cylindrical shape spaces, and formulate the

minimal perturbation coordinate problem as a mathematical problem.

Kinematic motion planning using geometric mechanics tends to prescribe a trajectory in

a shape space and determine its displacement in a position space. So far, we only considered

Euclidean shape space. However, in many cases, the shape space can be non-Euclidean

either because the robotic joints can spin over a full cycle (i.e., has an S1 configuration

space component), or its parameterization has an S1 dimension.

Consider a shape space that is a cylinder; gaits that “wrap” around the full range of

a shape variable and return to its starting configuration are valid gaits in the shape space.

Existing geometric mechanics methods cannot properly evaluate the displacement partially

because there is no obvious area enclosed by these gaits. Here, we derive geometric tools

to consider systems with toroidal and cylindrical shape spaces by explicitly analyzing the

topology of the underlying shape space.

Cyclic shape variables

We first consider the locomotion of an N-link planar swimmer in viscous fluid. As dis-

cussed earlier, we can relate the body velocity to shape velocity with a linear mapping

(repeating Equation 2.19)
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Figure 2.18: Cylindrical shape space (left) Height function on cylindrical shape space.
(mid) Height function on the Euclidean parameterization space of the cylindrical shape
space. We illustrate two gaits with solid and dashed blue curves. Note that the solid blue
gait enclosed three disjoint areas with the assistive lines. The area above the assistive line
(solid shadow) and the area below the assistive (dashed shadow) line have different hand-
edness. (right) The illustration of height function on Euclidean shape space of the same
system. Note that middle and right panel are identical subject to different parameterization.


ẋb

1

ẏb
1

θ̇b
1

 = A(w)ẇ,

where w = [w1, w2]T is the reduced shape variable, prescribing the overall shape from the

shape basis function:

α(i) = w1β1(i) + w2β2(i) (2.27)

where α(i) is joint angle between link i and i + 1 for the N-link swimmer; β1(i) and β2(i) are

the shape basis functions. When the weights, w1 and w2, are varied cyclically, a travelling

wave gait can be created and the system swims forward. For instance, a gait with a constant

amplitude is represented as a circle in this shape space. A gait with two shape variables can

also be parameterized by a phase and an amplitude [139]:

51



αi = A sin (φ) β1(i) +A cos (φ) β2(i) (2.28)

with amplitude A =

√
(w2

1 + w2
2) and phase φ = tan−1(w2/w1). In this form, the shape

space is r = [φ,A]T . The phase can be viewed as cyclical; αi(0,A) = αi(2π,A) so we can

consider φ ∈ S1.

From Equation 2.28, we can rewrite Equation 2.19 as:
ẋb

1

ẏb
1

θ̇b
1

 = A(r)

sin (φ) A cos (φ)

cos (φ) −A sin (φ)

︸                            ︷︷                            ︸
A′(r)

Ȧφ̇
 , (2.29)

where we established new local connection matrix between the body velocity and shape

velocity where the shape space has cyclic structure. Similarly, there could also be cases

where both shape variables are cyclic (i.e., r = [φ1 φ2]T , φ1, φ2 ∈ S
1), and therefore the

shape space is toroidal.

Figure 2.19: Toroidal shape space (left) Height function on toroidal shape space. (mid)
Height function on the Euclidean parameterization space of the cylindrical shape space.
We illustrated a gait with solid purple curves. Note that the solid purple gait enclosed two
disjoint areas with the assistive lines. The area above the assistive line (dashed shadow)
and the area below the assistive line (solid shadow) have different handedness .

Since we are considering gaits that wind around the S1 component of the shape space,

we need to establish terminology that measures the number of winds. Conventionally, a
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winding number is defined by the number of revolutions a closed loop curve makes in the

plane [140]. With a slight abuse of notation, we define the winding number, wn ∈ Zm

for an m-dimensional space to be the integer set of times that a path wraps around each

S1 dimension of that space. This notion of winding number is similar to that which is

defined in [141]. For gaits that have a zero winding number, the use of height function is

straightforward, as described in [75]. However, gaits with non-zero winding numbers do

not have a closed curve representation on the shape space, so do not enclose a well defined

area. Consequently, the height function cannot be directly used for such gaits.

Assistive lines

To better visualize the shape spaces with cyclic shape variables, we unfold the cylin-

der (S1 × R1) or torus (S1 × S1) into its Euclidean parameterization space (cylindrical:

R1 × [0, 2π], toroidal [0, 2π] × [0, 2π], Figure 2.19). To form an enclosed area in the

Euclidean parameterization space, we introduce the notion of an assistive line ([142]). The

assistive lines are defined to be fixed paths in shape space and are used to form a closed

loop with the gait path in the shape space. Note that, in principle, the choice of assistive

line is arbitrary with respect to the same winding number. In practice, we often choose

the assistive line with a physical meaning. For example, in the cylindrical shape space, we

choose the assistive line to be ∂φ0 : A = 0 (green line in Figure 2.18). The net displace-

ment can be approximated by the path integral along the assistive line ∂φ0 plus the surface

integral of the area enclosed by the gait path ∂φ and the assistive line ([142]):

∫
∂φ

A(r)dr =

∫
∂φ0

A(r)dr +

"
φ−φ0

∇ × A(r)dαbdτ, (2.30)

where φ− φ0 is the area enclosed by assistive line ∂φ0 and gait path ∂φ. Note that when the

gait path and the assistive line enclose disjointed areas in the shape space, the handedness

(the direction of the curl) of the area enclosed can be different. For example, as shown in

our example in Figure 2.18, the assistive line (green curve) and our gait path (blue curve)

53



form three disjoint areas: the area where ∂φ0 is above (solid shading area) and below

(dashed shading area) ∂φ. Thus, taking the handedness of enclosed area into consideration,

the second term in (Equation 2.30) is computed as the surface integral of area where ∂φ is

above ∂φ0 subtracted from the surface integral of area where ∂φ is below ∂φ0.

In the toroidal shape space, we choose the assistive lines to be a collection of two line

segments ∂φ0 :
{
[φ1, φ2],mod(φ1, 2π) = 0

}
∪

{
[φ1, φ2],mod(φ2, 2π) = 0

}
. Note that lines

l1 =
{
[φ1, φ2], φ1 = 0

}
and l2 =

{
[φ1, φ2], φ1 = 2π

}
(similarly l3 =

{
[φ1, φ2], φ2 = 0

}
and l4 =

{
[φ1, φ2], φ2 = 2π

}
) are identical in the toroidal shape space, but appeared as two

disjoint lines in the Euclidean parameterization space. Therefore, we are free to partition

l1 and l2 (similarly l3 and l4) in the Euclidean parameterization space without changing its

physical meaning. In practice, we choose to partition the lines such that it can enclose

areas with the gait path. An example of assistive line partition Figure 2.19. Two areas are

enclosed by assistive lines and the gait path. Because of the handedness of enclosed areas,

the surface integral is the area within solid lines subtracted from the area of the surface

enclosed in the upper left corner.

Minimal Perturbation Coordinate on toroidal shape space

As discussed in [138], the Lie bracket effect can be important as we approximate the spa-

tial velocity with body velocity. Hatton et. al. showed that the Lie bracket effect can be

minimized when the designated body reference is properly chosen [138]. The transforma-

tion of body frame orientation can be interpreted as, replacing the vector field Aθ(r) by a

new vector field, A′
θ
(r) such that the line integral of A′

θ
(r) should be equal to the one of

Aθ(r) along any closed curve in the shape space. However, the existing framework is not

directly applicable to cylindrical or toroidal shape spaces because of the cyclic constraints.

In this section, we will briefly introduce the algorithm to identify the minimal perturbation

coordinate on toroidal shape space.

By the linearity of line integrals, Aθ(r) − A′
θ
(r) is a vector field whose line integral
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along any closed curve is zero. By [143, Thm 2.1, p.362], Aθ(r) − A′
θ
(r) is the gradient of

some potential function, P(r) = P(r1, r2), defined on the shape space.

It is shown in [138] that in the optimal orientation of the body frame, the norm of the

vector field A′
θ

is minimized. Let the vector field Aθ(φ1, φ2) =
(
f1(φ1, r2), f2(r1, r2)

)
be

the third row of A(r). Since the shape space of φ1, φ2 is the standard 2-torus T 2, which

we identify with (R/2πZ) × (R/2πZ) = [0, 2π) × [0, 2π). Now we need to minimize the

‘distance’ between F and the gradient ∇P(r1, r2) of a potential function P(r1, r2) defined

on T 2. For the efficiency of computations, we choose the L2-norm, and thus our problem

becomes:

Problem 1. Given continuous functions f1, f2 defined on T 2, find a differentiable function

P(r1, r2) defined on T 2 such that the integral

∫
T 2

( f1(r1, r2) −
∂P
∂r1

(r1, r2)
)2

+

(
f2(r1, r2) −

∂P
∂r2

(r1, r2)
)2 dr1dr2 (2.31)

is minimal.

The detailed numerical solution can be found in Appendix and [144].

2.5.2 Modulating the contact function

The content in this subsection is adapted from a collaborative project with Tianyu Wang,

who performed robophysical experiments. My contribution in this project includes (1) de-

signing the experiments, (2) conducting the numerical analysis, (3) writing the manuscript.

Prior work on wave modulation

Many recent works are dedicated to replicate the success of biological sidewinding in their

robotic counterparts [45, 16, 126, 145]. Typically limbless robots are constructed with ad-

jacent rotary motors rotated by 90◦ such that successive modules can achieve rotation in
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Figure 2.20: Theoretical Model and Experimental Robot. (a) The theoretical model
for the sidewinder robots. The filled black ovals indicate the ground contact phase while
the white ovals indicate a no ground contact phase. The contact state is labelled in black
(c(i)). The joint angle in blue indicates pitch joints and the joint angle in red indicates yaw
joints. (b) The serial elastic actuated robot used to test the effectiveness of our stabilization
approach.

the horizontal and vertical planes alternatively. In this way, the robot can have 3 dimen-

sional configurations by a superposition of a vertical wave and a horizontal wave. For an

N-joint limbless robot, joints are labeled 1 to N, and links are labeled from 0 to N, where

joint j connects link j − 1 and link j. Odd numbered joints are yaw joints and therefore

produce motion in the horizontal plane (their rotation axes are vertical). Even numbered

joints are pitch joints and therefore produce motion in the vertical plane (their rotation axes

are horizontal). The joint angles were often prescribed using the following functions:

θ(2 j − 1, t) = Al sin
(
2πKl

2 j − 1
N

+ 2π f t
)
, (2.32)

θ(2 j, t) = Av sin
(
2πKv

2 j
N

+ 2π f t + φ0

)
, (2.33)

where θl(2 j − 1, t) and θv(2 j, t) refer to the yaw (odd) joint angles and the pitch (even)

joint angles respectively; Kl and Kv are the spatial frequency of the horizontal wave and

the vertical wave respectively; Al and Av are the amplitude of the horizontal wave and

the vertical wave respectively; f defines the temporal frequency; and φ0 is the phase lag

between the horizontal and the vertical wave.
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The contact state of link i is represented by c(i), where c(i) = 1 indicates that link i

is in contact and c(i) = 0 indicates that link i is not in contact. The links between two

consecutive vertical joints have the same contact state, i.e., c(2 j) = c(2 j − 1). Therefore,

the contact state in robots can be approximated by ([83]):

c(2 j − 1, t) = c(2 j, t)

= σ
[
sin

(
2πKv

j
2N

+ 2π f t + φ0

)]
, (2.34)

where σ[x] = 1/
(
1 + eax+b). Equation 2.34 has a similar structure as those descried in

Equation 2.24 and Equation 2.25. As demonstrated in prior works [16], certain sidewind-

ing parameters (specifically, Kl = Kv and φ0 = ±π/2) can lead to translational sidewinding

(which we will refer to as “T-sidewinding”) motion, where the locomotor displays transla-

tional displacement with no significant turning. Similarly, the modulation of the horizontal

wave can also cause differential turn, closely resembling our observation in biological sys-

tems.

In addition to the modulation in the horizontal wave, [16] showed that modulating the

ratio of the spatial frequency in the vertical and horizontal directions (Kv/Kl) yields turning

gaits (frequency turning). Either increasing (Kv = 1.3Kl) or decreasing (Kv = 0.6Kl) the

vertical spatial frequency will lead to clockwise (CW) turning. Here, we refer to the fre-

quency turning as the rotational sidewinding (which we will refer to as “R-sidewinding”)

motion. Beyond sidewinding, the sinus lifting gait is another snake gait using horizontal

and vertical waves. [146] showed that snakes lift body portions with the largest curvatures

during lateral undulation (slithering) locomotion. In the scheme defined in Equation 2.32

and Equation 2.34, this form of locomotion has Kv = 2Kl and φ0 = 0. We summarize

previous work on wave modulation in Table 1.
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Kl Kv φ0 Behavior Source

1.5 1.5 π/2 T-sidewinding [45]

2 2 π/2 T-sidewinding [16]

1.5 0.9 π/2 R-sidewinding [16]

1.5 1.95 π/2 R-sidewinding [16]

1.5 3 0 Slithering [146]

Table 2.1: Summary of previous work on sidewinder locomotion.

Statically unstable gaits

As discussed in [16], sidewinding gaits with 1.5 and 2 spatial waves (Kl = {1.5, 2}, Kv/Kl =

1) can be successfully implemented in robophysical platforms, partially because of their

property of gait stability. To explore the effects of stability, we defined static stability as the

fraction of a temporal undulation period in which the center of mass is inside the support

polygon. The support polygon is defined as the convex hull of all links in contact with

the substrate. In Figure 2.21, we show examples of stable (Figure 2.21 left) and unstable

configurations (Figure 2.21 right). We observed that in both cases (Kl = {1.5, 2}), the gaits

are statically stable. With this knowledge, we proceed to study the locomotion performance

of the statically unstable sidewinding gaits.

We calculate the static stability for sidewinding gaits with different spatial frequencies

(Kv = Kl = K) in Figure 2.22. High spatial frequencies lead to a dense distribution of short

contact patches and are often statically stable. In contrast, low spatial frequencies lead to

sparse distribution of long contact patches and are often not statically stable.

To investigate the behavior of statically unstable sidewinding gaits, we perform experi-

ments on sidewinding gaits with 0.9 spatial wave and 1.5 waves on our robot (Figure 2.23).

We set horizontal amplitude Al = 40Kl (unit of amplitudes: degree), vertical amplitude

Av = 8.5Kv, and a temporal frequency f = 2.0 Hz for all the robot experiments unless

otherwise stated. Snapshots of the robot implementing such gaits are shown in Figure 2.23.

Good agreement between experiment and theory is observed in the sidewinding gait with
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Figure 2.21: Examples of Statically Stable and Unstable Configurations. (a) (left) The
contact state pattern and an example of a statically stable configuration for gaits with high
spatial frequency in both the horizontal wave and the vertical wave. (mid) The contact state
pattern and an example of a statically unstable configuration for gaits with low spatial fre-
quency in both the horizontal wave and the vertical wave. (right) Stabilizing the statically
unstable configuration by increasing the vertical spatial frequency. The label and the axis
are identical. (b) Example of an unstable configuration (left) and an unexpected touchdown
(right)

1.5 spatial waves. However, we observe significant discrepancies between the simulation

and robot experiments for the sidewinding gait with 0.9 spatial waves (see Figure 2.23). We

hypothesize that at low spatial frequency, the configuration of the robot is not statically sta-

ble (static stability = 0.34 for 0.9 spatial wave, static stability = 0.83 for 1.5 spatial waves),

which leads to the robot falling down and causes contact patterns different from expecta-

tion. The unexpected touchdown can change the distribution of ground reaction forces and
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Figure 2.22: Effect of spatial frequency on static stability in sidewinding. (Left) The
figure on top panel shows the relationship between the spatial frequency (Kv = Kl = K)
and the static stability. Robot experiments showed that significant turning (Left, bottom)
was observed in gaits with low static stability (Left, top) and the turning vanished at gaits
with high static stability. (right) We directly plotted the relationship between the body
rotation and static stability. The curve appeared to be a piece-wise linear function. In the
range where the static stability is less than 0.5, the body rotation grows almost linearly
with the loss of static stability (R = 0.99). Whereas in the range where the static stability is
higher than 0.5, the body rotation is almost negligible.

therefore lead to motions in other directions (in this case, turning).

We further conducted robot experiments across a range of spatial frequencies. Those

robot experiments showed that the undesired rotation vanished at high spatial frequencies.

We observed that, the cut-off static stability that leads to unexpected behavior is around 0.5.

In this way, we use 0.5 as the threshold to determine the static stability in later analysis.

Moreover, in the regime of unstable gaits, the degree of rotation is highly correlated with

the static stability, which further validates our hypothesis on stability-driven turning.

Temporal Frequency Dependency

Despite being statically stable, it is possible that, when operated at high temporal frequency,

the acquired dynamic stability can compensate for the loss of static stability. Following this
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Figure 2.23: Discrepancy between robot experiments and simulation at low spatial
frequency. (left) the trajectories of body motion in 6 gait cycles. The colors represent gait
periods. Initial positions of the robot indicated by the black circles. (right) comparisons
of time evolution of displacement of the simulation and robot experiments. We compared
the low spatial frequency gait (a) and high spatial frequency gait (b). The simulation-
experiment discrepancy occurs in low spatial frequency gaits. The unit and the axis labels
in all panels are the same.

idea, we test the effect of the temporal frequency on the performance of gaits.

We first evaluate the effect of temporal frequency on the translational sidewinding gait

with 0.9 spatial wave (Kl = 0.9,Kv/Kl = 1). We set Al = 50◦ and Av = 75◦ for all robot

experiments. From our static stability analysis, this translational sidewinding gait is not

statically stable (static stability = 0.35). At low temporal frequency (see Figure 2.24), sig-

nificant rotations are observed in robot experiments, whereas at high temporal frequency,

the magnitude of rotation reduces but the robot rotates in a different direction. Our experi-

ments show that the locomotion performance for statically unstable gaits is not predictable

and controllable when operated at different temporal frequencies. However, the magnitude
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of rotation significantly decreases when robot was operated at high temporal frequency,

which suggests that the loss of static stability can be compensated by emergent dynamic

stability at high speeds.

Figure 2.24: Temporal frequency dependency of unstable gaits. Dependence of the ro-
tation angle (per cycle) on the temporal frequency of (a) statically unstable translational
sidewinding gaits and (b) statically unstable rotational sidewinding gaits on robot exper-
iments. The subplots (i) and (ii) show the snapshots of robot implementing gaits in low
temporal frequency (0.2Hz, red) and high temporal frequency (2.0Hz, blue) over three gait
cycles.

Next, we evaluate the temporal frequency dependence of the rotational sidewinding

gait from ([16]): Kl = 1.5, Kv/Kl = 0.6, φ0 = π/2. From our static stability analysis,

the rotational sidewinding gait is not statically stable (static stability = 0.46). In addition,

numerical simulation predicts that the rotational sidewinding gaits should lead to counter-

clockwise rotation, in contrast with the results in ([16]). Therefore we suspect that the

rotational sidewinding gait is driven by the unexpected touchdowns and therefore will be

strongly temporal frequency dependent. Robot experiments verified that locomotion per-

formance (Figure 2.24) in the rotational sidewinding gait is strongly correlated with the

temporal frequency. Higher rotation angles are achieved when robot operated at low tem-

poral frequency.
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Stabilizing sidewinding using geometric mechanics

We observe that gaits with large vertical spatial frequencies have more distinct body-

environment contact patches, and are therefore more statically stable than gaits with low

spatial frequency in the vertical wave. Inspired by this observation, we will stabilize the

originally unstable gaits by increasing the spatial frequencies of the vertical wave (fre-

quency modulation). In other words, we gradually increase the V-L ratio, Kv/Kl, until the

satisfactory static stability is reached. As discussed earlier, we consider a gait as statically

stable when its static stability is greater than 0.5. Note that this threshold is selected for our

experiments on flat terrain. If necessitated by conditions such as uneven terrain, the static

stability threshold may be raised to improve the capability of the robot to remain statically

stable even when some modules fail to follow the prescribed contact states (e.g., perturbed

by the environment).

We then use geometric mechanics to coordinate the horizontal and vertical waves sub-

ject to different spatial frequency. We decomposed the internal shape of sidewinder robots

into two independent traveling waves: a horizontal traveling wave and a vertical traveling

wave. The horizontal traveling wave is prescribed by:

θl( j, τ1) = Al sin
(
2πKl

j
N

+ τ1

)
, (2.35)

where τ1 is the phase of the horizontal wave. Similarly, the contact state is prescribed as:

c(2i − 1, τ2) = c(2i, τ2) = σ
(
sin

(
2πKv

i
2N

+ τ2

))
, (2.36)

where τ2 is the phase of the vertical wave that can uniquely determine the contact pattern.

c(i, τ2) = 0 represents swinging-state and therefore no ground reaction force appears at link

i at phase τ2 .

The phases of the horizontal wave and the vertical wave then comprise the shape
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Figure 2.25: Height functions to design gaits to produce motion in the desired direc-
tion. Height functions on torus (left) and on unfolded Euclidean parameterization space
(right) are shown. The height function for (a) horizontal spatial frequency Kl = 1.5, V-L
ratio Kv/Kl = 1.3 in lateral direction (the direction perpendicular to body axis) and (b)
horizontal spatial frequency Kl = 0.9, V-L ratio Kv/Kl = 1.2 in rotational direction. The
purple curve in each plot maximizes the surface integral enclosed in the upper left corner
(marked in solid lines) minus the surface integral enclosed in the lower left corner (marked
in the dashed lines). The assistive lines are shown as lines with green arrows.

variable, τ = [τ1, τ2]T . Using the geometric mechanics gait design tools mentioned in

Sec.subsection 2.5.1, we can calculate the height function and visualize the kinematics in

the desired directions (translational and rotational).

A gait that coordinates the horizontal and vertical wave can be described as a function

that maps τ1 to τ2. From the structure of the height functions (see Figure 2.25), we observed

that in the Euclidean parameterization space of the torus (where the edges are properly

identified with each other at 0 and 2π), a straight line path gives rise to an optimal path;

this is seen by the integral of the surface in the upper left minus the integral of the surface

in the lower right being maximized. In this way, we characterize the coordination of the

horizontal and the vertical wave by the relative phase lag: φ0 := (τ2 − τ1 mod 2π).

We summarize our steps to stabilize the sidewinding gaits in Algorithmalgorithm 1.

Stable sidewinding

We use our gait stabilization algorithms to stabilize the statically unstable translational and

rotational sidewinding gaits. As discussed earlier, the translational sidewinding gait with

0.9 spatial wave is not statically stable. We show that we can stabilize this gait by increasing

64



Algorithm 1: Stabilizing sidewinding and turning gaits
1 Initialization: Kv/Kl = 1.0;
2 while Static Stability < 0.5 do
3 Kv/Kl ← Kv/Kl + 0.1;
4 CPR;
5 Calculate height function (HF);
6 Take φ0 to maximize HF surface integral;
7 end
8 Perform numerical simulation
9 Implement robot experiments

the V-L ratio Kv/Kl to 1.2. From the lateral height function (Figure 2.25), we take φ0 =

1.076 to optimize the surface enclosed in the lateral height function. The static stability

analysis suggests that this gait is statically stable (static stability = 0.5). We implement

this gait on robot experiments (Figure 2.26), which show that no significant turning was

observed over our range of temporal frequencies.

Note that the stabilized translational sidewinding gait (Kl = 0.9, Kv/Kl = 1.2) exhib-

ited effective lateral displacement. Robot experiments demonstrate that the average lateral

displacement per gait cycle is 0.69± 0.02 body lengths per cycle, significantly greater than

the displacement (0.42 ± 0.01 body length per gait cycle) of the translational sidewinding

gait with 1.5 spatial waves (Kl = 1.5, Kv/Kl = 1).

We next stabilize the rotational sidewinding gait with 1.5 spatial waves, Kl = 1.5. We

show that we can stabilize this gait by raising the V-L ratio Kv/Kl to 1.3. From the rotational

height function (Figure 2.25), we take φ0 = 1.02 to optimize the surface enclosed in the

rotational height function. The static stability analysis suggests that this gait is statically

stable (static stability = 0.62). We implement this gait on robot (Figure 2.26), revealing

that the locomotion performance (rotation per gait cycle) is robust over a range of temporal

frequencies.
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Figure 2.26: Robustness of statically stable gaits as a function of temporal frequency.
Dependence of the rotation angle (per cycle) on the temporal frequency of (a) the stabilized
translational sidewinding gaits and (b) the stabilized rotational sidewinding gaits on robot
experiments. In both cases, the rotation angle is steady over a range of temporal frequen-
cies. The unit and the axis labels in all panels are the same. The subplots (i) and (ii) show
the snapshots of robot implementing gaits in low temporal frequency (0.2Hz, red) and high
temporal frequency (2.0Hz, blue) over three gait cycles.

2.5.3 General Sidewinding Gait Formula

Empirical Sidewinding Governing Equation

As discussed earlier, the coordination pattern of horizontal and vertical waves in sidewind-

ing locomotion has been well studied and documented ([146, 45, 16, 83, 126]). Some of

the well-known sidewinding gaits are summarized in Table Table 2.1. In previous sections,

we showed that there is a broad range of gait parameters that can produce pure translation

or pure rotation. In this section, we explore the question of whether empirical equations

governing sidewinding gait parameters exist and can be identified. Such equation can help

us better understand the kinematic principles behind the seeming complex sidewinding

motion.

First, we show in Figure 2.27 that when we fix the horizontal spatial frequency Kl and

modulate the V-L ratio, the patterns of height functions change accordingly. Surprisingly,
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Figure 2.27: Extended sidewinding gait formula. (a) Height functions for different V-L
ratio with fixed Kl = 1.0. We show that while we change the V-L ratio, the optimal phase
φ0 emerged to increase linearly from height function predictions. We then ran regression
and find that φ0/2π linearly correlates with V-L ratio Kv/Kl, under slopes a = −0.44 and
intercept b = 1.2. (b) We then test how the slopes and intercept correlates with the hori-
zontal spatial frequency Kl. It turns out that both the slope a and the intercept b linearly
correlate with Kl (a ∼ −0.439Kl + 0.001, b ∼ 0.439Kl + 0.750). (c) A model to explain
the empirical equations. We develop our model in CoM frame, neglecting the forward dis-
placement (along the direction) of body segments, and only investigate the effect of lateral
displacement.

we notice that the emerging φ0 linearly correlates with the V-L ratio Kv/Kl, with slope a =

−0.44 and intercept b = 1.2 (R2 = 0.96). We then investigate how the slope and intercept

are related to the horizontal spatial frequency Kl. From Figure 2.27, we see that both slope

a and intercept b linearly correlate with Kl. Therefore, we can formulate an empirical

function that governs the sidewinding gait parameters for the pure sideways translational

motion (R2 = 0.98):
φ0

2π
= −0.438(Kv − Kl) + 0.750. (2.37)

Similarly, we can obtain an empirical equation that governs the sidewinding gait param-

eters for backwards translation (enables pure sideways translation in the opposite direction
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to the motion enabled by Equation 2.37, R2 = 0.98):

φ0

2π
= −0.438(Kv − Kl) + 0.250, (2.38)

clockwise in-place turning (maximal area in rotation height function, R2 = 0.98):

φ0

2π
= −0.438(Kv − Kl) + 0.498, (2.39)

and counterclockwise in-place turning (minimal area in rotation height function, R2 =

0.98):
φ0

2π
= −0.438(Kv − Kl) + 0.001. (2.40)

Simple Model for Sidewinding Governing Equations

In this section, we develop a model to derive the conditions for sidewinding gaits that

exhibit T-sidewinding and R-sidewinding.

Consider a continuous traveling wave (Figure 2.27) in the center of mass frame. The

lateral displacement of a body segment can be expressed as:

d(s, t) = dm sin (ωt − 2πKls)

where dm is the amplitude of undulation. Its non swinging-state spans the period

{t|t ∈ [φ0 + 2πKvs, φ0 + 2πKvs + π]}.

To simplify the derivation, we use a linear expression F = βv to model the ground reac-

tion force instead of the discontinuous Coulomb friction. Although this linear expression

differs from the Coulomb friction, it can offer reasonably good approximations, especially

when v is small ([147]). In addition, the linear expression can also allow us to study the
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kinematics analytically. In this way, the ground reaction force can be calculated as:

F(s, t) = β
∂d(s, t)
∂t

= fm cos (ωt − 2πKls),

where fm is the amplitude of ground reaction force. Then we can calculate the angular

momentum contribution (w.r.t. CoM frame) at position s over a period as:

L(s) =

∫ φ0+2πKv s+π

φ0+2πKv s

(
s −

1
2

)
fm cos (ωt − 2πKls)

= Lm

(
s −

1
2

)
sin (φ0 + 2πs(Kv − Kl)),

where Lm is the amplitude of angular momentum. We then propose a sufficient condition

for pure translation without rotation in locomotion as L(s) + L(1 − s) = 0, meaning that

the angular momentum contributions from two body segments symmetric about the CoM

cancel. Solving for L(s) + L(1 − s) = 0, we obtain:

φ0

2π
= −

1
2

(Kv − Kl) +
1
4

+
1
2

k,

where k ∈ Z.

In the discrete case, where in a N-link robot (or, a (N − 1)-joint robot, N as an odd

number), the central link is located at i = N−1
2 , therefore the governing equation should be

modified to:
φ0

2π
= −

N − 1
2N

(Kv − Kl) +
1
4

+
1
2

k. (2.41)

In our case, N = 17, the analytic equation (Equation 2.41) and empirical equation

(k = 1 for Equation 2.37 and k = 0 for Equation 2.38) are close in numerical values.

Similar to the pure translation without rotation situation, the maximal clockwise or

counterclockwise in-place rotation situation can be expressed as: L(s) = L(1 − s), where

the angular momentum contribution from two body segments symmetric to CoM have the

69



same direction. Solving for L(s) = L(1 − s), we can obtain the continuous case

φ0

2π
= −

1
2

(Kv − Kl) +
1
2

k,

and discrete condition:
φ0

2π
= −

N − 1
2N

(Kv − Kl) +
1
2

k, (2.42)

where k ∈ Z. Notice that in our case, N = 17, Equation 2.42 are close to the empirical

equations (k = 1 for Equation 2.39 and k = 0 for Equation 2.40).

2.6 Obtaining contact functions using geometric mechanics

The content in this subsection is adapted from a collaborative project with Tianyu Wang,

who performed robophysical experiments, and Dr. Bo Lin, who performed mathematical

derivation. My contribution in this project includes (1) designing the experiments, (2)

conducting the numerical analysis, (3) writing the manuscript.

Earlier in this chapter, we showed that properly coordinated contact patterns allow for

computationally tractable gait design and efficient gait performance. However, so far, we

prescribed the contact functions from observations in biological systems. In other words,

our capability to coordinate contact patterns are limited to the availability of biological

insight. To explore beyond the observations from biological experiments, we need a frame-

work to systematically design the contact patterns and their coordination with the internal

shape changes. In this section, we will extend the geometric mechanics framework to de-

sign contact patterns.

2.6.1 Effect of drag anisotropy on translational locomotion

Locomotion effectiveness can be highly dependent on the ground reaction force. Specifi-

cally, while terrestrial limbless robots can achieve good mobility on granular media using

lateral undulation, they often struggle on frictional ground [148]. We compare the height
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Figure 2.28: Vector fields and height functions for an 8-link robot on granular media
and frictional ground with continuous contact. (a) A schematic sketch, vector field, and
height function for an 8-link robot moving on granular media (poppy seeds). The height
function has a large magnitude. (b) The sketch, vector field, and height function for a 8-
link robot moving on frictional ground. The axes of all shape space are identical. The color
bar of height functions in (a) and (b) are identical. The units of the color bar in the height
functions are BL/π2.

function for an 8-link snake robot (with Ks = 1.5) moving on surface of a model granular

media (poppy seeds) and frictional ground ( Figure 2.28).

The ground reaction forces governing the interaction of body segments and granular

media are well studied when moving on a granular surface. The forces F⊥ and F‖ [104]

can be approximated by:

f⊥ = C sin (χ), f‖ = A cos (χ) + B(1 − sin (χ)) + F0,

where χ is the attack angle; C = 0.66, A = 0.27, B = −0.32, F0 = 0.09 is the empirically

fitted function to characterize the granular media resistance force [149, 73]. From the

structure and magnitude of its height function (Figure 2.28.a), we see that, with proper
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gaits, the robot can move effectively on granular media as discussed in [73].

The ground reaction force between the body segments and the frictional ground can

then be modelled by dry Coulomb kinetic friction:

f⊥ = f0 sin (χ), f‖ = f0 cos (χ),

where f0 = µF is the magnitude of the Coulomb kinetic friction, µ is the coefficient of

friction and F is the magnitude of the normal supporting force. The height function (Fig-

ure 2.28.b) suggests that the robot has almost negligible speed regardless of the choices of

gaits. However, it is important for limbless robots to move effectively on frictional ground.

Inspired by the sidewinding snakes [103], limbless robots can greatly improve maneuver-

ability by properly controlling their contact patterns [16].

2.6.2 Contact scheduling

Single Contact State

Consider a 12-link limbless robot moving on frictional ground. We assign a binary variable

to each link, c(i), such that c(i) = 0 denotes link i in swing phase (no contact) and c(i) = 1

denotes link i in stance phase (full contact). As we discussed earlier, the structure of the

robot restricted that c(2i) = c(2i − 1). I is the collection of all the links that are instanta-

neously in contact with the environment, I = {i | c(i) = 1}. For illustration purpose, we

consider three examples of contact states: I1, I2, and I3:
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Figure 2.29: Example of a mixed contact pattern. (a-c) The vector fields and height
functions for three contact states I1, I2, and I3. Corresponding robot links which are in
contact with the environment are denoted by red, black and grey. The color bar of height
functions in (a), (b), and (c) are identical. (d.1) The contact pattern prescribed by (Equa-
tion 2.43). (d.2) The vector field prescribed by (Equation 2.44). (d.3) The corresponding
height function. The axes of all shape space are identical. The units of the color bar in all
height functions are BL/π2.

Contact state
c(1) c(3) c(5) c(7) c(9) c(11)

c(2) c(4) c(6) c(8) c(10) c(12)

I1 1 0 1 1 0 1

I2 1 1 0 1 1 0

I3 0 1 1 0 1 1
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Figure 2.29: Example of a mixed contact pattern (continued) (d.3) The corresponding
height function. The axes of all shape space are identical. The units of the color bar in all
height functions are BL/π2.

Note that none of these contact states are dependent on r. Their realizations can be visu-

alized in Figure 2.29.(a-c). For each contact state, we compute its vector field and height

function in the lateral direction ( Figure 2.29.(a-c)). We observe that in all cases, the height

functions do not have regular patterns and their magnitude is low, which indicates limited

mobility when a limbless robot uses a single contact state.

Mixed Contact State

Figure 2.30: Illustration of a contact pattern optimization. (a) The vector field and its
curl-free component and divergence-free component by the Hodge Helmholtz decomposi-
tion.
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Figure 2.30: Illustration of a contact pattern optimization (continued). (b) The potential
functions for P1, P2 and P3. Note that, in curl-free components, the line integral is path
independent, allowing us to compute the potential function to estimate the line integral
between any points. (c) The potential function difference for Pγ = P2 − P1, Pα = P3 − P2,
and Pβ = P1 − P3. The axes of all shape spaces are identical. The units of the color bar in
all potential function differences are BL/π2.

Although each individual contact state cannot lead to effective displacement, we showed

earlier that their combination can enable new motion behaviors. In this section, we evaluate

the locomotion performance of mixed contact states. For example, we construct the contact

state as:
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I(r1, r2) =



I1, if atan2(r2, r1) ∈ (7π/6, 11π/6]

I2, if atan2(r2, r1) ∈ (π/2, 7π/6]

I3, if atan2(r2, r1) ∈ (−π/6, π/2]

, (2.43)

where atan2 is the four-quadrant inverse tangent operator. In this way, we can rewrite the

local connection as:

A(r1, r2) =



A1, if atan2(r2, r1) ∈ (7π/6, 11π/6]

A2, if atan2(r2, r1) ∈ (π/2, 7π/6]

A3, if atan2(r2, r1) ∈ (−π/6, π/2]

. (2.44)

Its realization is shown in Figure 2.29.d.1. We then obtain the vector field and height

function using (Equation 2.43) in Figure 2.29.d(2-3). Interestingly, the new height function

has high magnitude and exhibits regular patterns (dark region along the boundary).

2.6.3 Optimal Contact Scheduling

Note that (Equation 2.43) is manually designed, inspired by biology and empirical expe-

rience [16, 83, 150]. Thus, the optimality of (Equation 2.43) remains unclear. To explore

the optimization of contact patterns, we formulate the following optimization problem. To

simplify our problem, we limit the number of contact states to be 3.

Problem 2. Given 3 vector fields Ax
1, Ax

2, Ax
3 in a shape space M, let p be any partition

M = Mp
1 ∪ Mp

2 ∪ Mp
3 and it induces the vector field Ax

p(r) such that for i = 1, 2, 3,

Ax
p(r) = Ax

i (r) if r ∈ Mp
i .

Let Lp be the set of closed loops l in M such that for i = 1, 2, 3, and assume that the

intersection l ∩ Mp
i is simply connected. The objective function is
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max
l,p

�
l
Ax

p(r)dr ∀ l ∈ Lp.

Since each region l ∩ Mp
i is simply connected, any two of them have a unique intersec-

tion point. We may define the following:

l1 = l ∩ Mp
1 , l2 = l ∩ Mp

2 , l3 = l ∩ Mp
3

{qβ} = l1 ∩ l3, {qγ} = l1 ∩ l2, {qα} = l2 ∩ l3. (2.45)

Then

�
l
A(r)dr =

3∑
i=1

∫
li

Ax
i (r1, r2)dr. (2.46)

Note that in (Equation 2.46), each component is path-dependent, which is not desirable.

From the Hodge-Helmholtz theorem, any vector field can be decomposed into the sum of

a curl-free component, (Ax
1)c, and a divergence-free component, (Ax

1)d. In other words,

Ax
1 = (Ax

1)c + (Ax
1)d.

Note that in our applications, the curl-free component has a much greater magnitude

than the divergence-free component (Figure 2.30.a). Therefore, we approximate the line

integral in the original vector field by the line integral in the curl-free component from the

Hodge-Helmholtz decomposition. Note that in the case where the divergence-free compo-

nent has comparable magnitude as the curl-free component, we can use the divergence-free

components to determine the paths connecting the intersections once we determine the

partition.

For curl-free vector fields the line-integral is path-independent. Suppose the corre-

sponding potential functions of the curl-free components are Px
1, P

x
2, P

x
3, respectively (Fig-
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Figure 2.31: Experiments on angle of motion modulation. (a.1) Snapshots of robot im-
plementing sidewinding gaits with different amplitudes using sinusoidal templates ((Equa-
tion 2.33,Equation 2.33)). The solid yellow arrow indicates the direction of motion lt and
the dashed blue line, lc indicate the central body axis. The angle between lc and lt is then
defined as the angle of motion. (a.2) For the sidewinding gaits using sinusoidal templates,
the angle of motion is almost independent of the amplitude for robot moving in isotropic
environments. The blue solid line represents simulation and the black line with error bars is
robophysical experimental data. (b.1) Comparison of snapshots of the robot experiment and
the simulation implementing the gait to modulate the angle of motion. (b.2) Modulation of
the motion angle by controlling the convex coefficient ε.

ure 2.30.b). By the Fundamental Theorem of Calculus, we have

∫
l1

Ax
1(r1, r2)dr ≈

∫
l1

(Ax
1)c(r1, r2)dr = Px

1(qβ) − Px
1(qγ).
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The other two terms in (Equation 2.46) are decomposed similarly. Then our objective

function becomes

�
l
A(r)dr ≈

(
Px

1(qβ) − Px
1(qγ)

)
+

(
Px

2(qγ) − Px
2(qα)

)
+

(
Px

3(qα) − Px
3(qβ)

)
=

(
Px

3 − Px
2
)

(qα) +
(
Px

1 − Px
3
)

(qβ) +
(
Px

2 − Px
1
)

(qγ)

= Px
α(qα) + Px

β(qβ) + Px
γ(qγ), (2.47)

where Px
α := Px

3−Px
2, Px

β := Px
1−Px

3, and Px
γ := Px

2−Px
1 are the potential function difference

(PFD) ( Figure 2.30.c). Note that our objective function has separated parameters - the

coordinates of qα, qβ, qγ. In addition, the choices of p and l imply that all three intersection

points could be arbitrary points in M. As a result, when (Equation 2.47) is optimized, so are

the three individual terms in (Equation 2.47). Therefore, qα is the point in M that optimizes

the univariate function Px
α. Parameters qβ, qγ are characterized similarly.

Since the vector fields Ax(r) are given, so are the PFDs Px
α, P

x
β, P

x
γ. Thus we can find

the optimal contact scheduling by solving these three individual optimization problems. In

practice, if we discretize the values of Px
α, P

x
β, P

x
γ, we can apply numerical algorithms to

solve these optimization problems.

Once qα, qβ, qγ are found, we can then choose a generic point q0 in M (in practice, q0

can be chosen to be the origin), and extend a curve connecting q and qα to the boundary

of M, which serves as the boundary between Mp
2 and Mp

3 . The other two boundaries are

obtained by connecting and extending q, qβ and q, qγ, and we obtain the partition p, which

leads to the optimal contact scheduling.
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Figure 2.32: Modulating the angle of motion using contact pattern optimization. The
potential function difference (PFD) in forward (a), lateral (b) and rotational (c) directions.
The black circle indicate our joint angle limit: ||[r1, r2]||2 ≤ π/3. The set of extreme points
(Qx = {qx

γ, qx
α, qx

β, }) are chosen to maximize the sum of PFD in forward directions. The set
of extreme points (Qy = {qy

γ, qy
α, qy

β, }) are chosen to maximize the sum of PFD in lateral
directions. The axes of all shape spaces are identical. The color bar of PFD in (a) are
identical. The units of the color bar in all PFDs are BL/π2.

2.6.4 Applications to more than 3 contact states

Our methods can be applied to systems with more than three states. However, in practice,

it is surprisingly challenging to directly applying our methods to systems with more than

three contact states. In fact, the contact pattern design problem is an NP-hard problem

which can be reduced to the longest path problem from discrete optimization [151, p. 114].

We refer the readers to [152] for a detailed discussion on the applications to systems with
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Figure 2.32: Modulating the angle of motion using contact pattern optimization (con-
tinued). The potential function difference (PFD) in forward rotational directions. The units
of the color bar in all PFDs are BL/π2.

more than 3 contact states.

2.6.5 Application: modulating sidewinding angle of motion

As discussed earlier, the track angle (the angle between the direction of motion and the

trajectories of the “tracks” made by body-environment contact) can be modulated by the

amplitude of the horizontal wave, Al. On granular media, the measurement of track angle

can give an approximation to the angle of motion (the angle between the direction of motion

and the central axis of snake body) [83]. Here, we tested the sidewinding gaits with a range

of amplitudes of the horizontal wave Al, from 20 to 60 degrees, on a 12-link limbless

robot moving on frictional ground. We found through experiments that the angle of motion

is almost independent of the amplitude ( Figure 2.31.a). Given the low effectiveness of

altering the horizontal amplitude on the motion angle modulation, we sought to design a

general control scheme that would modulate this angle of motion in isotropic environments.

We then applied our method to design sidewinding gaits for a 12-link robot. Follow-

ing the method introduced in Sec. II, we computed the potential function difference in

forward, lateral, and rotation directions ( Figure 2.32). First, we identified the three transi-

tional points that maximized the displacement in lateral directions, Qy = {qy
α, qy

β, qy
γ}. Note

that we limited the joint angle to π/3, i.e., ||[r1, r2]||2 < π/3. We then identified the three
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Figure 2.33: Sidewinding with fewer number of links. (a) Snapshots of a 6-link robot
implementing the sidewinding gait with the sinusoidal templates ((Equation 2.33), (Equa-
tion 2.33)). (b) Snapshots of a 6-link robot implementing the sidewinding gait with our
optimization method. (c) The sidewinding speed (in unit BL per cycle) as a function of
link numbers (sidewinding gait is prescribed using the sine wave template). The blue solid
line represents simulation and the black line with error bars is robophysical experimental
data. The speed decreases as the link number decreases until N = 10. For N < 10, the
configuration is unstable and turning emerged. The speed of the gait with our optimization
method is highlighted as a diamond marker.

transitional points that maximized the displacement in forward direction, Qx = {qx
α, qx

β, qx
γ}.

We observed that the transitional points Qy can only lead to pure translation (i.e., zero in

forward and rotational directions). Further, the transitional points determined by Qx can

lead to effective displacement in both forward and lateral directions, and thus establish a

finite angle. In this way, we propose to modulate the angle of motion by a convex combi-

nation of Qy and Qx:
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Figure 2.34: Designing sidewinding gaits for a 6-link robot. (a) Three stable contact
patterns and their corresponding vector fields.

Q(ε) = εQx + (1 − ε)Qy, (2.48)

where ε ∈ [0, 1] is the coefficient of the convex combination, and Q(ε) are the transition

points determined by the convex coefficient ε.

In this way, using (Equation 2.48), we formulated an equation to modulate the angle of

motion. As shown in Fig Figure 2.31b, data from robophysical experiments agreed with

our predictions, verifying the validity of our theoretical approach. As such, we have shown

that our method is effective in modulating the angle of motion for limbless sidewinding

robots in isotropic environments.
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Figure 2.34: Designing sidewinding gaits for a 6-link robot (continued). (b) The PFD of
lateral and rotational directions. The color bars of PFD are identical in three illustrations.
The black circle indicates the robot’s joint angle limit: ||[r1, r2]||2 ≤ π/3.

2.6.6 Sidewinding of a 6-link Robot

While limbless robots have advantages in confined spaces, one of their major restrictions

is longitudinal length. In other words, in certain applications such as search and rescue in

obstacle-rich environments, it could be desirable to have robots with short body length but

high locomotive performance in sidewinding. However, there is often a trade-off between

the body length and the locomotive performance for limbless robots: if the size of the

motor is fixed, it is only possible to reduce the size of the robot by decreasing the number

of motors, i.e., decreasing the degrees of freedom. The disadvantage of fewer motors can

be slower locomotion speed. As shown in [153], even when executing the same gait, robots
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Figure 2.34: Designing sidewinding gaits for a 6-link robot (continued). (c) The bound-
ary of each contact state, the vector field, and the height function with the optimal contact
pattern, determined from the obtained transitional points. The units of color bar in height
function are BL/π2.

with few motors have lower speed than those with more motors.

We conducted a series of experiments using the same motion equations but different

numbers of motors. Specifically, we fixed the parameters Al = π/3, Av = π/9, K = 1.5, and

f = 0.1 and evaluated the relationship between the speed and the number of motors, N. The

experimental results are shown in Figure 2.33. As expected, the displacement decreased

as the number of motors decreased until N = 10. Turning behavior emerged at N < 10,

which can be caused by the unstable configurations in the gaits. These unstable turning

behaviors led to high variability in speed, which we attribute to instability. An example of

the unstable turning behavior for N = 6 can be found in the supplementary video.
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We then used our method to design effective sidewinding gaits for the 6-link robot.

We first identified three stable contact patterns for this 6-link robot such that the center

of mass is enclosed by the supporting polygon. Using the methods introduced in Sec. II,

we obtained the potential function difference in lateral directions (Py
γ, Py

α, and Py
β) and

rotational directions (Pθ
γ, Pθ

α, and Pθ
β). Interestingly, we noticed that the magnitude of

Py
β is significantly lower than those in Py

γ and Py
α. Therefore, the lateral speed is almost

independent of the choice qβ; and given qγ and qα, we are free to choose qβ such that the

net rotation is zero.

Given the transitional points, we interpreted the boundary of these contact states as the

half line connecting origin and chosen transitional points. We then computed the corre-

sponding vector field and height function.

We implemented our designed gaits in robot experiments. The experimental data shows

quantitative agreement with the theoretical predictions. Interestingly, we noticed that with

proper design of the contact pattern, the speed of the 6-link robot can even out-perform

those with 12 links ( Figure 2.33.c).

2.7 Design gaits for obstacle aided locomotion

The content in this subsection is adapted from a collaborative project with Tianyu Wang,

who performed robophysical experiments. My contribution in this project includes (1) de-

signing the experiments, (2) conducting the numerical analysis, (3) writing the manuscript.

Limbless locomotors have the potential to move through tightly cluttered environments

that conventional robots cannot. In cluttered environments, it is inevitable that such robots

will interact with their environment to locomote. Despite recent advances in obstacle-aided

locomotion (OAL), gait design in obstacle-rich environments remains difficult. In earlier

sections, we showed that geometric mechanics is a powerful tool for designing gaits for

limbless locomotion. However, the use of geometric mechanics has thus far been limited to

homogeneous environments. In this section, we expand the scope of geometric mechanics
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Figure 2.35: Modeling interactions between robot and obstacles (a) (Left) The vector
field V1 assuming the obstacle has interactions with the head link (io = 1). (Right) Force
relationship illustrations for interactions between robot and obstacle. (b) (Left) The vector
field V2 assuming the obstacle has interactions with the head link (io = 1). (Right) The two
conditions (Sec.subsubsection 2.7.1 and Sec.subsubsection 2.7.1)

to design gaits in heterogeneous environments.

2.7.1 Modeling Interaction with Obstacles

In the previous section, we introduced a derivation of the local connection vector field in ho-

mogeneous environments. In heterogeneous environments, the interactions with obstacles

can often lead to changes in force and torque balance, and thus changes in the connec-

tion vector field. In this section, we establish a new method to numerically calculate the

connection vector field, respecting the interactions between the robot and obstacles in its

environment.

For simplicity, we only consider one obstacle in contact with the robot. Index i0 denotes

the link of contact. We assume that i0 does not change in each obstacle-interaction instance.

Our assumptions can later be justified in robot experiments, which reveal that transient

contact with an obstacle typically involves a single link of contact.

For simplicity, our analysis below assumes that the obstacle resides on the left hand side

(LHS) of link i0. The analysis for the right hand side (RHS) obstacle will be symmetric to

our analysis below. Existence of the obstacle will restrict the lateral body velocity ξy ≥ 0.

In this way, there are two mutually exclusive conditions for the lateral body velocity:
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ẏb
1 > 0

In this case, the robot will leave the obstacle. In this way, original force and torque balance

are still valid to determine the local connection vector field (adapted from Equation 2.14

and Equation 2.18):

F =
∑
i∈I

Fi
‖



ẋb

1

ẏb
1

θ̇b
1

 ,w, ẇ
 + Fi

⊥



ẋb

1

ẏb
1

θ̇b
1

 ,w, ẇ

 = 0. (2.49)

ẏb
1 = 0

In this case, the robot will remain in contact with the obstacle. If we assume that the

friction between the robot and the obstacle is negligible, then the net force from obstacle

to robot (F) will align with the lateral direction (y′i) of the body frame in link i0. In the

body frame of link i0, the interaction between the obstacle and the robot only contributes in

the lateral direction. In other words, the force and torque balance in forward and rotational

directions are independent from the interactions with obstacles. In this way, we can rewrite

Equation 2.49 into:

F =
∑
i∈I

(
Fi
‖(


ξx

0

ξθ

 ,w, ẇ) + Fi
⊥(


ξx

0

ξθ

 ,w, ẇ)
)

=


0

F

0

 . (2.50)

In Equation 2.50, there are two variables and two equality constraints, allowing us to

numerically determine the local connection vector field.

2.7.2 Direction of ẏb
1

We determine the direction of ẏb
1 by checking solving Equation 2.49. Specifically, we can

numerically find ẏb
1 from Equation 2.49. If the obtained ẏb

1 is positive, then we confirm that

condition subsubsection 2.7.1 is active. Otherwise, condition subsubsection 2.7.1 is self-
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Figure 2.36: Identification of gaits (a) Numerically computed effective gait paths for i0 =

{1, 2, 3}. In (left) and (mid) panels, we showed the effective gait paths with weight higher
than 0.1 body length. In (right) panel, we showed the gait path with the highest weight
(0.06 body length). (b) Comparison between circular-wave (φc), elliptical-wave (φe), and
standing-wave (φs) gaits.

contradictory, which leads to condition subsubsection 2.7.1 being active. Further, from

Equation 2.19, the lateral velocity ẏb
1 can be approximated by:

ẏb
1 = Ay(w)ẇ,

where Ay(w) is the second row of the local connection matrix A(w). If Ay(w)ẇ > 0,

then condition subsubsection 2.7.1 is active, If Ay(w)ẇ ≤ 0, then condition subsubsec-

tion 2.7.1 is not active, indicating condition subsubsection 2.7.1 is active (condition sub-

subsection 2.7.1 and subsubsection 2.7.1 are mutually exclusive).

2.7.3 Gait Design

With the above model, we can now design gaits for limbless robots in obstacle-rich envi-

ronments. With the optimal gait, the robot should take the best advantage of each obstacle-

interaction and leave the obstacle only when necessary. Consider the joint angle limit being

θm (w1,w2 ∈ [−θm, θm]). Let Φ = {φ : [0,T ] → [−θ, θ] × [−θ, θ]} be the collection of all

paths in the shape space; let V1 be the local connection vector field generated from condi-

tion subsubsection 2.7.1 (Equation 2.50); and V2 = Ay(w). The gait optimization problem

becomes:
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Problem 3. Find the path φ ∈ Φ, subject to: dφ(t)
dt · V2

(
φ(t)

)
> 0 ∀ t ∈ [0,T ], such that∫ T

0
dφ(t)

dt · V1

(
φ(t)

)
dt is maximized.

Assuming i0 = 1, we showed an example of V1 and V2 in Figure 2.35.

Figure 2.37: Single post experiments (a) The half-cycle displacements for different gaits
are measured. We illustrated configurations before and after interaction with the obstacle.
The net forward displacement d (net displacement along the direction of motion) is labelled
with a dashed arrow. The net displacement (forward and lateral) is labeled with a solid
arrow. BL denotes body length. The purple arrows indicate the direction of motion over
the half gait cycle. (b) The ranges of beneficial obstacles are measured. We illustrated the
starting and ending configuration where the interaction with the obstacle is beneficial. γ is
measured to quantify the ranges of beneficial obstacles.
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2.7.4 Numerical Optimization

In practice, we discretize the shape space into a (n + 1) × (n + 1) lattice grid, where n is

a suitable positive integer. The values of V1 and V2 are then numerically calculated at the

grid points: Vi(x, y) =

[
Vi,1(x, y),Vi,2(x, y)

]
where i = 1, 2 and (x, y) is a discretized element

in the shape space. We optimize φ among lattice paths with horizontal and vertical line

segments. V2 is one part of the vector fields for locomotion in isotropic environment; thus

it is reasonable to assume that V2 is a conservative vector field [154, 155, 148]. Then we

can compute a potential function P(x, y) defined on the shape space such that V2 is the

gradient of P(x, y).

We consider a weighted directed graph G = (U, A), where the set of vertices U consists

of the (n + 1) × (n + 1) lattice points9. In this way, at each vertex u = (x, y) ∈ U, there are 4

adjacent vertices: {(x ± 1, y), (x, y ± 1)}. The arcs are constructed in the following way:

(i) If P(x+1, y) > P(x, y), then we add an arc from (x, y) to (x+1, y) with weight V1,1(x, y)

to A;

(ii) If P(x−1, y) > P(x, y), then we add an arc from (x, y) to (x−1, y) with weight V1,1(x, y)

to A;

(iii) If P(x, y + 1) > P(x, y), then we add an arc from (x, y) to (x, y + 1) with weight

V1,2(x, y) to A;

(iv) If P(x, y − 1) > P(x, y), then we add an arc from (x, y) to (x, y − 1) with weight

V1,2(x, y) to A;

Thus, the existence of an arc ai j ∈ A (from vertex ui to u j, ui, u j ∈ U) indicates that

the move from ui to u j has positive dot product in V2. The weight of ai j denotes the line

integral from ui to u j along V1.
9We chose the symbol U (instead of V) to represent the collections of vertex to avoid notation confusion

with V1,2 as vector fields
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Lemma 4. G is a directed acyclic graph (DAG).

Proof of Lemma 4. Let C be a directed cycle in G. From our previous assumptions, every

arc in C has positive dot products in V2. Thus, the sum of all dot products of arcs in C and

V2 must be strictly positive. This indicates that there exists a path in a conservative vector

field (V2) with positive strictly line integral, which violates our assumption. Therefore,

there is no directed cycle in G. �

With the aforementioned notation, a discretized version of Problem 3 becomes

Problem 5. Find a simple directed path in G = (U, A) with maximal weight.

It is well-known that Problem 5 in a DAG has a linear-time algorithm if the starting

point is fixed [156, p. 661]. So we can run this algorithm once for each vertex in U to solve

Problem 5. Since |U | = (n + 1)2, our algorithm has time complexity O(n4).

2.7.5 Gait Identification

From the algorithms introduced earlier, we solved Problem 3 and identified the optimal gait

path φ∗LHS . Specifically, we sampled (over the discretized shape space) the initial and end

points, and saved the effective gait paths (with the weights greater than 0.1 body length).

In Figure 2.36, we showed the collection of all effective gait paths. We noticed that the

most effective gaits emerged when i0 = 1: the head link being the link of contact. Both the

weights and the number of effective gait paths decrease dramatically as the link of contact

advances from the head link to mid-body links. Specifically, the maximum weight for

i0 = 3 is approximately 0.06 body length, much less effective than the maximum weight

for i0 = 1 (0.15 body length). Thus, we hypothesized that it is beneficial to use the head

link to make interactions with obstacles for effective OAL.

To seek a simple differentiable path, we fit the effective gait paths with an oriented

ellipse. An ellipse with flatness (defined as the ratio of short-axis and long-axis) around 0.5

can reasonably fit the numerically optimized gait path.
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Figure 2.38: Multiple posts experiments We illustrated snapshots of robots implementing
(a) circular, (b) elliptical, and (c) standing wave gaits on wide-distributed posts (0.3 BL)
and narrow-distributed posts (0.2 BL). Elliptical-wave gait outperformed standing-wave
and circular-wave gaits in both posts. Purple arrows indicate the direction of motion over
two gait cycles. On the right panel, we illustrated the definition of attack angle ψ and
contact duration τ.

We used this elliptical gait for experiments, implemented in later sections. We com-

pared our predicted elliptical gait with two empirical gaits widely used in literature: a

circular-wave (serpenoid-wave) and a standing-wave. A circular-wave gait arises from a

circular path in the shape space where the amplitude of the wave is constant throughout the

gait (phase modulation). A standing-wave gait arises from a flat ellipse in the shape space

where the phase of the wave is constant throughout the gait (amplitude modulation).

2.7.6 Single Post Experiments

To systematically test the effectiveness of our predicted gaits, we conducted single post

(rigid, h = 1.5 cm, d = 3 mm) experiments. Specifically, we placed our robot with its
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Figure 2.39: Experiment data for multiple post experiments (Left panel) The speeds
of standing-wave (σ = 0.1), elliptical-wave (σ = 0.5), and circular-wave (σ = 1) gaits
are compared in (a) wide-distributed posts and (b) narrow-distributed posts. (Right panel)
The attack angle and contact duration for all cases are measured and compared. ∗∗ denotes
p < 0.01

head hitting the obstacle. We then ran the gait for half of a cycle10 and measured the dis-

placement of the head link along the direction of motion, d. Snapshots of the experiments

can be found in Figure 2.37a. We compared the displacement for circular, elliptical, and

standing wave gaits. Interestingly, we observed that the standing-wave gait has the highest

half-cycle forward displacement, indicating highest line integral along the vector field V1

(per unit length of duration). The elliptical-wave gait has slightly less half-cycle forward

displacement whereas the circular-wave gait has the lowest half-cycle forward displace-

ment.

However, other than half-cycle forward displacement, it is also important to have a wide

10We chose half of a cycle because it is often the duration of interaction with one obstacle
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Figure 2.40: Unevenly distributed post experiments A sequence of video frames of the
robot executing the elliptical-wave gait in an unevenly arranged planar peg board over two
gait cycles.

area where the presence of an obstacle can be beneficial (range of beneficial obstacles).

In other words, we also aim to maintain high contact duration with beneficial obstacles.

Mathematically, we aim to design a gait path that has a positive dot product with V2. We

measured the angular range of beneficial obstacle γ (Figure 2.37b), such that within γ

the presence of obstacle is beneficial. Interestingly, we observed that the standing-wave

gait has the least angular range of beneficial obstacles (Figure 2.37). On the other hand,

elliptical-wave and circular-wave gaits have similar angular range of beneficial obstacles.

In summary, we observed that elliptical-wave gaits leverage the benefits of both standing-

wave and circular-wave gaits: (1) it can take advantage of each obstacle and (2) has high

probability to interact with a “beneficial” obstacle. Thus, we hypothesize that the elliptical-

wave gait can be the best candidate gait during obstacle aided locomotion.

2.7.7 Multiple Post Experiments

We tested the effectiveness of all gaits in a lattice with regular spacing. We used two

different lattices: one with wide-distributed posts, post spacing ≈ 0.3 BL (body length),

and one with narrow-distributed post spacing ≈ 0.2 BL. Snapshots of experiments can

be found in Figure 2.38. We measured the speed of robots by body length per cycle (
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Figure 2.39). In both multiple post experiments, the elliptical-wave gait outperforms the

other two candidates.

To further test our hypothesis, we measured the duration of obstacle-contact in these

experiments. Here, we defined the duration of contact by the average fraction that the robot

is interacting with obstacles τ/T , where τ is empirically measured average contact duration

( Figure 2.38) and T is the gait period. In both environments, the contact duration in the

standing-wave gait is significantly lower than the elliptical-wave and circular-wave gaits,

indicating that the standing-wave gait has the lowest duration of beneficial contact between

robot and obstacle. We also measured the attack angle between the robot and the obstacle.

It is defined as the angle between the head link and the obstacle at the end of the robot-

obstacle interaction. As posited by [157], larger attack angle indicates better push from the

obstacle to robot. As shown in Figure 2.39, the attack angles in the circular-wave gait are

significantly lower than the elliptical and standing wave gaits, indicating that the traveling

wave gait can take the least advantage of the obstacle.

2.7.8 Unevenly Distributed Posts Experiments

To test the effectiveness of different gaits within confined environments, we performed

the elliptical-wave, the circular-wave, and the standing-wave gaits in a two-dimensional

artificial indoor obstacle-rich environment: an unevenly arranged peg board.

The elliptical-wave gait exhibits effective OAL behaviors in the planar peg board. An

example of a successful elliptical-wave motion on the peg board is shown in Figure 2.40.

The robot was able to generate 0.12±0.05 BL/cycle on average over six trials. Note that the

motion performance is highly dependent on the initial configuration, therefore the standard

deviation is relatively large. The circular-wave and the standing-wave gaits performed

poorly, generating far less forward motion within the pegs, 0.06 ± 0.04 and 0.06 ± 0.05

BL/cycle, respectively. A comparison video of the three gaits in the same environment can

be found in the supplementary video. These preliminary tests show that the elliptical-wave
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is the most promising of the tested gaits.

2.8 Appendix

2.8.1 Numerical solution: minimal perturbation coordinate

Problem 1 is similar to the Helmholtz-Hodge decomposition [138, (B5)]. Nonetheless, the

torus cannot be embedded into R2, and it is a manifold without boundary, so the standard

Helmholtz-Hodge decomposition does nor apply. As a result, we cannot directly apply the

decomposition, and our approach to Problem 1 would be an analogue of the Helmholtz-

Hodge decomposition on the torus.

In practice, we cannot hope to have analytic formulas for f1, f2. So we need to look for

numerical solutions. Since we only know the values of f1, f2 at a finite number of points in

T 2. As a result, we have to discretize the problem and solve for a discrete approximation

of P(r1, r2).

For suitable n ∈ N, we can decompose [0, 2π) × [0, 2π) into a mesh of n2 squares, and

we focus on the lattice points
(

2πi
n ,

2π j
n

)
, 0 ≤ i, j ≤ n−1. For sufficiently large n, the mesh is

dense enough, and we try to find the values of a solution P(r1, r2) at all those lattice points.

For convenience, we denote the side length of squares in the mesh by u = 2π
n .

Now we apply the finite-element method as in [118]. We define a family of basis func-

tions φi, j such that φi, j takes value 1 at
(

2πi
n ,

2π j
n

)
and 0 at all other lattice points.

The motivation of introducing φi, j’s is Lemma 6.

Lemma 6. Suppose P(r1, r2) takes value ci, j at
(

2πi
n ,

2π j
n

)
. Then at all lattice points

P(r1, r2) =
∑

0≤i, j≤n−1

ci, j · φi, j(r1, r2). (2.51)

The choice of the basis functions is the following: given integers 0 ≤ i, j ≤ n − 1, for

all r1, r2 such that 2π(i−1)
n ≤ r1 <

2π(i+n−1)
n , 2π( j−1)

n ≤ r2 <
2π( j+n−1)

n , we define
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φi, j(r1, r2) = max

1 −
∣∣∣r1 −

2πi
n

∣∣∣
u

, 0


·max

1 −
∣∣∣r2 −

2π j
n

∣∣∣
u

, 0

 . (2.52)

Then φi, j is well-defined on T 2, only takes value 1 at the lattice point
(

2πi
n ,

2π j
n

)
and takes

value 0 at all other lattice points. In addition, φi, j is bilinear within each of the 4 quadrants

around
(

2πi
n ,

2π j
n

)
.

Proof of Lemma 6. For any lattice point
(

2πi0
n , 2π j0

n

)
, we have φi, j

(
2πi0

n , 2π j0
n

)
= 1 if i = i0

and j = j0, and φi, j = 0 for all other choices of 0 ≤ i, j ≤ n − 1. So the right hand side of

(Equation 2.51) equals ci0, j0 · 1 = ci0, j0 = P
(

2πi0
n , 2π j0

n

)
. �

For convenience, for any two vector fields G,H defined on T 2, let their inner product

be

〈G,H〉=
∫

T2 [G1(r1,r2)H1(r1,r2)+G2(r1,r2)H2(r1,r2)]dr1dr2.

Then D = 〈Aθ − ∇P, Aθ − ∇P〉. Now suppose a solution P(r1, r2) is expressed as in

(Equation 2.51). By the linearity of ∇ operator,

∇P =
∑

0≤i, j≤n−1

ci, j · ∇φi, j. (2.53)

Since P is a solution, the choice of each ci, j must be optimal. Then for any 0 ≤ i0, j0 ≤ n−1,

we have
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0 =
∂D
∂ci0, j0

=
∂〈Aθ − ∇P, Aθ − ∇P〉

∂ci0, j0

=
∂〈Aθ, Aθ〉

∂ci0, j0
+
∂〈∇P,∇P〉
∂ci0, j0

− 2
∂〈Aθ,∇P〉
∂ci0, j0

= 0 +
∑

0≤i, j,k,l≤n−1

∂〈∇φi, j,∇φk,l〉ci, jck,l

∂ci0, j0

+
∑

0≤i, j≤n−1

∂〈Aθ,∇φi, j〉ci, j

∂ci0, j0

= 2
∑

0≤i, j≤n−1

〈∇φi, j,∇φi0, j0〉ci, j − 2〈Aθ,∇φi0, j0〉.

Therefore we get n2 linear equations (for all pairs of 0 ≤ i0, j0 ≤ n − 1):

∑
0≤i, j≤n−1

〈∇φi, j,∇φi0, j0〉ci, j − 〈Aθ,∇φi0, j0〉 = 0. (2.54)

Now we analyze the linear system (Equation 2.54). The coefficient matrix is n2 × n2

and sparse.

Lemma 7. Let 0 ≤ i, j, k, l ≤ n − 1 be integers

1. 〈∇φi, j,∇φi, j〉 = 8u2

3 ;

2. if (i, j) and (k, l) are distinct pairs such that both i, k and j, l differ by at most 1 modulo

n, then 〈∇φi, j,∇φk,l〉 = −u2

3 ;

3. for all other (i, j) and (k, l), 〈∇φi, j,∇φk,l〉 = 0.

Lemma 7 follows from direct computations based on (Equation 2.52).

Proposition 8. The square matrix

A = {〈∇φi, j,∇φk,l〉}0≤i, j,k,l≤n−1

has rank n2 − 1.
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Proof. By Lemma 7, the sum of the column vectors in A is the zero vector. So the all-one

vector 1 belongs to the null space of A. In addition, by the symmetry and sparsity of A,

there is no other linear dependence among the column vectors in A, so the rank of A is the

size of A minus the dimension of the null space of A, which is n2 − 1. �

By Proposition 8, the solution space of (Equation 2.54) has dimension 1. While it is

easy to verify that
∑

0≤i, j≤n−1 φi, j(r1, r2) ≡ 1 for all (r1, r2) ∈ T 2. Hence any scaling to a

solution of ci, j’s would result in another solution, and at the level of P(r1, r2) it only differs

a constant from the previous one. So (Equation 2.54) gives a unique solution of P(r1, r2)

up to a constant scaling.

The values of 〈∇φi, j,∇φk,l〉 could be computed from (Equation 2.52), and the values of

〈Aθ,∇φi0, j0〉 can be approximately computed using the values of Aθ at lattice points near(
2πi0

n , 2π j0
n

)
.

Note that we applied a similar approach to determine the Optimal choice of reference

position [118], corresponds to finding the potential function of the first two rows of the

local form of the connection matrix A(r).
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CHAPTER 3

COORDINATION OF LATERAL BODY BENDING AND LEG MOVEMENTS

FOR SPRAWLED POSTURE QUADRUPEDAL LOCOMOTION

Part of this chapter is adapted from a journal article “Coordination of lateral body bend-

ing and leg movements for sprawled posture quadrupedal locomotion.” The International

Journal of Robotics Research 40.4-5 (2021): 747-763. My contribution in this project in-

cludes (1) designing the experiments, (2) conducting the numerical analysis, (3) writing the

manuscript. Robophysical experiments presented in this chapter are conducted by Yasemin

Ozkan-Aydin.

Animals, and increasingly robots, can use limbs to propel themselves to maneuver

across a variety of terrains ([18, 19, 22, 23, 4]). In addition to these appendages, undu-

latory body motions can also contribute to locomotor propulsion, even when not directly in

contact with the environment. For example, salamanders ([84, 66, 85, 86]), lizards ([87]),

and some mammals ([88]) use lateral body undulation in coordination with their legs for

effective locomotion. While previous studies have elucidated the benefits of using lateral

body undulation in conjunction with quadrupedal limb motion for individual tasks such as

walking, running or turning ([66, 85, 35, 88]), no general framework yet exists to system-

atically explore coordination and performance in quadrupedal systems that employ body

undulatory motion, or more specifically back bending. To building this framework, it re-

quires not only coordinating many degrees of freedom (DoF), but also coordinating differ-

ent types of DoF (i.e., body bending and the leg movements) in distinct types of behaviors

(i.e., forward, turning and sideways motion)

As discussed in earlier chapters, geometric mechanics offers qualitative and quantita-

tive insight into how animal and robots can generate optimal high level control ([83, 15]) to

affect desired behaviors, such as forward, sideways, turning locomotion. Here we expand
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Figure 3.1: The animal, robot and theoretical models studied in the chapter. (a) top
view of a Fire salamander. The body angle, αb, is defined as an angle between the center
lines that are parallel to the front and the back part of the body. (b) top view of the robo-
physical model. It has two body parts connected with a servo, four 2 DoF legs, and a tail.
The metal part at the center is used to pick up the robot with an electromagnetic gripper.
All legs and tail have the same foot geometry (24X24 mm cube shape). (c) the theoretical
model with shape variables and body velocities labeled.

the scope of geometric mechanics to four-legged body-bending systems. The challenges

of extending geometric mechanics to quadrupedal systems lie in the fact that these sys-

tems periodically make and break contact with the environment. Here, we prescribe the

leg contact states by their phase; this phase, together with the body-bending angle, forms

the shape space, in which we can apply geometric mechanics tools. We demonstrate that

proper body undulation, obtained from optimization in the new shape space, can improve

the locomotion performance of our quadrupedal robots in forward, rotational and lateral

directions. Furthermore, experimental data collected from Fire salamanders (Salamandra

salamandra) (Figure 3.1a) reveal that our geometric-based approach closely predicts mo-

tion observed in a biological system.
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3.1 Related work on turning

Turning motions in quadrupedal robots have been less studied. In addition, existing turn-

ing policies of quadrupedal robots heavily rely on leg placement: previous work has shown

that careful foot placement planning can enable quadrupedal turning motions ([158]). [159]

introduced the footfall planning objective function, where speed, stability, translation di-

rection, and turning were all included. [160] designed a turning fuzzy controller by placing

the fore legs to the outside of the turn and the hind legs to the inside. In addition to the

control algorithms in foot placement, biologists indicate that body bending also plays an

important role during turning motion. For example, [88] showed the body shape changed

from S-shape to C-shape during the turning motion of ferrets.

Legs movements and body undulations can both lead to quadrupedal turning motions.

In this chapter, we investigate how leg movement modulation can coordinate with body

undulation to enable different turning behaviors in quadrupedal locomotion from in-place

turning to steering.

3.2 Geometric mechanics

3.2.1 Periodic Ground Contacts

Here, we apply geometric mechanics to study the body-leg coordination in quadrupedal

locomotion. First, we seek to identify the shape variables. In our simplified model, the

shape variable r ∈ R5 includes the body bending joint angle (αb, see Figure 3.1.c) and the

leg “shoulder” (shoulder for fore-legs and hip for hind legs) joint angle (βi, i ∈ {1, 2, 3, 4},

see Figure 3.1.c).

In legged systems, robots and animals repeatedly make and break contact with the

environment. We introduce a binary contact state variable, C, that describes the contact

states: 0 (no contact, and therefore no contact forces) or 1 (full contact). Thus, the equation

of motion (adapted from Equation 2.7) becomes a function of both shape variables and
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Figure 3.2: The connection vector field and the height functions in the cylindrical
shape space. The connection vector field (top) and the height function (bottom) in a cylin-
drical shape space corresponding to the forward motion of a quadruped robot moving with
a four-beat walking gait on the surface of ∼ 1 mm poppy seeds. We show the vector
field and height function on a cylindrical space and on the Euclidean parameterization of a
cylindrical space. The blue curve represents a sample gait in the corresponding cylindrical
shape space. Orange lines represent the assistive lines to form closed loops with the gait
path in the unfolded cylindrical shape space. The area in the blue shading represents the
area where the gait path and the assistive line form a clockwise loop; the area in the green
shading represents the area where the gait path and the assistive line form a counterclock-
wise loop. Red, white, and black colors indicate positive, zero and negative values in the
height function respectively.

contact states, i.e.,

ξ = A(r,C)ṙ, (3.1)

where ξ = [ξx ξy ξθ]T denotes the body velocity in forward, lateral and rotational directions

respectively. Note that in this chapter, we use ξ to represent the body velocity to simplify

the notation. We assume that the contact variable C and the shape variable βi can all be

written as a function of leg phase τ, i.e.,
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ci = Fi(τ), βi = fi(τ), i = 1, 2, 3, 4 (3.2)

We prescribe the contact patterns, ci, from existing knowledge of the footfall sequence

(see Figure 3.3). Then, we use the contact state to prescribe the shoulder angle βi. Specifi-

cally, we enforce the βi to be a piece-wise sinusoidal function, partially because it permits

the differentiability at transition. The specific shape of the sinusoid is chosen to respect

the contact state of the foot, as depicted in Fig. Figure 3.3. The leg shoulder angle βi is

prescribed as a piece-wise sinusoidal function over either contact state or non-contact state

with smooth connection. The generic examples of functions Fi and fi are shown in Fig-

ure 3.3.

With leg movements prescribed by fi and Fi, we can form a new shape space that

consists of two variables αb and τ, the body bending angle and the leg phase. This reduced

shape space is parameterized by Ω = [αb, τ]T . Note that according to the chain rule, we

have:

ṙ =
dr
dΩ

dΩ

dt
=



1 0

0 d f1(τ)
dτ

0 d f2(τ)
dτ

0 d f3(τ)
dτ

0 d f4(τ)
dτ



Ω̇ (3.3)

Therefore, we can rewrite Equation 3.1 as:

ξ = A(r,C)ṙ = A(Ω)
dr
dΩ

Ω̇ = A′(Ω)Ω̇, (3.4)

where A′(Ω) is the new local connection relating the reduced shape velocity Ω̇ to body ve-

105



locity ξ. Since one of the shape variables, τ is periodic, the shape space is now cylindrical.

Figure 3.3: The leg contact variables ci and joint angles βi prescribed by gait phase τ
for (a.1) (forward) slow walk, (a.2) (forward) fast walk, (a.3) (forward) trot (b.1) (rota-
tional) lateral sequence with no modulation (LS NM), (b.2) (rotational) lateral sequence
with differential drive modulation (LS DDM), (b.3) (rotational) rotary sequence with no
modulation (RS NM), (b.4) (rotational) rotary sequence with differential drive modulation
(RS DDM), and (c) (lateral) sideways leg movements. The “cartoon sequence” shows the
leg joint angles and contact states (solid means contact; open in air) at different gait phases.
A row of eight boxes indicates the contact state of a leg at eight different phases of the
gait, where filled gray color represents contact and open white color represents non contact
state. The blue curves indicate the joint angles of the leg “shoulders” (shoulder for fore-
legs and hip for hind legs). The initials F, H, L, R represent front, hind, left and right leg,
respectively. All the panels have the same ordinate range (from −π3 to π

3 ) as in (a.1). The
dashed lines in (a.2) and (a.3) indicate two legs are simultaneously in the air, which could
only occur for diagonal leg pairs.

3.2.2 Cylinderical shape space

To form an enclosed area in the Euclidean parameterization of the periodic shape space,

we introduce the notion of an assistive line ([142]). The assistive line is defined to be a

path in shape space where only one shape variable changes and is used to form a closed

loop with the gait path in the shape space. Note that, in principle, the choice of assistive

line is arbitrary with respect to the same winding number. In practice, we often choose an
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assistive line with a physical meaning. In this example, we choose the assistive line to be

∂φ0 : αb = 0 (orange line in Figure 3.2b), such that the assisitive line represents the gaits

with straight fixed body.

The net displacement can be approximated by the path integral along the assistive line

∂φ0 plus the surface integral of the area enclosed by the gait path ∂φ and the assistive line

([142]):

∫
∂φ

A(r)dr =

∫
∂φ0

A(r)dr +

"
φ−φ0

∇ × A(r)dαbdτ, (3.5)

where φ−φ0 is the area enclosed by the assitive line ∂φ0 and gait path ∂φ. Note that when the

gait path and the assistive line enclose disjointed areas in the shape space, the handedness

(the direction of the curl) of these enclosed areas can be different. For example, as shown in

our example in Figure 3.2.b, the assistive line (orange curve) and our gait path (blue curve)

form two disjoint areas: the area where ∂φ0 is above (blue shading area) and below (green

shading area) ∂φ. Thus, taking the handedness of the enclosed area into consideration, the

second term in Equation 3.5 is computed as the surface integral of area where ∂φ is above

∂φ0 subtracted from the surface integral of area where ∂φ is below ∂φ0.

The physical meaning of the first term in Equation 3.5 is the displacement resulting

from leg movements while keeping the back fixed, i.e., the contribution solely from leg

movements. It is independent from any gait path we design and can be pre-computed.

The second term in Equation 3.5 is the additional displacement resulting from coordinating

body bending with leg movement. We can thus design the body bending according to our

motion objectives.

3.2.3 Granular Resistive Force Theory

Similar to prior work, we numerically derive A′ using resistive force theory (RFT) ([121,

11, 122]) to model the granular media on which our system moves. Depending on the sub-

strate, we can choose the corresponding RFT functions to approximate the ground reaction
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forces. In our experiments, robots moved on poppy seeds, a model granular media ([11]);

therefore we used the following previously suggested empirical functions to approximate

F⊥ and F‖:

f⊥ = C sin (γ)

f‖ = A cos (γ) + B(1 − sin (γ)) + F0

where C = 0.66, A = 0.27, B = −0.32, F0 = 0.09 is the empirically fitted function to

characterize the granular media resistant force.

Salamander animals moved on 300 µm glass particles, so we used the following previ-

ously suggested empirical functions to approximate F⊥ and F‖ ([63]):

f⊥ = a0 +

2∑
i=1

ai cos(iwγ) + bi cos(iwγ)

f‖ = A0 +

3∑
i=1

Ai cos(iWγ) + Bi sin(iWγ)

where a0 = 0.004041, a1 = 0.0002925, b1 = 0.002832, a2 = −0.001038, a2 = −0.0007345,

w = 2; A0 = −0.4833, A1 = 0.3498, B1 = 0.7504, A2 = 0.2046, B2 = −0.297, A3 =

−0.07208, B3 = −0.009435, W = 1.333.

The attack angles χ of each segment can be calculated from the body velocity ξ, body

shape Ω, and shape velocity Ω̇. By assuming that the motions of quadrupeds in granular

material are quasi-static ([82]), we consider the total net force applied to the system is zero:

F =

∫
(dF‖(ξ,Ω, Ω̇) + dF⊥(ξ,Ω, Ω̇)) = 0. (3.6)

At a given body shape Ω, (Equation 3.6) connects the shape velocity Ω̇ to the body

velocity ξ. Therefore, by linearizing (Equation 3.6), we can numerically derive the local

108



connection matrix A′(Ω). In our implementation, we compute the root of (Equation 3.6)

using the MATLAB function fsolve.

With the above assumptions, the local connection of a quadrupedal robot moving in

granular media can be approximated by numerically calculating displacements in the body

frame.

3.2.4 Gait Design

Note that 2-D cylindrical shape space is a simple representation that includes both body

bending and leg movements. Compared with higher dimensional systems, the 2D shape

space has the advantage of allowing visual gait analysis, as we can design gaits by looking

at the height functions. To achieve such simple representation, we made many assumptions

(e.g., using one degree-of-freedom body joint to represent the body bending in sprawled

posture quadrupedal locomotion) to perform dimensionality reduction.

With the height function, one can design gaits by drawing a path through the shape

space. The periodic gait path is assumed to be described by Fourier series. To limit the

number of parameters to be optimized while maintaining the flexibility of the gait design

([161]), we keep the first two orders of the Fourier series in our prescription, i.e.,

∂φai,bi = {[αb, τ] : αb =

n=2∑
n=1

an cos(nτ + bn).} (3.7)

We denote ∂φai,bi as ∂φa1,a2,b1,b2 to simplify notation. Finally, we maximize the area enclosed

by gait path and the assistive line by optimizing over the parameters ai’s and bi’s:

argmax
"

φai ,bi−φ0

Hdαbdτ,

subject to max
φai ,bi

αb < Γα
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where H = Hx, Hy or Hθ depending on the direction of gait that we wish to design motion;

Γα is the body bending joint angle limit.

Figure 3.5 shows several examples of gaits on height functions for a variety of maneu-

vers. In summary, our approach uses the following steps:

Dimension Reduction
Prescribe a footfall pattern, c, and

leg shoulder angle trajectory, β

Height Function
Calculate height function
in reduced shape space.

Gait Design
Design the gait path with height function

Figure 3.4: The flow chart of our gait design process

3.2.5 Forward Height Functions

We studied how body bending, coordinated with leg movements, improved the forward

displacement per gait cycle. We first prescribed three typical types of leg movements,

taken from prior work ([17]), that will result in forward displacement.

The three types of leg movements prescribed in this section are slow walk, fast walk

and trot. Inspired by Hildebrand’s analyses, ([17]), we classified these gaits with two pa-

rameters: lateral leg phase shift (the fraction of the step cycle that hind limbs lead the fore

limbs on the same side) and duty factor (the fraction of the step cycle where the foot is

on the ground). The duty factors for the three gaits are all 0.75, and the lateral leg phase

shifts are: 0.25, 0.375, and 0.5 respectively. Each of these parameter choices lead to a

specific footfall pattern which can be seen in Figure 3.3a. The leg “shoulder” joint angles

are prescribed as piece-wise sinusoidal functions which move from cranial end to caudal

end when the leg makes contact with the ground, and move from caudal end to cranial end
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Figure 3.5: Height functions (a) Forward height functions associated with trot (a.1), fast
walk (a.2) and slow walk (a.3) leg movements. The units of the colorbars are cm per step,
i.e., cm/4π2. (b) Rotational height functions associated with lateral sequence no modula-
tion (LS NM) (b.1), lateral sequence differential drive modulation (LS DDM) (b.2), rotary
sequence no modulation (RS NM) (b.3) and rotary sequence differential drive modulation
(RS DDM) (b.4) leg movements. The units of the colorbars are rad per step, i.e., rad/4π2.
(c) Lateral height function associated with sideways leg movements. The blue curves are
the identified “optimal” gait paths. Red, white and black indicate positive, zero and neg-
ative values respectively. The ordinate range is the same for all panels. The units of the
colorbars are cm per step, i.e., cm/4π2.

when the leg is in the air ( Figure 3.3a). We set the body bending joint angle limit Γα = π
3

in this section unless otherwise noted.

The slow walk (lateral leg phase shift = 0.25) is a four-beat1 gait with evenly spaced leg

lifting following the sequence fore right, hind left, fore left, hind right (defined as lateral

sequence (LS) ([17]). The fast walk (lateral leg phase shift = 0.375) is another four-beat

1Imagine each leg placement is like beating a drum. For the slow walk gait, one would hear four separate
beats of the drum as the leg makes contact with the ground. A trot gait is a two-beat gait
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gait following the lateral sequence. Unlike the slow walk gait, there is an overlap of the

aerial phase between fore right and hind left legs (as well as fore left and hind right).

The trot gait (lateral leg phase shift = 0.5) is a two-beat gait with diagonally paired leg

movement. The fore right leg is always in phase with the hind left leg; while the fore left

leg is always in phase with the hind right leg. The detailed descriptions of these gaits are

presented in Figure 3.3a. Note that the overlaps in diagonal-leg (the FR-HL pair or FL-HR

pair) non-contact state increase from slow walk to fast walk to trot, which leads to higher

speeds.

Figure 3.6: Snapshots of robot experiment (b and d), RFT simulation (a and c) and animal
experiments (e). Body bending coordinated with leg movements (a-b) changes the orienta-
tion of the body or increases forward displacement. In (a) and (c), the green dots identify
the head and the solid blue line represents the trajectory of center of mass. In (b) and (d),
the module connected to hanging tail (not making contact with the ground) indicates the
hind body module. We compared our designed forward gaits (c and d) with the forward
locomotion observed in animal experiments (e)

We can coordinate body bending to improve forward displacements per gait cycle by in-

vestigating the forward height functions. The forward height functions for these leg move-
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ments are shown in ( Figure 3.5a). The gait paths with the maximum surface integral in the

forward height functions (“optimal” gaits) are predicted to be the gaits with the largest for-

ward displacement per gait cycle. We also identified the worst body bending coordination

with the minimal surface integrals (“worst” gaits). We tested the “neutral” gaits with fixed

straight back (αb = 0) for reference.

We observed that body bending that optimizes the forward displacement per gait cycle

is dominated by the first term of the Fourier series, in which case a1 tends to Γa and a2 tends

to 0. However, the optimized b1s vary for fast walk, slow walk, and trot leg movements.

Figure 3.7: Sample trajectories of robot experiments and RFT simulations implementing
(a) fast walk gait, (b) rotary sequence no modulation gait, and (c) sideways gait, showing
close agreement between RFT simulations and robot experiments. In these gaits, body
undulations are properly designed to improve (a) forward, (b) rotational, and (c) lateral
displacements.

3.2.6 Rotational Height Functions

Next, we studied the role of body bending in rotational motions. Four types of leg move-

ments were prescribed: the lateral footfall sequence with no modulation ( Figure 3.3b.1),

the lateral footfall sequence with differential drive modulation ( Figure 3.3b.2), the rotary

footfall sequence with no modulation ( Figure 3.3b.3), and the rotary footfall sequence with

differential drive modulation ( Figure 3.3b.4).
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Lateral sequence and rotary sequence.

While the lateral sequence (FR-HL-FL-HR) (LS) footfall pattern is widely used in forward

walking; we show that by properly coordinating body bending, the LS footfall pattern

can also give rise to rotational motion (e.g., turning). As expected, other sequences favor

motions in other directions. [162] introduced rotary sequence footfall pattern (FR-HR-

HL-FL) (RS) that favors counterclockwise turning. In this section, we prescribed both LS

and RS to produce rotational motions. The leg movements prescribed in Figure 3.3b.3 and

Figure 3.3b.4 followed the (RS) footfall pattern.

Differential drive modulation and no modulation.

In this section, we introduce the notion of modulation of the joint amplitudes to cause

rotational motion as well. To distinguish modulated motion from unmodulated motion,

we use the abbreviation NM to mean no modulation. In no modulation (NM) leg move-

ments, the leg “shoulder” joint angles are prescribed as piece-wise sinusoidal functions

as mentioned in Section 4.2.1 (move from cranial end to caudal end when the leg makes

contact with ground, and move from caudal end to cranial end when the leg is in the air)

(see Figure 3.3b.1 and Figure 3.3b.3). Leg movements previously prescribed in NM will

lead to pure forward translation and no rotation. However, rotation can be introduced by

coordinating body undulation.

Now we define differential drive modulation (DDM) leg movements. The leg ”shoul-

der” angles are also prescribed as piece-wise sinusoidal functions. However, the right (FR

and HR) limb joint angles move from cranial end to caudal end when the leg makes contact

with ground, and move from caudal end to cranial end when the leg is in the air; while

the left (FL and HL) limb joint angles move from caudal end to cranial end when the leg

makes contact with ground, and move from cranial end to caudal end when the leg is in

the air (see Figure 3.3b.2 and Figure 3.3b.4). In this way, the differential on lateral limb

amplitude is modulated to introduce rotational motion ([163]). We call counterclockwise
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Figure 3.8: Comparison of displacement in RFT simulations (blue bars) and robot experi-
ments (orange bars with error bar, representing 1 standard deviation) results of (a) forward,
(b) rotational and (c) lateral gaits, showing close agreement between RFT simulations and
robot experiments. Each gait is tested for ∼ 3 experiment trials; each trials containing at
least ∼ 3 gait periods. The “optimal”, “neutral” and “worst” respectively represent the op-
timal body bending, no body bending (fixed straight back) and the worst body bending. We
indicate statistically significant improvement comparing the ’optimal’-’neutral’, as well as
’optimal’-’worst’ gaits. The gait comparison with a horizontal bracket with ∗∗∗ represents
statistically significant improvement ( p < .001); the gait comparison without a horizontal
bracket represents no statistically significant improvement ( p > .05). For rotational gaits
in (b), we show both transitional and rotational displacement values for completeness only:
body bending is optimized with respect to rotation only, and displacement changes are not
optimized.

(CCW) rotation as the positive direction. The differential drive modulated leg movements

can lead to pure CCW rotation without translation. Properly coordinating body undulation

will further increase the rotation per gait cycle.

Note that in Section 4.1, we prescribe the leg movement without modulating the leg

amplitude. Therefore, they are in the category of no modulation. Also, prescribed leg

movements of the slow walk gait in Section 4.1 ( Figure 3.3a.1) are identical to the pre-

scribed LS leg movements with NM (LS NM) in this subsection ( Figure 3.3b.1). We
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Figure 3.9: (a) Snapshots of robot simulation following a circle. Rotation with forward
motion will lead to an arc in center of mass trajectory. R is the curvature radius of the
center of mass trajectory; θ is the stride rotation and D is the stride displacement. (b) Body
undulation amplitude vs. robot turning radii (the curvature radius of the center of mass
motion trajectory). We hypothesize that by modulating the body undulation amplitude,
we can control the turning radius of the robot. Robot experimental data (blue) and RFT
simulation data (black) validate our hypothesis.

will show that body undulation can lead to either additional rotation or additional forward

displacement to the original leg movements (see Figure 3.6).

Body undulation during rotation

In addition to modulating the amplitudes, we can also design the turning motions by in-

vestigating the rotational height functions. The rotational height functions are presented

in Figure 3.5b. The gait paths that enclose the maximum surface integral in the rotational

height functions are predicted to be the gaits with the maximum CCW rotation per gait

cycle (“optimal” gait). Similarly, the gait paths that enclose the minimum surface integral

in the rotational height functions are predicted to be the gaits with the minimum CCW (i.e.,

the maximum CW) rotation (“worst” gait). Interestingly, the body bending in coordination

with LS that optimizes rotation is dominated by the second term of Fourier series, while

the body bending in coordination with RS that optimizes rotation is dominated by the first
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term of Fourier series.

Steering.

In Section 4.2.2, we showed that with the help of body bending, quadrupedal systems can

simultaneously go forward and rotate; we call this type of motion steering because it is

reminiscent of a car driving down the street. In this section, we will show that properly

coordinated body bending can control the steering angle of quadrupedal systems. The leg

movements in this section are prescribed by slow walk (NM LS).

One of the most important parameters in steering is the turning radius. As illustrated in

( Figure 3.9.), the quadrupeds that walks and turns simultaneously will essentially follow a

circle. The turning radius, R, is given by:

R =
D · sin(π−θ2 )

sin(θ)
, (3.8)

where D is the stride displacement (displacement per gait cycle) and θ is the stride rotation

(body rotation per gait cycle).

Next, we aim to control the turning radius by modulating the body bending. From the

rotational height function in Figure 3.5b.1, we observe that the surface integral enclosed by

the assistive line and the gait path will increase with body joint angle amplitude. However,

that path in Figure 3.5b.1 will enclose no additional area in its corresponding forward height

function Figure 3.5a.1. Thus by increasing the body bending joint angle amplitude, Γα,

greater stride rotation, θ, is expected while stride displacement D remains constant. In

this way, we show that we can control the turning radius by modulating the body bending

amplitude.

3.2.7 Lateral Height Function

Finally, we studied how properly coordinated body bending can improve lateral displace-

ment per gait cycle. [162] introduced the footfall patterns that produce slight lateral motion,
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Figure 3.10: Height functions for salamanders, namely experimentally-measured gaits for
(a) slow walk, (b) fast walk and (c) trot, with salamander gait in blue curves and geometric
mechanics predicted gait in green curves overlaid. All the panels have the same body angle
range as in the middle panel.

in which the fore right leg is in phase with the hind right leg, and the fore left leg is in phase

with the hind left leg. The detailed description of leg movements is shown in Figure 3.3c.

We then calculate lateral height functions ( Figure 3.5c).

The gait path with maximum surface integral in the height function (“optimal” gait)

is predicted to be the gait with the largest lateral displacement per gait cycle. We also

identified the body bending that corresponds to the minimal surface integral (“worst” gait).

We tested the “neutral” gait with fixed straight back (αb = 0).

Quadrupeds have limited ability to move sideways ([164]). However, body bending

will greatly enhance the ability of a quadrupedal robot to move laterally. In the next sec-

tion, we will show the lateral displacement for optimal, neutral and worst body bending in

coordination with leg movements across granular media.

3.3 Experimental Results

To verify and explore our theoretical model predictions, we developed a robophysical

model ([149]). Specifically, we built a quadrupedal robot ( Figure 3.1a) and tested its
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performance on granular media. This open-loop, servo-driven, 3D-printed robot (450 g,

∼40 cm long) has four legs and an actuated back. Each leg has two servo motors (XL-320)

to control its vertical position and its lateral position. A joint in the middle of the body

(AX-12 servo) controls lateral body bending.

Using a fully-automated setup ([165]), we experimentally and systematically tested the

role of body bending during quadrupedal locomotion on a bed filled with ∼ 1 mm diameter

poppy seeds. We performed three trials for each gait, with each trial consisting of at least

three complete gait periods. The robot executed a programmed set of movements to move

on the loosely-packed poppy seeds. Throughout the experiment, four Optitrack Flex13

cameras recorded the positions of infrared-reflective markers on the robot (at 120 frame

per second). At the end of each experiment, the robot’s final position was identified. A 3-

axis motor system moved to the robot, picked it up and sent it back to the starting position.

Before each experiment, an air-fluidized bed erased the footprints and allowed the seeds to

be reset into a loosely-packed state ([166]).

We provide snapshots of the robot executing gaits predicted by geometric mechanics in

Figure 3.6. We compared the trajectories of quadrupedal robot experiments and RFT sim-

ulations in Figure 3.7, and show that they are in good agreement ( Figure 3.8). Note that

in Figure 3.7c, there is deviation between the robot experiments and RFT simulation. We

believe that the relatively shorter displacement in a robot experiment is due to the poppy

seed accumulation that is not modeled in RFT simulation.

3.3.1 Robot Experiment Verification of Forward Height Function Prediction

In Section 4.1, we identified the ‘optimal’, ‘neutral’ and ‘worst’ body bending from for-

ward height functions to improve forward displacement per gait cycle. We verified the pre-

dictions from forward height functions by RFT simulations and robot experiments across

granular materials. Both RFT simulations and robot experiments suggest that the ‘optimal’
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body-leg coordination can improve the forward displacement, while the ‘worst’ phasing

can lead to ineffective forward gait. Simulation and experiment data are presented in Fig-

ure 3.8a.

3.3.2 Robot Experiment Verification of Rotational Motions

Lateral sequence and rotary sequence

In Section 4.2, we identified the ‘optimal’, ‘neutral’ and ‘worst’ body bending from ro-

tational height functions in coordination with LS and RS. We verified predictions from

rotational height functions by RFT simulations and robot experiments across granular ma-

terials. The data are presented in Figure 3.8b. Both RFT simulations and robot experiments

suggested that proper body-leg coordination can improve the CCW rotation.

Differential drive modulation and no modulation.

From Figure 3.8b, we observed that when the body is maintained fixed straight (i.e., the

‘neutral’ body bending), the DDM leg movements lead to pure rotation without translation

while NM leg movements lead to pure translation without rotation.

In leg movements prescribed in DDM, the ‘optimal’ body bending coordination can

improve the body orientation rotation per gait cycle (good in place turn) whereas ‘worst’

body bending can decrease the body orientation rotation per gait cycle (bad in place turn).

In leg movements prescribed in NM, the ‘optimal’ body bending coordination will in-

troduce counterclockwise rotation to forward motion (counterclockwise steering) whereas

the ‘worst’ body bending will introduce clockwise rotation to forward motion (clockwise

steering).

Steering

We further verified our steering radius control hypothesis with robot experiments and RFT

simulation. We plotted the body bending amplitude Γα against the turning radii in Fig-
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ure 3.9. Both robot experiments and simulations suggested that by modulating the body

bending joint angle amplitude, we can control the turning radius. Note that the simulation-

experiments discrepancy increases at larger amplitude. Since our robot experiments were

performed on granular media, there can be granular material accumulation on the side when

robots exhibits large turns. The accumulated granular material can have greater effect on

the locomotion performance when the robots implement multiple gait cycles. Therefore,

we suspect that it is the granular material accumulation that leads to underperformance of

steering experiments in Figure 3.9.

3.3.3 Robot Experiment Verification of Lateral Height Function Prediction

Finally, we identified the ‘optimal’, ‘neutral’ and ‘worst’ body bending from lateral height

functions to improve lateral displacement per gait cycle. We verified predictions from

lateral height functions using RFT simulations and robot experiments across granular ma-

terials. Both RFT simulations and robot experiments suggest that the ‘optimal’ body-leg

coordination can improve the lateral displacement, while the ‘worst’ phasing can lead to an

ineffective lateral gait. Simulation and experiment data are presented in Figure 3.8c.

3.3.4 Animal Experiment Verification of Forward Height Function Prediction

To extend our study to biological quadrupedal systems, we collected data and performed

analysis on fire salamanders (Salamandra salamandra) to investigate if the animal uses

body kinematics to optimize the forward motion.

In these experiments, individual animals walked along a straight trackway filled with

300-µm glass particles. Three cameras (GoPro Hero3+, 720 pixel resolution) were posi-

tioned around the trackway and recorded synchronized videos at 120 FPS. All experiments

were approved by the Royal Veterinary College’s Clinical Research Ethical Review Board,

approval number 2015 1336. No animals were harmed for the experiments, and animals had

rest periods in between data collection trials. Experiments were conducted in a humidity-
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controlled laboratory at the University of Oviedo, Spain. The temperature (∼18 ◦C) and

light cycle (12hr dark, 12hr light) were maintained at constant levels.

At least three gait periods were recorded in each experiment. Limb positions, body

angles, and footfall timing were manually extracted from each recording. According to

the limb positions and footfall timing, we selected three representative salamander motion

videos (each contains at least three gait periods of animal motion), which correspond to

“trot” (duty factor 0.75 ± 0.03, lateral leg phase shift 0.25 ± 0.05), “fast walk” (duty factor

0.76±0.04, lateral leg phase shift 0.36±0.02) and “slow walk” gaits (duty factor 0.73±0.1,

lateral leg phase shift 0.50±0.02). We fitted the animal body angles with the first two terms

of Fourier Series as in Equation 3.7. We plotted the obtained animal body bending angles

as a function of the leg movement phase (blue curves in in Figure 3.10).

To predict the proper body bending coordination with “trot”, ”slow walk”, and “fast

walk” salamander leg movements, we calculated the corresponding forward height func-

tions. In the forward height function, we then can design and predict the body bending gait

paths to maximize forward displacements. The green curves in Figure 3.10 are the pre-

dicted body bending gait paths with body-bending amplitudes Γα extracted experimental

data. We show that the body-leg coordination gait paths in salamander locomotion are in

close agreement with our theoretical prediction to maximize forward displacement.
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CHAPTER 4

COORDINATING TINY LIMBS AND LONG BODIES: GEOMETRIC

MECHANICS OF LIZARD TERRESTRIAL SWIMMING

Part of this chapter is adapted from a journal article “Coordinating tiny limbs and long

bodies: Geometric mechanics of lizard terrestrial swimming.” Proceedings of the National

Academy of Sciences 119.27 (2022): e2118456119. My contribution in this project in-

cludes (1) designing the experiments, (2) conducting the numerical analysis, (3) writing the

manuscript. Robophysical experiments presented in this chapter are conducted by Tianyu

Wang.

Recent studies have demonstrated that body elongation and limb reduction has conver-

gently evolved in most major lineages, including not but limited to fishes [167], amphibians

[168], reptiles [169], and even mammals [170]. Of particular interest, in Squamate reptiles

(lizards and snakes) snake-like body shapes have independently evolved at least 25 times

[101, 171]. While the exact selective pressures for this evolutionary transition remain a

mystery, prior studies revealed possible advantages of certain body plans in navigating

their corresponding environments [172, 101, 68, 106]. One of the best supported hypothe-

ses is that limbless and/or short-limb forms have evolved as adaptations for fossoriality

(underground environments) or cluttered environments [99, 100, 101, 99].

Transitions in body morphology are just one of many aspects of evolutionary adap-

tations for cluttered or fossorial habitats. Another crucial but less studied aspect in such

adaptation is how animals can use these diverse morphologies during locomotion. For

example, stereotyped snakes and lizards have distinct body movement patterns: snakes pri-

marily use traveling wave body undulations to generate thrust [60, 61, 62, 63]. Lizards

use a standing wave to assist limb retraction [64, 65]; and employ traveling waves of axial

body undulation at high speed [66, 67, 65], believed to help the limbs in transmitting forces
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Figure 4.1: Target and model systems for understanding the role of body undulation
in the lizard body elongation and limb reduction continuum (Left) (from top to bottom)
fully limbed lizards (U. scoparia and S. olivaceus) in comparison with extant short limbed,
elongate lizards (B. kadwa, B. taylori, and B. muntingkamay) and limbless/almost limbless
species (L. praepedita and C. occipitalis). Scale bars indicate 2 cm. (Right) An illustrative
diagram of the thrust generation in short limbed, elongate lizards: the thrust generated by
limb retraction is labeled in red arrows, the thrust generated by body undulation is labeled
in yellow arrows.

along the axis of progression [65].

In lizards with short limbs and elongate bodies, because of the proximity to the sub-

strate, both the body and limbs directly contribute to generate thrust and overcome drag [65].

This regime, which because of its similarities to sand-swimming in lizards [72] and snakes [122,

63, 73] we refer to as terrestrial swimming is less studied than inertial running in large

limbed lizards [66, 67, 65]. Since the short limbs of elongate lizards typically cannot

support the animal’s body weight, the two propulsive mechanisms (limb retraction and

body undulation) can coexist, requiring proper coordination. Further, the support of body

weight must be properly distributed between the ventral surface of the body and the limbs

to facilitate effective thrust-generation mechanics. Thus a challenge of studying terrestrial
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Figure 4.2: The diversity of body waves in the body elongation and limb reduction
continuum. (top) Photos of species and the snapshots of their body motion during one
period (at a scale of seconds) of locomotion. Seven species were studied (from left to
right): U. scoparia, S. olivaceus, B. kadwa, B. taylori, B. muntingkamay, L. praepedita,
and C. occipitalis. The relative limb size (l: the hind limb length normalized by SVL) and
number of presacral vertebrae (V) for each species are labeled [173, 105]. (bottom) The
projections of body curvature into the reduced shape space and the estimation of σ for each
animal. Units of axes are identical to the left panel.

swimming lies in discerning the coordination between body undulation and limb retraction

while generating effective body weight distribution.

To address these questions, we take a comparative biological, robophysical, and the-

oretical modeling approach. We compile a collection of high-speed videos of a spectrum

of lizard body forms collected in both field and laboratory settings. Through the use of

neural network markerless tracking [174], we analyze the data and reveal a striking diver-

sity in body undulation dynamics. Specifically, we find that body undulation in lizards

with short limbs is a linear combination of a standing wave and a traveling wave; and that

the ratio of the amplitudes of these two components is inversely related to the degree of

125



Figure 4.2: The diversity of body waves in the body elongation and limb reduction
continuum. (top) Photos of species and the snapshots of their body motion during one
period (at a scale of seconds) of locomotion. Seven species were studied (from left to
right): U. scoparia, S. olivaceus, B. kadwa, B. taylori, B. muntingkamay, L. praepedita,
and C. occipitalis. The relative limb size (l: the hind limb length normalized by SVL) and
number of presacral vertebrae (V) for each species are labeled [173, 105]. (bottom) The
projections of body curvature into the reduced shape space and the estimation of σ for each
animal. Units of axes are identical to the left panel.

limb reduction and body elongation. The fact that our animals move in highly damped

environments, where frictional forces dominate over inertial forces, allows the use of the

geometric mechanics framework [81, 118] to explain wave dynamics and body-limb co-

ordination. This geometric mechanics theory, which replaces laborious calculation with

diagrammatic analysis, rationalizes the advantage of using traveling waves in short limbed

elongate lizards, and predicts that such advantages emerge when the primary thrust gen-

eration source shifts from the limbs to the body. We test our hypothesis with biological

and robophysical experiments by manipulating the substrate on which fully limbed lizards

move, and with robophysical experiments by controlling the body and limb thrust mecha-
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Figure 4.3: From standing wave to traveling wave (a) Comparison between the original
body curvature profile of B. taylori and the reconstructed body curvature profile over a
gait cycle from the estimated wavelength λ and flatness σ. The units of the colorbar are
SVL−1. (b) The relationship between the locomotion parameters (σ and λ) and morphology
parameter (the relative hind limb length l). Red points with error bars correspond to the
locomotion parameters of U. scoparia and S. olivaceus on an aerated granular medium to
reduced the resistive force of the media. Note that we use l = 0.01 for L. praepedita on the
plot and that the abscissa is reversed (descending left to right) to correspond to Fig. 2.

nism. Answering these questions will not only establish a relationship between what they

have (the body morphology) and how they move (the body-limb coordination) [32, 102,

103, 104], but also facilitate our understanding of the locomotor implications of the evolu-

tion of snake-like forms [105, 106].

4.1 Results

4.1.1 Diversity in lizard body movements

We investigated three short limbed, elongate species with similarly developed fore and hind

limbs [175, 105] (Brachymeles kadwa, Brachymeles taylori, and Brachymeles muntingka-

may) and compared them with fully limbed lizards (Uma scoparia and Sceloporus oli-

vaceus) and limbless species (the almost limbless lizard Lerista praepedita and the shovel-

nosed snake Chionactis occipitalis). These species were chosen because they form a spec-

trum of limb reduction and body elongation (Figure 4.1). The relative limb size is defined

as the hind limb length normalized by SVL (snout vent length). The number of presacral
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vertebrae is a measure of elongation [105] (Figure 4.2). We recorded field videos of these

species moving on granular media (consisting of soil and poppy seeds), and compared the

kinematics of their body movements. The snapshots of their body postures during locomo-

tion are compared in Figure 4.2 (middle panel). Qualitatively, we observed the node1 of

body bending is almost stable in fully limbed lizards (at the shoulder and hip), and propa-

gates from snout to cloaca in shovel-nosed snakes. Interestingly, in short limbed, elongate

species, one of the nodes is almost stable near the snout, and the other node propagates

from the mid-body to tail.

Figure 4.4: Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (a) The limb movement in short limbed, elongate lizards fol-
lows the lateral couplet sequence (FR-HL-FL-HR). The phase relationship of hip bending
and hind limb movements are plotted in the right side panels.

We considered locomotion as a properly coordinated sequence of “self-deformations”

(internal shape changes) that generate thrust to overcome drag forces (self-propulsion2) via

interactions with substrates. Prior work [124, 176, 75, 82, 83] suggested that despite pos-

sessing high dimensionality, the essence of self-deformation can be described by a linear

combination of shape basis functions. Consider the body curvature3 κ(s, t) at time t and

location s (s = 0 denotes the snout in snakes (or the shoulder in lizards) and s = 1 de-

notes the cloaca in snakes (or the hip in lizards)). Thus, the body curvature profile can be

approximated by:

1The point in the body which has zero body curvature
2We will explain further the terminology of self-propulsion and self-deformation when we discuss geo-

metric mechanics
3Body curvature is the inverse of radius of curvature
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Figure 4.4: Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (b) The shape space for short limbed, elongate lizards. The body
movements are prescribed by the reduced shape variable w1 and w2, and the limb contact
states are inferred from the body movements. Gaits can be represented by closed-loop
paths in the shape space. A standing wave gait path, a traveling wave gait path, and an
intermediate wave gait path are compared.

Figure 4.4: Geometric mechanics analysis of the body-limb coordination in short
limbed, elongate lizards (c) Height functions to investigate the body undulation in lizards
with intermediate limbs. (left) Two strips emerged in the height function for short limbed,
elongate lizards, such that a circular gait path can enclose significantly more surface than a
flattened elliptic gait path. To further understand the two stripes, we calculated the height
function for hypothetical lizards with one pair of limbs near the head (middle panel) and
near the tail (right panel). Each stripe is associated with a pair of limbs, in which case a
flattened elliptic gait path can enclose sufficient surface in the height function. The units of
the colorbar are (10−3 × SVL−1/rad2).
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κ(s, t) = w1(t) sin (2πξs) + w2(t) cos (2πξs), (4.1)

where ξ is the spatial frequency of body undulation obtained from direct fitting (1/ξ denotes

the wavelength, λ, in the unit of SVL); w1(t) and w2(t) are the reduced shape variables de-

scribing the instantaneous shape of the locomotor at time t. In this way, we can map the

original high-dimensional body curvature profile κ(s, t) into a space spanned by w1 and w2.

In pure standing waves, the body curvature trajectory in the reduced shape space can be

described as a flattened ellipse (with eccentricity e→ 1). In pure traveling waves, the body

curvature trajectory in the reduced shape space can be described as a circle (with eccentric-

ity e → 0). In this way, an elliptical trajectory can be considered a linear combination of

the flattened ellipse path and the circular path, the ratio of which can be quantified by the

flatness (σ =
√

1 − e2), where σ = 0 denotes a pure standing wave and σ = 1 denotes a

pure traveling wave. We compared the gait trajectory for species ranging from fully limbed

to limbless animals in Figure 4.2 (bottom panel), where we observed a transition from a

flattened ellipse in stereotyped lizards to a circle in snakes.

To quantitatively measure the flatness of the gait trajectories in the reduced shape space,

we fit these trajectories with oriented ellipses. To test the accuracy of the fitting, we com-

pared the original body undulation profile (collected from tracking in field videos, left

panel) and the fitted body undulation profile (from a reconstruction of the ellipses in re-

duced shape spaces, right panel) in Figure 4.3a. Interestingly, we observed that σ increased

and λ decreased, indicating a transition from standing wave to traveling wave, as the limb

size decreased (and number of presacral vertebrae increased) (Fig. Figure 4.3b).

4.1.2 Wave dynamics are key to body-limb coordination

We further analyzed the limb movement in the short limbed, elongate species (B. kadwa

and B. taylori). Snapshots showing the body posture during the touchdown of each foot

are illustrated in Figure 4.4a (left panel). The limb movements in short limbed, elongate
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Figure 4.5: The weight distribution role of limbs in lizard locomotion (a) The body
weight can be supported by the limbs and the body; γ indicates the fraction of body weight
supported by limbs. (b) Three typical gaits: the pace gait (duty factor = 0.5, leg phase shift
= 0) implemented by lizards with short limbs, the LS (lateral sequence: duty factor = 0.5,
leg phase shift = 0.25) gait implemented by lizards with intermediate limbs, and the trot
gait (duty factor = 0.5, leg phase shift = 0.5) implemented by lizards with long limbs.

Figure 4.5: The weight distribution role of limbs in lizard locomotion (c) The rela-
tionship between γ and speed for (solid black curves) pace, (dashed blue curves) LS, and
(dashed red curves) trot gaits on lizards with (c.1) short, (c.2) intermediate, and (c.3) long
limbs. Potential tip-overs are indicated by a red cross.

species follow the sequence: FR-HL-FL-HR (F, H, R, and L represent fore, hind, right,

and left respectively). Specifically, the hind leg leads the fore leg on the same side by

0.38 ± 0.07 of a period, which is a lateral couplet sequence [17]. Further, for each leg, the

ground-contact (stance phase) duration is approximately the same as the off-ground (swing

phase) duration, indicating the duty factor (the fraction of a period that each limb is on the
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ground) is approximately 0.5.

Figure 4.6: Traveling wave in fully limbed lizards induced by substrate variation Com-
parison of the body wave dynamics of Uma scoparia (a) on sandpaper and (b) on a loosely
packed granular medium, and (c) on an aerated granular medium. An almost perfect stand-
ing wave is observed for Uma scoparia on sandpaper and on the loosely packed granular
medium, while features of a traveling wave emerge for Uma scoparia on the aerated gran-
ular medium. Resulting σ and λ are shown in Fig. Figure 4.3b. The units of the colorbar
are SVL−1 for all panels.

We also noticed that during a foot touchdown, the local body element develops maximal

curvature (in the convex direction towards the leg) to increase its reach (Figure 4.4a, middle

panel), which is consistent with observations of other quadrupedal locomotors [177, 176].

This observation indicates that the fore (hind) limb movement should be in phase with

shoulder (hip) bending. We quantify this observation by showing the phase relationship

between the hind limb movement and hip bending in Figure 4.4a (right panel). The rela-

tionship between the fore limb movement and shoulder bending was shown in Fig. S1. We

observed a stronger in-phase relationship between the hind limb and hip bending. We sus-

pected that this is a consequence of the low visibility of the fore limbs in the field-recorded
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videos, and the low magnitude of the shoulder bending compared to hip bending.

The observations of the phase relationship between limb movements and body bending

allow us to reduce the shape variables of short limbed, elongate lizard locomotion into two-

dimensions. As discussed earlier, the body undulation profile κ(s, t) can be approximated

by a linear combination of sin(2πξs) and cos(2πξs) (under coefficients w1 and w2). We took

ξ = 0.65 from our previous analysis (λ ≈ 1.5 for B. taylori and B. kadwa Figure 4.3b). We

can then infer the limb contact states from the choice of reduced shape variables w1 and w2

such that the shoulder (hip) bending is in phase with the fore (hind) limb movement. The

explicit shape space can be found in Figure 4.4b (left panel).

Figure 4.7: Geometric mechanics modeling for the robophysical experiments (a) The
definition of α1 and α2 and the body-limb coordination in the 3-link swimmer and 4 leg
contacts. ψ is the phase lag between the upper back and lower back actuators. Right
panel demonstrates how leg contact patterns are coupled to the shape variables (α1 and
α2). On the lower right half of the shape space, the contact patterns are counter-diagonal;
on the upper left half of the shape space, the contact patterns are diagonal. Examples of
the standing wave (ψ = 0) and the traveling wave (ψ = π/2) are compared in the shape
space. (b) Vector field and height functions for modelling the robophysical experiments on
poppy seeds. The displacement can be approximated by the surface integral enclosed by
the gait path over the height function (right panels). The units of the colorbar are (10−3 ×

SVL−1/rad2). Units of axes in (b) are identical to the shape space in (a).

Hypothesizing that terrestrial swimming is dissipation dominated (ground resistive forces

dominate body or substrate inertial forces), we next used the geometric mechanics frame-

work [178, 81, 83] to compare the effectiveness of standing and traveling waves in these
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short limbed, elongate lizards. Geometric mechanics was originally developed to study

locomotion via self deformation at low Reynolds numbers [76, 81]. Since the thrust is

generated from properly coordinated self-deformation to counter the drag forces, we re-

fer to such thrust generation as self-propulsion. Recent work has shown that geometric

mechanics replaces laborious calculation with a diagrammatic scheme and offers novel in-

sights into the self deformation patterns in various types of biological locomotion, such as

slithering and sidewinding in snakes and body-leg coordination in salamanders [83, 176].

Figure 4.8: Robophysical experiments (a) Snapshots of robots (top panel: belly thrust;
bottom panel: no belly thrust) implementing standing wave (ψ = 0) and traveling wave
(ψ = π/2) gaits. (b) The effect of ψ on locomotion performance for robot with no belly
thrust (blue curve) and robot with belly thrust (orange curve).

In the geometric mechanics framework, we seek to calculate performance (measured

by body lengths moved per cycle) from the sequences of self-deformation. The space

spanning the self-deformations (in our case, internal shapes of lizards) is then called shape

space (Figure 4.4b). For simplicity, we only analyze the over-damped regime4 of lizard

locomotion, where there is zero acceleration on the center of mass (CoM) in lizards. In this

way, the velocities in shape space (shape velocity) and body velocities are then connected

by a matrix called the connection vector field (e.g., S3) [75]. A gait, a periodic sequence of

shape changes, can be represented as a closed-loop path in the shape space. In Figure 4.4b

(right panel), we compared the standing and traveling wave body movements and their

4Over-damped motion then implies that inertial forces are negligible compared to the ground reaction
forces.
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corresponding limb contact sequences. The net displacement of a gait can be approximated

by a line integral of the vector field along the gait path [118]. From Stokes’ theorem, the line

integral of a closed-loop path over a vector field can be visualized by a surface integral over

the curl of the vector field (the height function, or often referred to as a constraint curvature

function, CCF [75, 83]). The height function for the short limbed, elongate lizards was

computed in Figure 4.4c (left panel). In summary, with geometric mechanics framework,

we can investigate the seemingly complicated and diverse lizard wave dynamics with the

help of a pre-computed diagram, and analyze locomotion performance by evaluating the

surface integral.

The actual force models of environmental interactions generated by these lizards in

the field are unknown. We chose to approximate them using a model granular medium

(poppy seeds) to numerically calculate the connection vector field [11, 176] (Figure 4.4c).

To bound the uncertainty in ground reaction forces, we used different force models (rate

independent Coulomb friction and rate dependent viscous fluid, S2) and achieved similar

conclusions as in Figure 4.4c. Further, in the derivation of the local connection vector

field, we assumed that the magnitude of limb retraction is 0.17 of the total thrust (body

undulation and limb retraction), a value similar to the relative limb size.

Two stripes emerged in the height function with an oblique intersection, which we

interpreted as corresponding to the coordination for limb movements. To better understand

the meaning of the height function, we recomputed the height function for two hypothetical

lizards: lizards with only fore limbs (Figure 4.4c: middle panel) and lizards with only hind

limbs (Figure 4.4c: right panel). One of these stripes emerged in each height function for

the hypothetical lizards, supporting our hypothesis that each stripe corresponds with the

coordination of one pair of limbs. From the structure of the height function, we inferred

that an elliptical gait path with σ ≈ 0.5 can lead to the greatest displacement, which was

qualitatively the range of σ measured from animal experiments (Figure 4.3b).
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4.1.3 Body weight distribution

From the above analysis, we noticed that the presence of limbs significantly affects the

dynamics of body movements. In fully limbed lizards, almost the entire body weight is

supported by the limbs, whereas in limbless lizards the ventral surface supports the entire

body weight. But for short limbed, elongate lizards, how should the body weight be dis-

tributed between the limbs and the ventral body surface for effective locomotion? We used

geometric mechanics modeling to predict the optimal body weight distribution for short

limbed, elongate lizards.

Quadrupedal locomotors typically utilize two types of limb contact patterns: the di-

agonal couplet and the lateral couplet [17]. In the diagonal couplet, the limbs in the

ground-contact phase are distributed in pairs along the diagonal (FR/HL) or counterdiago-

nal (FL/HR), where the body weight can be stably supported by the limbs (Figure 4.5a). In

the lateral couplet, the limbs in the ground-contact phase are on the same side, which can-

not stably support the entire body weight (Figure 4.5a). Thus, some ventral surface support

is essential for the lateral couplet. We quantified the fraction of body weight supported by

the limbs as γ. There is a limit on the force that the limbs can support without the animals

tipping over (the torque between lateral couplets is greater than the torque from gravity)

in the lateral couplet (Figure 4.5a). The detailed derivation to compute the body weight

distribution can be found in Chapter 4.

We compared three typical limb contact patterns: the pace, the lateral sequence (LS),

and the trot, where leg phase shifts (fraction of a period that the hind limb leads the ipsi-

lateral fore limb) were 0, 0.25, and 0.5 respectively (Figure 4.5b). In the pace, the contact

patterns were entirely lateral couplets; in the trot, the contact patterns were entirely diag-

onal couplets; in the LS, there was a mix of lateral and diagonal couplets. Assuming the

duty factor to be 0.5, the fraction of the lateral couplet in the pace, the LS, and the trot were

1, 0.5, and 0 respectively. Further, the body bending spatial frequency ξ was 1, 0.75, and

0.5 for the pace, LS, and trot, respectively, to enforce the in-phase relationship between the
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fore (hind) limb movements and shoulder (hip) bending.

We conducted numerical simulations to predict the relationship between γ and forward

speed. We studied lizards with short limbs (a hypothetical locomotor with l = 0.05, shorter

limbs than B. muntingkamay), lizards with intermediate limbs (a hypothetical locomotor

with l = 0.17, similar to B. kadwa and B. taylori), and lizards with long limbs (a hypothet-

ical locomotor with l = 0.30, similar to U. scoparia). We observed that for short limbed

lizards, it was optimal to use only body undulation to generate thrust (γ = 0, the pace,

Figure 4.5c.1 ) while intermediate limbed lizards optimally used a hybrid thrust generation

mechanism using both body undulation and limb retraction (γ = 0.4, the LS, Figure 4.5c.2).

Finally, one available optimum for long limbed lizards was to solely use limbs to generate

thrust (γ = 0, the trot, Figure 4.5c.3).

Thus, we showed that limbs are crucial to locomotion by short limbed, elongate lizards

because they contribute to thrust as well as share some body weight with the ventral surface

of the body, which can modulate lifting forces and thus thrust. Depending on the limb size,

our model suggests that lizards should properly distribute their body weight between the

limbs and the ventral surface to generate effective locomotion. Therefore, we predicted that

a traveling wave enhances locomotor performance as the body weight distribution (and thus

thrust generation mechanism) shifts from the limbs to the body.

4.1.4 Terrestrial swimming

In fully limbed lizards, nearly the entire body weight is supported by the limbs. It is thus

commonly believed that at low speeds, lizards use standing wave body bending to coor-

dinate with their limb movements [87, 35, 176]. Our geometric mechanics modeling pre-

dicts that the body weight distribution will affect how much a traveling wave contributes

to thrust. We tested this hypothesis by manipulating the substrate on which fully limbed

lizards moved and investigated whether we could stimulate terrestrial swimming in fully

limbed lizards.
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To modulate the body weight distribution, we used an upward air flow through a granu-

lar medium to control the ground penetration resistance5 [179], maintaining airflow below

the onset of fluidization6 as in [180]. This technique proved useful in previous biological

and robotics studies to evaluate locomotors’ performance on flowable ground of various

penetration resistance [180]. In doing so, the lifting forces at the limbs no longer fully

supported the body weight and therefore some finite resistance lifting force acted on the

ventral surface. When the fully limbed lizards (U. scoparia and S. olivaceus) ran across the

region with reduced ground penetration force, they exhibited features of a traveling wave,

indicated by the propagation of nodes (Figure 4.6). We compared the wave flatness (σ)

and wavelength λ of the body undulations (Figure 4.3b) for lizards on the aerated granu-

lar medium, the loosely packed granular medium, and sandpaper. We found no difference

in σ between sandpaper and the loosely packed medium, but noted a significantly higher

σ on the aerated medium than the loosely packed medium for both species (U. scoparia:

t = 2.94, d f = 11, p = 0.013; S. olivaceus: t = 2.43, d f = 9, p = 0.038), indicating a

higher degree of traveling wave.

4.1.5 Robophysical experiments

In the previous sections, we showed that although thrust generation in lizards results from

a complex coordination of limb and body movements, we could modulate the degree to

which traveling wave undulations were used by modulating the ground penetration resis-

tance. We further explored the relative advantages of traveling waves and standing waves

using a robophysical model where we could precisely control the thrust generation mech-

anism. Our robophysical model has four actuated limbs and two actuated body bending

joints. The body shape of the robot can be uniquely described by the body joint angles:

upper back α1 and lower back α2 (Figure 4.7a, left panel). Two actuated body joints in our

robot are the minimum degrees of freedom needed to enable a traveling wave [114]. We

5Ground penetration resistance is defined as the vertical ground resistance force per depth during intrusion
6Fluidization of granular media characterized by ground penetration resistance dropping to zero
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designed removable belly intrusion plates to control the belly thrust generation mechanics.

We compare the robot with belly thrust (top panel) and the robot without belly thrust (bot-

tom panel) in Figure 4.8a. The shoulder joints control the contact patterns of each limb.

For simplicity, we only considered two combinations of contact patterns: diagonal contact

and the counter-diagonal contact.

As with the geometric mechanics models presented earlier, the gait of the robot could

also be represented by a closed path in its shape space (Figure 4.7a). For simplicity, we con-

sidered the upper back and lower back as oscillating sinusoidal waves: α1(t) = Aα sin (t),

α2(t) = Aα sin (t + ψ), where Aα is the amplitude, ψ is the phase lag between the upper back

and the lower back. A typical traveling wave can be described such that the upper back and

lower back are π/2 out of phase [75]: ψ = π/2, which leads to a circular path in the shape

space (blue curve in Figure 4.7a). A typical standing wave can be described such that the

upper back and lower back are in phase: ψ = 0, which leads to a flattened ellipse (with

eccentricity = 1) in the shape space (green curve in Fig. Figure 4.7a).

We used contact pattern design algorithms to determine the coordination between the

contact pattern and the body movements [155]. The optimal coordination is shown in

Figure 4.7a’s right panel, in agreement with our data on body-limb coordination in the

biological experiments. We then tested the effect of ψ on the robot7. Snapshots of the robot

implementing standing and traveling waves are shown in Figure 4.8a. All experiments were

conducted with at least 5 trials. The experimental results are shown in Figure 4.8b. We

found that traveling waves only increase speed (measured by distance moved per cycle)

in the robot with belly thrust (Pearson’s ρ = 0.883, p = 0.001), whereas there are no

significant differences between standing and traveling waves when robot lacks belly thrust

(Pearson’s ρ = −0.147, p = 0.438).

Geometric mechanics derived height functions helped explain our observations (Fig-

7Note that some regions of shape space contain shapes where parts of the robot collide with other parts
(e.g., upper right corner and lower right corner). The amplitude Aα was chosen such that the gait path does
not pass through the self-collision region
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ure 4.7b, right panel). As in the above analysis of lizard terrestrial swimming, the displace-

ment can be approximated by the surface integral over the gait path in the shape space.

Further, the magnitude of the height function for locomotors without belly thrust (top panel

in Figure 4.7b) is much higher than that with belly thrust (bottom panel in Figure 4.7b),

indicating that a robot without belly thrust should have higher speed than one with belly

thrust. The trends in the theoretical predictions and experimental data agreed, but we posit

that the discrepancy in magnitude (Figure 4.8b) was due to the accumulation of granular

media in front of the robot as it moves, impeding progress [104] as the robot implemented

its gait.

From the structure of the height function, we observed that most of the negative vol-

umes (indicated by black color) are distributed along the narrow diagonal line, which can

be sufficiently bounded by a flattened ellipse. It therefore predicts that the standing wave

body bending can be as good as those of traveling wave body undulations. On the other

hand, the traveling wave body undulation can better coordinate the robot with belly thrust

because the negative volumes are distributed widely around the diagonal line. In the latter

case, a higher surface integral can be achieved for ellipses with increasing ψ (and thus in-

creasing σ). We interpreted our observations on traveling and standing waves by analyzing

the connection vector field in Figure 4.7b (left panel) [181]. The connection vector field in

locomotors with no belly thrust is almost curl-free (S3), which indicates that the contribu-

tion of body bending postures is almost path independent. In other words, the trajectories

of body posture changes (e.g., traveling waves or standing waves) will not matter. On the

other hand, the connection vector field in locomotors with belly trust has non-negligible

curls (S3), which indicates that the trajectory of body bending will affect the locomotor

performance.
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4.2 Discussion and Conclusion

Lizards have evolved a diversity of body forms from fully limbed and short-bodied to limb-

less and elongate. We showed that this diversity in morphology coincides with a similar

diversity in locomotion patterns, ranging from standing wave to traveling wave body un-

dulation. We observed that the degree of body elongation and limb reduction were closely

related to how the body and limb movements were coordinated, indicating an intercon-

nected morphological and locomotor continuum. Using biological experiments, a geomet-

ric theory of locomotion, and robophysical experiments, we showed that the body weight

distribution between the limbs and the body (and therefore, the primary thrust generation

mechanism) plays a crucial role in the locomotor transition from fully limbed to limbless.

Specifically, we found that fully limbed lizards adopted a traveling wave to undergo terres-

trial swimming when the penetration resistance of the substrate was reduced and the belly

contracted the medium. Further, our robophysical experiments revealed that a traveling

wave enhanced locomotor performance only when some thrust was generated by the body.

One of the contributions presented in this chapter was to use geometric mechanics as

a tool to analyze seemingly complicated lizard locomotion. Specifically, we formulated

different body wave dynamics as different paths in the shape space. The diagrammatic

analysis by geometric mechanics then allowed us to visually and intuitively compare dif-

ferent wave dynamics. In this sense, our analysis simplified the laborious calculations,

which would otherwise be required to study the diversity in lizard body wave dynamics. In

addition, the geometric mechanics served as a bridge connecting the biological experiments

and robophysical experiments, allowing us to systematically test gaits and conditions that

are less commonly seen in biological systems.

Limb reduction and body elongation result in a shift in body weight distribution from

the limbs to the body [182]. We showed a traveling wave of body undulation enhanced

locomotor performance during this transition. However, traveling wave body undulation
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requires larger local body curvatures, more complex neuromechanical control (to propa-

gate the node in undulation) [35], and more degrees-of-freedom (at least two DoF) than

standing wave undulation (one DoF). That a fully limbed lizard adopted terrestrial swim-

ming when crossing a medium with low penetration resistance suggests that the degrees-

of-freedom and neuromechanical control necessary for traveling waves may be widespread

among lizards. Our work is the first to show that the coordination between body undulation

and the limbs is a key feature of locomotion within the morphological transition between

fully limbed, short bodied and limbless, elongate forms.

We used Brachymeles as morphologically intermediate species because they have sim-

ilar levels of development of their fore and hind limbs [175, 105]. However, the limbed

species of this genus are secondarily limbed, having re-evolved their limbs from a limbless

ancestor [68]. Therefore, our results should not be interpreted as representing an evolu-

tionary transition in locomotion. Despite this, the geometric mechanics and robophysical

approaches we used are naı̈ve to evolutionary history, and our observations on Brachymeles

and the other, unrelated species that we used, coincide closely with these approaches, sug-

gesting that biomechanics may dictate locomotor patterns in many of these convergent evo-

lutions of snake-like forms. The role of how the evolutionary history affects locomotion

of these forms could be further tested in a clade like Lerista, which has evolved snake-like

forms from limbed, short bodied ancestors [183, 106]. We also expect that our work on

body and limb dynamics in these lizards will inform control of robots that need to traverse

complex terrain.
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CHAPTER 5

A GENERAL LOCOMOTION CONTROL FRAMEWORK FOR

MULTI-LEGGED LOCOMOTORS

Part of this chapter is adapted from a journal article “A general locomotion control frame-

work for multi-legged locomotors.” Bioinspiration & Biomimetics 17.4 (2022): 046015.

My contribution in this project includes (1) designing the experiments, (2) conducting the

numerical analysis, (3) writing the manuscript. Robophysical experiments presented in this

chapter are conducted by Yasemin Ozkan-Aydin.

For multi-segment locomotors, their performance characteristics can depend on the

number of limbs. Quadrupeds are known for their agility [30], whereas hexapods and

myriapods for their stability [184, 4], and limbless robots for their ability to fit into con-

fined spaces [185]. But multi-segment locomotors with increasing complexity and numbers

of degrees-of-freedom (DoF) present challenges in motion coordination, which if not ad-

dressed, may render them unusable. Furthermore, the diversity of shape and form makes

it challenging to transfer control insights gained from one platform onto another. We are

left with limited intuition and physical understanding of how to coordinate the many DoF

in diverse and complex robots to generate effective locomotion.

To address the growing need to analyze multi-segment locomotors with different shapes,

modular control1 strikes a balance between encompassing a variety of shapes while still be-

ing able to precisely control them [187, 188]. Modular control has been successfully used

in serially connected limbless robots where a single control principle can be applied in

robots with different sizes [189]. In contrast, the study of modular control in general multi-

segment locomotors has been limited. The challenge in serially multi-segment locomotors

1A robot control framework where the policy structure is conditioned on the hardware arrangement, and
use just one training process to create a policy that controls a wide variety of designs [186].
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Figure 5.1: Legged and limbless robotic models studied in the paper. a. Quadrupedal
robot [176] b. Hexapod robot c. Myriapod robot with eight pairs of legs d. Sidewinder
robot [134]. All scale bars are 5 cm.

lies not only in designing the stepping patterns of legs, but also in the coordination between

the body and legs. For example, in multi-segment locomotors that combine limbs and body

undulation, if stepping patterns and body undulations are not properly coordinated, limbs

can interfere with each other, resulting in reduced locomotor performance, instability, or

even failure [190, 191].

We would like to develop control schemes to generate effective periodic “self-deformation

patterns”2 for the general class of serially connected legged and limbless robots. Over the

past decades, many techniques (e.g., gait generation [192, 193], central pattern generators

[35, 194], nearest limb synchronization [195], and learning methods [30, 12]) have been

developed, each of which can control some specific robot type [4, 196, 75, 45, 35]. In this

chapter, we take inspiration from gaits of living systems: organisms with diverse numbers

of appendages and body plans exhibit effective locomotion on almost all terrestrial environ-

ments [87, 197, 45] by making/breaking the ground contact with limbs (e.g., salamanders)

2We consider self-deformation patterns to be the relative movement of body and limb elements.
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and bodies (e.g., sidewinders) in conjunction with waves of undulation.

One method used over the last century to understand legged locomotion is a gait classifi-

cation scheme called “Hildebrand diagrams”. In 1965, Hildebrand [17] developed schemes

to study symmetric gaits3 observed in quadrupedal animals (e.g., horses). These gaits have

two key variables: duty factor, the fraction of a period that each leg is on the ground over

a full gait cycle, and lateral phase lag, the fraction of a period that the hind leg leads the

foreleg on the same side. Both key variables are modulated in response to speed changes

in biological systems [89, 90, 91]. Using these gait principles as a reference, a multitude of

algorithms have been developed for quadrupedal robot locomotion, or to explain why living

quadrupeds choose certain gaits [92, 25, 39, 93, 94, 95]. But thus far, these gait principles

have not been applied to robots with more than four appendages. For multi-legged robots,

there is a lack of a systematic gait description framework that allows us to modulate the

balance between locomotion metrics such as speed and stability.

In animals and increasingly in robots, appendages that make direct contact with sub-

strates are not the sole contributor to locomotion. Undulatory body motions play an impor-

tant role in generating propulsive forces in many systems [88, 87, 84, 43]. For undulatory

locomotors, the geometric mechanics community [178, 79, 198, 108, 199, 16, 176, 142]

has developed a gait design framework to prescribe self-deformations of systems immersed

on continuous media, such as 3-link robots, lizards, and snakes [83, 199, 75]; and in dis-

continuous settings, including sidewinders [126, 150]. While mathematically elegant, geo-

metric mechanics has limitations. In particular, it is not directly applicable to systems with

a large number of appendages. Furthermore, despite some recent efforts [83, 107], appli-

cation of geometric mechanics in frictional environments (e.g., rate-independent Coulomb

dry friction) has not been systematically studied. Therefore, we must develop dimension-

ality reduction and physical modelling methods before we can use geometric mechanics to

design gaits for serially connected multi-legged robots.

3In symmetric gaits, the contralateral (left and right pair) of legs are 180◦ out of phase.
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In this chapter, we integrate dimensionality reduction techniques with tools from geo-

metric mechanics to develop locomotion control schemes for serially connected robots. We

first extend the Hildebrand gait classification scheme to prescribe a wide range of contact

patterns (the sequence of making/breaking contacts with environments) using the classical

Hildebrand parameters (duty factor and lateral phase lag). We use the extended Hildebrand

scheme to reduce dimensionality and prescribe body undulation as a traveling wave. In

doing so, we can apply geometric mechanics to coordinate the lateral body undulation and

limb contact patterns. We evaluate gait performance based on speed and static stability,

and investigate the relationship between these metrics and the Hildebrand parameters. We

demonstrate our motion control framework on robots with four (quadrupedal), six (hexa-

pod), 16 (myriapod-like), and even zero (snake-like) limbs (Figure 5.1). Our analysis re-

veals empirical rules to balance the trade-off between speed and static stability, and the

potential benefit of body undulation in multi-legged robot locomotion.

Moreover, by properly coordinating lateral body undulation and leg movement, our

framework provides additional insights to both legged and limbless robots. Specifically,

our framework facilitates centralized control of serially connected multi-legged robots by

introducing waves in both limb contact and lateral body undulation. With properly coor-

dinated lifting and landing body segments, our framework can also improve the mobility

of limbless robots by giving insights into coordination and trade-offs of stability and speed

in serially connected multi-legged robots. In this way, our framework offers the potential

to modulate gaits for different tasks by switching between fast gaits and stable gaits. Fur-

ther, we show that our scheme can generate control hypotheses for diverse living systems

including salamanders and centipedes, thereby offering new insights on the functional role

of body-leg coordination from a biomechanical and robophysical perspective.
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Figure 5.2: Modelling multi-legged systems and sidewinders. The contact patterns of
some well-known gaits: (a.1) lateral sequence walking, (a.2) trotting, and (a.3) pacing in
quadrupeds; (b) alternating tripod in hexapods, (c.1) retrograde-wave and (cc.2) direct-
wave gaits in myriapods, and (d) sidewinding in snake-like limbless robots,. For each
system, these diagrams show the variables included in the model, such as leg joint angles
θN , and body joint angles α(N−1), where N is the number of leg pairs for legged systems or
joint sets in the sidewinder. In the contact sequence diagrams, filled blocks represent stance
phase, and open blocks represent swing phase. (e) A general contact pattern table. The blue
arrow represents the duty factor D. The red arrow represents the lateral phase lag, Φlat. τ
denote gait phase. (f) Hildebrand plots with two parameters D and Φlat to characterize
the motions in the vertical plane. We labeled the region associated with walking, running,
lateral sequence (LS) and diagonal sequence (DS) gaits.
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5.1 Hildebrand Gait Prescription

5.1.1 Related work

In the Hildebrand gait formulation [17], symmetric quadrupedal gaits are categorized by

two parameters: The duty factor represents the fraction over a gait period that each leg

is on the ground, and the lateral phase lag represents the fraction over a gait period that

the hind leg leads the foreleg on the same side. There are three major assumptions in the

Hildebrand symmetric gait family: (1) the duty factor of each leg is the same, (2) the pairs

of contralateral legs are 180◦ out of phase, and (3) the lateral phase lag is the same for left

and right legs.

We use a binary variable c to represent the contact state of a leg, where c = 1 represents

the stance phase and c = 0 represents the swing phase. The contact pattern of symmetric

quadrupedal gaits can be written as

cFL(φc) =


1, if mod(φc, 2π) < 2πD

0, otherwise

cFR(φc) = cFL(φc + π)

cHL(φc) = cFL(φc + 2πΦlat)

cHR(φc) = cFL(φc + 2πΦlat + π) (5.1)

where Φlat denotes the lateral phase lag, D the duty factor, cFL(φc), cFR(φc), cHL(φc), and

cHR(φc) the contact state of the fore-right (FR), fore-left (FL), hind-left (HL), and hind-right

(HR) limbs at the gait phase φc (defined in radians with a period of 2π), respectively. Note

that in contrast to φc, the lateral phase lag Φlat represents the fraction of a cycle, so Φlat

has a period of 1. Many common quadrupedal gaits can be described using the Hildebrand

formula. For example, the lateral sequence walking gait (Figure 5.2) can be described by

D = 0.75, Φlat = 0.25. Plotting a diagram of the stance/swing phases of the feet from
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just these two parameters shows that in this gait, each leg is lifted for a quarter of a cycle,

only one leg is lifted at any given instant, and the leg lifting sequence follows FR, HR, FL,

and HR. The trot gait (Figure 5.2) can be described by D = 0.5, Φlat = 0.5, where the FR

and HL are coupled in phase, as are the FL and HR pair. Another quadrupedal gait, the

pace gait (Figure 5.2), can be described by D = 0.5, Φlat = 0, where the FR and HR are

coupled in phase, as are the FL and HL pair. Note that asymmetric quadrupedal gaits, such

as bounding and galloping, exist but cannot be prescribed by the same gait classification

methods [97].

5.1.2 Prescription of Contact Patterns for Arbitrary Robots

The first two assumptions of the Hildebrand symmetric gait family generally can hold

for non-quadrupedal systems with discrete contacts. To expand the third assumption to

a broader range of locomotors, we can generalize the definition of the lateral phase lag to

be the phase lag between two consecutive legs (instead of only the fore and hind legs) on

the same side. Then, the contact function of a multi-legged system can be written as:

cl(φc, 1) =


1, if mod(φc, 2π) < 2πD

0, otherwise

cl(φc, i) = cl(φc + 2π(i − 1)Φlat, 1)

cr(φc, i) = cl(φc + π, i), (5.2)

where cl(φc, i) (and cr(φc, i)) denotes the contact state of i-th leg on the left (and the right)

at gait phase φc, i ∈ {1, ...N} for 2N-legged systems.

Many common multi-legged gaits can also be described by this extended Hildebrand

formulation. For example, many hexapod robots and animals use the alternating tripod gait

(Figure 5.2), which couples FL, MR (middle-right), and HL in phase, and couples the FR,

ML, and HR similarly. The alternating tripod gait for a hexapod (N = 3) can be described
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by D = 0.5 and Φlat = 0.5.

Myriapod gaits can be classified into direct waves and retrograde waves of limb contact

[200] (Figure 5.2). Typically, for gaits with Φlat < 0.5, the phase of the hind leg is ahead

of the phase of its immediate fore leg. In other words, the legs move in a wave propagating

from tail to head, which we call a diagonal sequence gait, and which corresponds to direct

waves in myriapods. On the other hand, when Φlat > 0.5, the phase of the hind leg is behind

the phase of its immediate fore leg. Therefore, the leg wave propagates from head to tail,

which we call a lateral sequence gait, and which corresponds to retrograde waves in myri-

apods. Interestingly, on level ground, animals with four legs (e.g., lizards and salamanders)

more commonly use lateral sequence gaits [17, 96, 89, 201], and animals with more legs

(e.g., centipedes) use both diagonal sequence and lateral sequence gaits [43, 202]. As we

will discuss later, we hypothesize that this difference in gait choice is a result of a balance

between speed and stability.

Our proposed gait formulation can also include systems without legs, e.g., sidewinding

limbless robots. The seemingly complex mode of limbless locomotion, sidewinding, can be

prescribed as the superposition of two waves: lateral and vertical body waves [16]. Similar

to legged systems, sidewinders can regulate their contacts by modulating the vertical trav-

eling wave [16]. The typical contact pattern of a sidewinder is shown in Figure 5.2. Note

that the contact pattern during sidewinding locomotion is the same as one side (either left

or right) of the contact pattern of a legged system. As such, we prescribe the contact state

of the i-th link of the sidewinding system as c(φc, i) = cl(φc, i), where cl(φc, i) is defined in

Equation 5.2

5.1.3 Prescription of Leg Shoulder Movement

Legs generate self-propulsion by protracting during the stance phase to make contact with

the environment, and retracting during the swing phase to break contact. That is, the leg

moves from the anterior to the posterior end during the stance phase and moves from the
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posterior to anterior end during the swing phase. With this in mind, we use a piece-wise

sinusoidal function to prescribe the anterior/posterior excursion angles (θ, Figure 5.2) for a

given contact phase (φc) defined earlier,

θl(φc, 1) =


Aθ cos ( φc

2D ), if mod(φc, 2π) < 2πD

−Aθ cos (φc−2πD
2(1−D) ), otherwise,

θl(φc, i) = θl(φc + 2π(i − 1)Φlat, 1)

θr(φc, i) = θl(φc + π, i) (5.3)

where Aθ is the shoulder angle amplitude, θl(φc, i) and θr(φc, i) denote the leg shoulder angle

of i-th left and right leg at contact phase φc, respectively. Note that the shoulder angle is

maximum (θ = Aθ) at the transition from swing to stance phase, and is minimum (θ = −Aθ)

at the transition from stance to swing phase. Figure 5.3 shows an example of a hexapod

gait under this equation.

5.1.4 Numerical Prediction on Speed and Stability

We numerically calculated the speed of various gaits over a range of duty factors and lat-

eral phase lags for quadrupedal, hexapod, myriapod, and sidewinder systems ([199] and

Materials and Methods). Figure 5.3 and Figure 5.4 graphically depict the process, and

the Materials and Methods section provides details. To explicitly show the effect of limb-

substrate contact on speed, we fixed the swing angle Aθ when comparing the displacements

of different gait parameters. Note that in this section, there is no body undulation in any of

the gaits.

The numerical predictions of body speed, measured in units of body length per cycle

(BLC), are plotted in Figure 5.5 (middle column). We observe that modulating the lateral

phase lag does not significantly affect body speed. This observation becomes more apparent
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Figure 5.3: An example of gait design for a hexapod using Hildebrand gait principles
and geometric mechanics. From the parameter space (a.1), we select the duty factor D
and lateral phase lag Φlat. We prescribe the contact by its phase φc (a.2), and the lateral
body undulation by its phase φb (a.3). (b) The gait parameters determine the equations
of motion, which in turn are used to derive a height function, and design a gait. The gait
path (the purple curve) shown maximizes the volume enclosed in the lower right corner
(in solid shadow) minus the volume enclosed in the upper left corner (in dashed shadow).
The left panel is the toroidal visualization of the height function, the right panel is the
Euclidean visualization of the height function. (c) Typical configurations in which the
robot is statically stable (c.1), statically unstable (c.2) and unstable (c.3)

for systems with more legs. In the myriapod system, the step displacement4, characterized

by displacement traveled per cycle, is almost independent of the lateral phase lag and is

uniquely determined by the duty factor.

In addition to measuring body speed, we utilize other metrics to quantify gait stability.

For instance, the contact pattern of quasi-static gaits (e.g., quadrupedal walking gaits) needs

4The absolute speed v is related to the step displacement d by v = f d, where f is the step frequency.
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Figure 5.4: Snapshots of the numerical simulation showing examples of two prescribed
myriapod gaits. (a) statically unstable, Φlat = 0.92, D = 0.5 and (b) statically stable
Φlat = 0.5, D = 0.5. We compared the gait with straight fixed body (top) and gaits with
coordinated body undulation (bottom). The displacement, in body length (BL) per cycle,
are labeled with a red arrow. The black/white circles show the stance/swing phase of the
feet.

significantly fewer sensors and less feedback control efforts to be stably implemented on

robots than the contact pattern of dynamically stable gaits (e.g., bouncing gaits) [92]. In

this paper, we separate robots’ configurations into three groups (1) statically stable, (2)

statically unstable, and (3) unstable. In the statically stable configurations, the center of

mass is bounded within the supporting polygon (Figure 5.3c.1). In the statically unstable

configurations, often produced by unstable diagonal-couplet gaits [96], the center of mass

is outside the supporting polygon but there is at least one leg in stance phase on the left
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and the right side (Figure 5.3c.2). Despite not being statically stable, the statically unstable

configurations can be made dynamically stable when the speed increases [89] or when

combined with a low-level controller [93, 196, 94]. In the unstable configurations, also

known as unstable lateral-couplet gaits [96], either the left or the right side of the legs

are all in swing phase (Figure 5.3c.3), which makes such gaits more difficult to stabilize5.

We define a static stability metric as the fraction of the gait cycle spent in statically stable

configurations. Note that this measure only applies to the gaits with statically stable and

statically unstable configurations; the appearance of unstable configurations will contradict

our assumptions. Therefore, we define the measure of static stability to be 0 if there exists

unstable configurations in the gait.

We numerically calculated the static stability for the quadrupedal, hexapod, and myri-

apod systems in Figure 5.5. As expected, when comparing the same gait parameters (duty

factor D and phase lag Φlat) among different systems, the static stability increases with in-

creasing number of legs. Similarly, an increase in duty factor results in an increase in static

stability. Moreover, we observe that the diagonal sequence (Φlat > 0.5) is in general less

stable than the lateral sequence (Φlat < 0.5). Thus, most diagonal sequence gaits are stable

only for systems with many legs, such as myriapods.

Surprisingly, modulating the lateral phase lag only affects the static stability, while body

speed is not correlated with the lateral phase lag. On the other hand, animals including

myriapods [43] and quadrupedal lizards [87, 203, 204] have been observed to modulate

the lateral phase lag as speed increases. In other words, in biological systems, the loss of

static stability is compensated by a gain in speed while our findings indicate that speed is

independent of lateral phase lag modulation. We hypothesize that this discrepancy is due

to differences in body-limb coordination, which we consider in later sections.

5in the case of limbless sidewinding, unstable configurations are defined as those with no contact, see S4
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Figure 5.5: Trade-off between speed and static stability in quadruped, hexapod, myr-
iapod, and sidewinding systems. Theoretically predicted static stability (left column),
displacement in body lengths per cycle (BLC) with fixed straight back (middle column),
and displacement with coordinated lateral body undulation (right column) over the space
of Hildebrand parameters D and Φlat, for the quadruped (a), hexapod (b), myriapod (c) and
sidewinder (d). White space in all panels represents the regions where unstable configura-
tions exist (Figure 5.3c.3); we defined static stability to be zero in those regions. Note that
static stability of the quadruped, hexapod and myriapod is numerically calculated for con-
figurations with a straight backbone. The static stability of the sidewinder is numerically
calculated for gaits with coordinated lateral body undulation. Note that we only consider
gaits where unstable configurations (Figure 5.3c.3) do not occur. Axes in each sub-figure
are identical. The color-maps in each column are identical.

5.1.5 Testing speed and stability predictions in experiments

Using robophysical models, we tested the locomotor performance of gaits with a range of

lateral phase lags for quadruped, hexapod, myriapod, and sidewinder systems (Figure 5.6).

Hexapod, myriapod, and sidewinder experiments were performed on hard ground. Since

the quadrupedal systems in general are less statically stable, we posited that we would

predominantly observe the effect of stability rather than the kinematics of gaits. Thus,

for quadrupeds we tested performance on a granular medium (here, poppy seeds) since
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Figure 5.5: Trade-off between speed and static stability in quadruped, hexapod, myr-
iapod, and sidewinding systems. Theoretically predicted static stability (left column),
displacement in body lengths per cycle (BLC) with fixed straight back (middle column),
and displacement with coordinated lateral body undulation (right column) over the space
of Hildebrand parameters D and Φlat, for the myriapod (c) and sidewinder (d).

the body is in contact with the substrate, ensuring static stability. The duty factor for

the hexapod, myriapod and the sidewinder systems were fixed to D = 0.5, and the duty

factor for the quadrupedal system was set to D = 0.75 for reference (see the Materials

and Methods for additional experiment details). Note that in this section, there is no body

undulation in any of the gaits.

We measured gait speed via the number of body lengths traveled per gait cycle. Inter-

estingly, we observe for statically stable gaits, there is good agreement between the theory

and experiments. Since our predictions are based on 2D calculations, they cannot capture

3D unstable behaviors, such as tipping over and falling to the ground. Therefore, we hy-

pothesize that the discrepancy between our hexapod theory and experiments is caused by

static instability. Note that our experiments on quadrupeds were performed on poppy seeds,

where the ventral surface often was in contact with the environment. In our myriapod ex-
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Figure 5.6: Verification of the theoretically generated gaits in the robotic models (left
column) Gait cycle of each robot (a: quadruped, D = 0.75 and Φlat = 0.5; b: hexapod,
D = 0.5 and Φlat = 0.3). The arrows show the direction of locomotion and T is one gait
cycle. The center of mass trajectories (yellow) are given in the last snapshots. (Middle
column) The comparison of simulations (solid curves) and experimental data (curves with
error bar) of displacement over time for each system. Two gaits with body undulation co-
ordinated with geometric mechanics (GM) are illustrated for each system. (Right column)
The relationship between the lateral phase lag, Φlat, and the displacement for the same sys-
tem either with fixed straight backbone (red) or with coordinated lateral body undulation
(blue). The color scheme and axes in (b, c, d) are the same as in (a).

periments, configurations tend to be mostly statically stable given their large number of

legs. Therefore, the effect of static stability was only critical in our hexapod experiments.

To test our hypothesis that static stability is the source of the theory-experiment dis-

crepancy, we characterized unstable behaviors by the roll and pitch of the robots. We

recorded the body pitch and roll during the course of the robophysical hexapod gaits. The

experimental data for these experiments over three gait settings (D = 0.5 Φlat = 0.15,

D = 0.5 Φlat = 0.45, D = 0.5 Φlat = 0.65) is compared in Figure 5.7a. We observed

that only the statically stable hexapod gait (Φlat = 0.45) has both low pitch and low roll.

The unstable hexapod gaits have either high roll angle (Φlat = 0.15) or high pitch angle
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Figure 5.6: Verification of the theoretically generated gaits in the robotic models (left
column) Gait cycle of each robot (c: myriapod, D = 0.5, Φlat = 0.1; d: sidewinder). The
color scheme and axes in (b, c, d) are the same as in (a).

(Φlat = 0.65). We calculated the average pitch and roll for each gait, and compared them

with the numerical predictions of static stability. We observe that the range of low average

pitch and roll overlaps with the range of statically stable gaits. When the hexapod body is in

configurations with low roll and low pitch, the experimental data agrees with the theoretical

predictions.

5.2 Body-leg Coordination in Hildebrand Gait Formulation

5.2.1 Geometric Mechanics to Coordinate Lateral Body Undulation

As discussed in the previous sections, speed is not correlated with the lateral phase lag

when there is no body undulation. However, previous experimental gait studies with lizards

and myriapods [43, 87] have found that modulation of lateral phase lag is associated with

changes in the lateral body undulation. For example, lizards increase the amplitude of their

lateral body undulation during transitions from lateral sequence walking to trotting or even
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Figure 5.7: The effect of static stability on locomotion performance. In the left column
(a.), the body roll and pitch over the course of the hexapod experiments are recorded as a
function of gait fraction. Three gaits (D = 0.5, Φlat = 0.65 in purple; D = 0.5, Φlat = 0.45
in red; and D = 0.5, Φlat = 0.15 in yellow) in Hildebrand gait space are compared. In the
middle row, we show the theoretical prediction of static stability as a function of lateral
phase lag. In the bottom row, we show the average±SD experimental body roll and pitch as
a function of the lateral phase lag. In the right column, (b.), a similar analysis is performed
for the sidewinder experiments. The top-right shows the trajectory of body motion over six
gait cycles, where the color scale represents the evolution of time. We marked the initial
position of the robot in the black circles. In the middle row, we showed the theoretical
prediction of static stability as a function of lateral phase lag. In the bottom panel of Fig
7b, The body yaw angle is recorded as a function of lateral phase lag.
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Figure 5.8: Physical intuition in body-leg coordination (a) The relationship between Φlat,
lateral phase lag, and φbc, the optimal phasing between body and leg. φbc is numerically
calculated from a height function (Figure 5.3). The empirical data for the hexapod (blue
circle) and myriapod (red circle) are compared. (b) Consider a quadrupedal “sub-unit”
consisting of two pairs of legs and one body-joint. The Hildebrand prescription allows us
to write the phase relation of each leg and the body bending with respect to the fore right
leg (FR). (c) To maximize locomotive performance with body-bending, at FL (fore left)
and HR (hind right) touchdown, the body is bent clockwise; and at FR (fore right) and
HL (hind left) touchdown, the body is bent counterclockwise [176]. Given this empirical
relation φbc ∼ (Φlat + 1/2)π, the HL/FR and HR/FL touchdown phases are symmetrically
distributed around the peaks of the bending trajectory, which we use to coordinate body-
bending with foot contacts.

diagonal sequence gaits [87, 201, 203, 204, 91, 90]. Similarly, myriapods change their leg

wave pattern (lateral phase lag) at high speeds while simultaneously increasing lateral body

undulation amplitude [43]. Accordingly, we hypothesize that modulating the lateral phase

lag can regulate the balance between speed and stability if properly coordinated with lateral

body undulation.

To account for these observations, we introduce the lateral body undulation by propa-

gating a wave along the backbone from head to tail [205]. Note that we only consider the

format of traveling wave body undulation here; relative advantages of standing and travel-

ing waves are discussed in [206]; and for quadrupeds, the number of body undulation DoF

drops to 1, where the format of traveling wave body undulation essentially reduces to a
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Figure 5.9: Analysis of salamander (Salamandra salamandra) locomotion using the
Hildebrand framework and geometric mechanics (a.1) Estimation of the duty factor, D,
and lateral phase lag, Φlat from animal joint angle trajectories. Curves with error bars are
the average leg shoulder (hip) angle over three cycles. The lighter-color solid curves are
piece-wise linear sinusoidal functions (defined in Equation 5.3) fit to the tracked data. (a.2)
Estimated D and Φlat for animal locomotion under different speeds. (b.1) Estimating φbc

from body bending angle trajectories. (b.2) Relationship between φbc and speed, measured
in body lengths (BL) per cycle. The prediction made with geometric mechanics is shown
as dashed curves. The measured salamander data are shown as crosses in the same color as
their corresponding prediction curves, where the length and height of the crosses denote the
standard deviation of the measured animal data. The scale bar near the salamander photo
indicates 30 mm.

standing wave. The body undulation wave is

α(φb, i) = Aαcos(φb − 2π(i − 1)Φb
lat), (5.4)

where α(φb, i) is the angle of i-th body joint at phase φb, 2πΦb
lat is the phase lag between
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Figure 5.10: Analysis of centipede (Scolopendra polymorpha) locomotion using the
Hildebrand framework and geometric mechanics (a.1) Estimation of the duty factor,
D, and lateral phase lag, Φlat from animal joint trajectories. The colorbar here denotes the
shoulder joint angle for each leg on right-hand side. (a.2) Estimated gait parameters D and
Φlat for the centipede’s locomotion. (b.1) Estimating φbc from body phase and leg phase.
(b.2) Relationship between φbc and the speed, measured in body lengths per cycle. The pre-
diction made with geometric mechanics is shown as solid curves. The measured centipede
data is presented by crosses in the same color as their corresponding prediction curves,
where the length and height of the crosses denote the standard deviation of the measured
animal data. The scale bar near the centipede photo indicates 30mm.

consecutive joints. For simplicity, we assume that the spatial frequency of the body undu-

lation wave and the contact pattern wave are the same6, i.e. Φb
lat = Φlat. In this way, gaits of

6In most biological and robotics systems, the body undulation and the contact waves in general share the
same frequency. In some cases, such as Sinus Lifting in snakes [146], the body undulation and the contact
waves differ.

162



multi-legged locomotors by superposition of a body wave and a leg wave can be described

as the phase of contact, φc, and the phase of lateral body undulation φb. These two inde-

pendent phase variables represent a reduced shape space (see Materials and Methods) on a

two-dimensional torus on which we can apply geometric mechanics gait design techniques

to optimize body-limb coordination (Materials and Methods).

The geometric mechanics gait design framework [199, 142, 207] separates the config-

uration space of a system into two spaces: the position space and the shape space. The

position space represents the location (position and orientation) of a system relative to the

world frame, while the shape space represents the internal shape (joint angles) of the sys-

tem. The geometric mechanics framework then establishes a functional relationship to map

velocities in the shape space into velocities in the position space; this functional relation-

ship is often called a local connection. The curl of the local connection, which we call a

“height function” can then be used to design, analyze, and optimize gaits.

Using geometric mechanics tools, we derived height functions and designed gaits (Ma-

terials and Methods). Figure 5.3 and Figure 5.4 show examples of coordination between

the lateral body undulation and contact phase derived with geometric mechanics. We also

provided an example of coordinating the body undulation and contact pattern for sidewind-

ing in S4. Once we design a coordination pattern φc → φb in the reduced shape space, we

can convert that pattern into both a contact pattern and body undulation.

We quantified the body-leg coordination by its phase lag: φbc : φc−φb. Interestingly, we

observed that the empirically calculated φbc has a linear relationship with Φlat (Figure 5.8).

We next seek the physical intuition behind this relationship. We first decomposed the body-

leg coordination to a single “sub-unit,” which we define as two pairs of legs and one body

joint. Our Hildebrand-based approach then allows us to prescribe the phase of each foot and

the body bending. Previous work [176] found that at the optimal body-leg coordination,

the body is bent clockwise (respectively, counterclockwise) when the HL/FR (respectively,

HR/FL) feet land. Deviation from this coordination can lead to a loss in speed. We can
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encode this relation by φbc ∼ (Φlat + 1/2)π. Then, the FR and HL foot touch-down are

symmetrically distributed around the peak of the clockwise body bending angle, and the

touch-down of FL and HR feet are symmetrically distributed around the peak of counter-

clockwise body bending angle. Via this relationship, we posit that despite the seemingly

complicated whole-body motion, the optimal body-leg coordination is achieved by locally

coordinating each sub-unit of two legs and a body joint.

5.2.2 Numerical Prediction of Speed and Stability

We used a numerical simulation to predict the gait speed and stability at a range of lat-

eral phase lags and duty factors for the quadrupedal, hexapod, myriapod and sidewinder

systems. We observed that modulating the lateral phase lag can regulate the balance be-

tween speed and stability if properly coordinated with lateral body undulation. The loss of

static stability is compensated by a gain in speed only when the body and limb phases are

properly coordinated. These observations were derived by plotting gait speed and stabil-

ity against the extended Hildebrand gait parameters, shown in Figure 5.5. The addition of

body undulation slightly changes the static stability, as depicted in S1.

5.2.3 Testing predictions for body-leg coordination in experiments

We tested the locomotion performance of systems with discrete contact and coordinated lat-

eral body undulation using robophysical models (Materials and Methods for details). We

recorded the displacement over time for two gaits in each system (Figure 5.6). Our numer-

ical predictions quantitatively agree with experiments not only in the average displacement

per gait cycle, but also in the time evolution of the displacement.

The only notable theory-experiment discrepancies occur in the hexapod and the sidewinder

systems. As discussed earlier, static instability can lead to theory-experiment discrep-

ancy for hexapods and sidewinders due to the planar assumptions made in our theoretical

model. To investigate this discrepancy further, we studied the effect of static instability
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on sidewinders and observed that some gaits result in significant yaw (Figure 5.7b), such

that the robot’s path deviates from the desired straight-line course. Comparing the net yaw

change per gait cycle with the numerical predictions of static stability reveals that signif-

icant yaw only occurred in gaits with low static stability. As static stability increases (for

sidewinding, stability increases with the lateral phase lag), the unmodelled turning van-

ished.

5.3 Body-leg Coordination in Biological Locomotors

Symmetric gaits in quadrupedal animals can be categorized using Hildebrand analysis [17,

96]. Recent work revealed that a geometric mechanics framework predicted optimal body-

leg coordination for fire salamanders (Salamandra salamandra) [208, 176]. However, the

means by which salamanders modify their leg movements and body-leg coordination in

response to speed changes was previously unstudied. In this work, we recorded fire sala-

manders moving on sand. Five individuals were recorded, and their foot placement and

backbone positions tracked. For simplicity, we only consider the body movement between

the shoulder and the hip, for which salamanders exhibit a standing wave [209]. From the

tracking data we measured gait parameters such as duty factor, lateral phase lag, amplitude

of body bending, and amplitude of leg movements. We then used geometric mechanics

to predict the optimal body-leg coordination for salamanders walking at various speeds.

We observed quantitative agreement between the geometric mechanics prediction and the

biological measurements (Figure 5.9).

Beyond quadrupedal animals, our methods can also be applied to study animals with

various numbers of legs and backbone segments. Centipedes are known to be fast-moving

locomotors: certain centipedes are the fastest-running terrestrial arthropods [43, 202].

Given their high speeds, past works have often used dynamic models to analyze their loco-

motion [210, 211]. We hypothesized that despite their high speeds, centipede locomotion

could be analyzed with our quasi-static geometric model because of the high damping from
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many leg contacts. To test this hypothesis, we recorded videos of centipedes (Scolopen-

dra polymorpha) moving at different speeds. Three individuals were recorded, their leg

and body positions tracked, and their gait parameters estimated. We then used geometric

mechanics to predict the optimal body-leg coordination. We once again observed quantita-

tive agreement between geometric mechanics predictions and the biological measurements

(Figure 5.10).

5.4 Discussion and Conclusion

5.4.1 Principles of gait modulation

In this paper, we developed a general gait design framework for a broad class of locomo-

tors: multi-legged robots (with an arbitrary number of pairs of legs) with an articulated

backbone, including limbless sidewinding. Specifically, we extended the Hildebrand gait

formulation [17, 96], originally used to categorize symmetric quadrupedal gaits, and com-

bined it with modern geometric mechanics tools to investigate optimal leg-body coordina-

tion. We showed that the symmetry in Hildebrand quadrupedal gaits is conserved for other

locomotors. The framework is not only simple enough to enable physical interpretation

of the gait parameters; but also covers a range of potentially interesting gaits, offering a

scheme to modulate gaits in a diversity of robot shapes. These properties enable our frame-

work to link well-studied locomoting systems like quadrupeds and hexapods with less-

studied systems like myriapods, generating new opportunities to transfer insights among

and compare between different locomoting morphologies. Given a new robot with arbitrary

pairs of legs or without legs, our framework can immediately provide effective open-loop

gaits, which can serve as the basis for closed-loop adaptive or data-driven/learning-based

control algorithms.

Our gait identification and dimensionality reduction principles reveal insights into proper

contact scheduling. These principles could serve as a starting point for additional layers

within in a robot’s control architecture or even for mechanical design iterations. [212]
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found that while direct application of gait design tools can prove ineffective in rough ter-

rain, adding passive leg compliance can greatly improve performance in this environment.

Our proposed framework can not only simplify the gait design and modulation process for

robots with different morphologies in various homogeneous environments, but can also be

used to test hypotheses and therefore give novel insights into the control principles behind

gaits in biological systems.

Finally, our framework facilitated testing hypotheses about the role of body undulation

in multi-legged systems. These observations can act as guidelines in the control of a variety

of legged robots. For example, in RHex [4], a hexapod with flexible legs attached to a rigid

body, the duty factor is the only tuning parameter that can regulate the balance between

speed and stability. In other cases, such as in [213], a segmented robot with a flexible

backbone and contralateral legs mechanically coupled to have opposite contact states (and

therefore, to have a fixed duty factor D = 0.5), the lateral phase lag acts as the salient

parameter to balance between speed and stability when properly coordinated with lateral

body undulation. Additionally, body undulation also plays an important role in turning

motions. Although not explicitly studied in this work, our framework can also be used to

investigate the coordination between body movement and contact patterns during turning

motions in both legged [176] and limbless [107] systems.

5.4.2 Insights from robotics to biological systems

We also demonstrated that once two gait parameters (duty factor and lateral phase lag) are

specified, the gait can be prescribed and can then be analyzed with geometric tools. To

explore gait tuning principles for locomoting systems, we quantitatively investigated the

effect of modulating gait parameters on locomotor performance. As shown in Figure 5.6,

we found that in robots with a fixed straight backbone, the displacement per gait cycle is

nearly invariant to the changes in the lateral phase lag, Φlat. On the other hand, in gaits

where body undulation is properly coordinated with leg motions, Φlat affects the displace-
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ment. This seemingly counter-intuitive observation can help us develop hypotheses about

gait modulation principles.

In addition to these robotics applications, our proposed control principles can also offer

explanatory power to some hypotheses about biological locomotion. For example, bio-

logical myriapods (Chilopoda) can be categorized into direct-wave myriapods [43] and

retrograde-wave myriapods [43]). Direct-wave myriapods propagate their leg contact wave

from tail to head (corresponding to Φlat < 0.5 in our modified Hildebrand formulation)

while retrograde-wave myriapods propagate their wave from head to tail (Φlat > 0.5) [200].

Interestingly, Manton [43] showed that there is no significant lateral body undulation in

direct-wave myriapods regardless of their speed; instead, the only significant gait modu-

lation at high speed is a decrease in duty factor. On the other hand, gait modulation in

retrograde-wave myriapods is much more complicated: they not only decrease the duty

factor, but also increase the lateral phase lag. More importantly, they exhibit characteristic

lateral body undulation at high speeds [43, 202]. This observation is consistent with the

principles discovered via our gait analysis methods, where we found that tuning the lateral

phase lag can only improve the speed if accompanied with properly coordinated lateral

body undulation.

5.5 Appendix

5.5.1 Numerical Derivation of Local Connection Matrix

Force and torque balance in the vertical plane

In Equation 5.2, we prescribed the contact pattern by its phase, φ1. However, the support-

ing force (against gravity) is not uniformly distributed among all the legs in stance phase,

especially when the robot locomotes on the flat hard ground. In order to precisely model

the friction, we need to calculate the supporting force distribution among legs.

As shown in Figure 5.11, we labeled the legs in stance phase with numbers. The lo-
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cation of each leg is represented as [xi yi] with respect to a pre-chosen coordinate. The

supporting force on each leg is Ni. Assuming that all the legs are elastic bodies, the sup-

porting force on each leg can be calculated as:

Ni =


KLεi, if Kεi ≤ 0

0, otherwise
(5.5)

where εi is the strain at leg i in stance phase; K is the spring constant and L is the leg length.

As suggested in [214], it is reasonable to assume that the robot is a toppling table. In other

words, we assume that only the legs are deformable bodies whereas the deformation in the

ground substrate and in the main robot body is negligible. In this way, the distance of the

body plane and the ground plane at location [xi yi] in a fixed reference coordinate can be

expressed as:

Li = [xi yi 1]


e1

e2

d

 (5.6)

where e1 and e2 are the tilt angle in the x and y directions and d is the constant offset. Note

that the distance of body plane and the ground plane can relate to the strain as:

εi = (Li − L)/L = [xi yi 1]


e1/L

e2/L

(d − L)/L

 = [xi yi 1]


e′1
e′2
d′

 . (5.7)

Therefore, the collection of the supporting forces of all legs is:

ε =


ε1

ε2

...

εn


=


x1 y1 1

x2 y2 1

... ... ...

xn yn 1




e′1
e′2
d′

 , (5.8)
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for simplicity of notation, we define:

S =


x1 y1 1

x2 y2 1

... ... ...

xn yn 1


, ε = S


e′1
e′2
d′

 .

Next, the force and torque balance in the vertical plane can be written as:


xc

yc

1

 mg =


x1 x2 ... xn

y1 y2 ... yn

1 1 ... 1




N1

N2

...

Nn


, (5.9)

where [xc yc] is the coordinate of the center of mass. With Equation 5.5-Equation 5.8, we

can numerically calculate the supporting force distribution on legs in stance phase N. Note

that in the simple linear case,

N = −S (S T S )−1


xc

yc

1

 mg, (5.10)

is the solution to (Equation 5.5-Equation 5.8), if the obtained N < 0 (element-wise).

Force and torque balance in the lateral plane

In this section, we will briefly describe the steps to numerically calculate the local connec-

tion matrix. We refer readers to [75, 208] for detailed derivation.

The ground reaction force (GRF) experienced by the robot is the sum of the GRF expe-

rienced by each body segment in stance phase, as show in example in Figure 5.11. In each

body segment in contact with substrate (ci = 1), the GRF, fi, is directed related to its body

velocity (ξi) (see Figure 5.11). In the isotropic environments, the direction of fi is solely

determined by the direction of ξi. For example, in the isotropic Coulomb friction model,
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the GRF can be related to the body velocity by:

fi = µNi
ξi

|ξi|
(5.11)

where µ is the friction coefficient and Ni is its supporting force.

In the anisotropic environments, the direction of GRF is also related to the orientation

of the limb. Specifically, we choose the x axis to be along the direction parallel to the limb

orientation, and the y axis to be perpendicular to the direction of the limb orientation. We

then decompose fi and ξi into x and y directions as:

fi =

 f i
x 0

0 f i
y


x̂

ŷ

 , ξi =

ξi
x 0

0 ξi
y


x̂

ŷ

 . (5.12)

Figure 5.11: Supporting force distribution (a) An example of the myriapod model. In
this example, the robot is supported by eight legs. For a leg i, it provides supporting force
Ni. Its location is labeled as [xi yi]. The location of center of mass is labeled [xc yc]. (b)
The robots with hybrid contact with environments. The body segments in stance phase are
labelled by red circle. (c) The illustration of the force-velocity relationship. (Left) The
vector of body velocity (ξ) and GRF f on the body segment in contact with environments
(red cube). (Right) The decomposition of body velocity and GRF in the direction of body
orientation.

We showed examples of such decomposition in Figure 5.11. In the anisotropic Coulomb

friction model [215, 216], the x, y component of the GRF and the body velocity can be

related as:  f i
x

f i
y

 =
Ni

|ξi|

µx 0

0 µy


ξi

x

ξi
y

 (5.13)
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We estimated µx/µy ∼ 0.7 from experiments on the robophysical model. In the poppy

seed RFT model [104], the x, y component of the GRF and the body velocity can be related

as:

fy = C sin (γ) (5.14)

fx = A cos (γ) + B(1 − sin (γ)) + F0 (5.15)

where γ = arctan(ξy/ξx); C = 0.66, A = 0.27, B = −0.32, F0 = 0.09 is the emporical fitted

function to characterize the granular media resistant force.

Note that in each configuration, the body velocity of the body segment i, ξi, can be

related to the body velocity of the locomotor (in our case, we choose head frame as the

body frame of the locomotor) ξ0, by [82, 217]:

ξi = Adg−1
0i
ξ0 + Ji(Φ)Φ̇ (5.16)

where Ji(Φ) ∈ R3×3 is the body Jacobian matrix, a linear differential map from shape ve-

locity Φ̇ to the body velocity of body segment i with respect to the head frame; Adg denotes

the adjoint operator, which maps body velocity between different frames; g0l denotes the

configuration of the body frame of body segment i with respect to the head frame. Note

that Adg−1
0i

and Ji(Φ) are uniquely determined by the shape variable Φ.

Finally, the force and torque balance in the lateral plane can be written as:

n∑
i=1

f 0
i =

n∑
i=1

AdT
g−1

0i


f i
x

f i
y

0

 = 0 (5.17)

where f 0
i denoted the force applied to body segment i with respect to the head frame; AdT

g−1
0i

transforms the force in the body frame to the head frame.
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With (Equation 5.11-Equation 5.18), we established a relationship between the body

velocity in the head frame ξ0 and the shape velocity Φ̇ and shape velocity Φ. We then

linearilize the equations and obtain:

ξ0 = A(Φ)Φ̇. (5.18)
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CHAPTER 6

SELF PROPULSION VIA SLIPPING: FRICTIONAL RESISTIVE FORCE

THEORY FOR MULTI-LEGGED LOCOMOTORS

Part of this chapter is adapted from a journal article under review “Self propulsion via

slipping: frictional resistive force theory for multi-legged locomotors.” Proceedings of the

National Academy of Sciences. My contribution in this project includes (1) designing the

experiments, (2) conducting the numerical analysis, (3) writing the manuscript. Robophys-

ical experiments presented in this chapter are conducted by Juntao He.

Locomotion by body undulation is often observed in locomotors continuously im-

mersed in an environment (such as fluid or granular media) [218, 132, 219, 220, 221,

222, 223]. During such self-propulsion, body elements continuously experience forces set

by the physics of the medium and the instantaneous orientations and velocities of body el-

ements. An approach to analyze this form of locomotion, which integrates thrust and drag

forces over the body, was introduced in the early to mid 20th century and goes by Resistive

Force Theory (RFT). This method has successfully modeled organisms in highly damped

environments, like microorganisms and sand-swimmers etc [72, 63, 73]. RFT works at its

core because of a so-called “drag anisotropy” in continuous element flow. For example,

long thin systems like spermatoza can be thought of as a superposition of slender rods,

which differ in reaction forces in the perpendicular and parallel directions[224, 225, 78,

226, 227].

In contrast, on hard ground where frictional force is typically assumed rate-independent

isotropic Coulomb friction, a key feature of the locomotion dynamics is that the anatom-

ical elements (like limbs or body segments) are no longer in constant contact with the

environment. Rather, elements can make and break contact [146, 228]. In such situa-

tions, control algorithms [20, 229] are developed to minimize slip (the sliding between
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Figure 6.1: Swimming in terrestrial environments (a) Top view of a robophysical device
swimming on frictional ground.

Figure 6.1: Swimming in terrestrial environments (b) The patterns of lifting and landing
of contralateral feet. Each row represents the contact states of i − th link. Shadow region
represents right foot in stance phase, open region presents left foot in stance phase. (right)
Front view of the robophysical device lifting (i) left and (ii) right feet of the first module

the foot and the substrate); similarly, active slip avoidance is also observed in biological

systems [230, 231]. Slipping is assumed minimal partially because Coulomb friction in-

troduces a step-function between the velocity reaction force relationship, which can cause

unstable oscillations [232]. Furthermore, if not properly controlled, slipping can cause a

loss in energetic efficiency.

While the bulk of prior work on terrestrial locomotors [69] have 2 and 4 limbs, many

biological and increasingly robotic systems possess 6, 20, 40 limbs. In contrast to the few

limbed systems in which an assumption of no-slip contact is often feasible [70], for sys-
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Figure 6.1: Swimming in terrestrial environments (c) Trajectory of backbone during
terrestrial swimming (Θbody = π/3, Θleg = 0, n = 6) colored by time. (d) (left) Displace-
ment and (Right) velocity profile of terrestrial swimming. We compared the experimental
data with dynamical simulation (brown curve) and quasi-static simulation (blue curve) for
body-dominated terrestrial swimming. After the transient development, both experiments
dynamical simulation converge to a limit cycle similar to quasi-static simulation.

tems with more than 4 legs, there is a high possibility that some slip has to occur during

locomotion [71] because of kinematic constraint violations, (e.g., the BigAnt [71]). We

hypothesized that instead of avoiding slipping, we can actively analyze slipping using a

method similar to RFT on continuous media, and establish a unifying model for both ter-

restrial and continuous locomotion. The challenges lie on the nonlinearity and the isotropy

of Coulomb friction in terrestrial environments in contrast to linear, anisotropic viscous

friction.

Here, we investigated a new regime of multi-legged terrestrial locomotion enabled by

properly sequenced feet-substrate sliding. Specifically, both body undulation and leg re-

traction contribute to slipping and therefore self-propulsion. Using a centipede-like robo-

physical model, we showed that the steady-state terrestrial locomotion has a property of

geometric locomotion (the effect of inertia is negligible) even when operated at high fre-

quency on a low-friction substrate. We used RFT to study slipping in multi-legged systems
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Figure 6.2: The geometric nature of terrestrial swimming (a) Robot (n = 6) imple-
menting the same gait (Θbody = π/3, Θleg = 0) under different temporal frequencies. (Left)
The development of displacement as a function of time under different temporal frequen-
cies. (Right) The step length is stable over a range of temporal frequencies. Dashed lines
represent prediction from quasi-static simulation.

Figure 6.2: The geometric nature of terrestrial swimming (b) Robot implementing the
same gait under different substrate (different friction coefficients, µ). (Left) The devel-
opment of velocity as a function of time. Despite the initial high-magnitude oscillation,
robots on low-friction surfaces converged to quasi-static velocity profiles after one gait
cycle. (Right) The saturated step length is stable over a range of friction coefficient.

and proposed a new principle of acquired drag anisotropy. Specifically, by periodic lifting

and landing of body appendages, the nonlinear and isotropic Coulomb friction experienced

on each limb can be simplified into a velocity-dependent whole-body drag, similar to that

of organisms at low Reynolds number, which we refer to as terrestrial swimming. In an

effort to unify the our proposed slip-driven and the conventional minimal-slipping mech-

anism, we establish a performance space of terrestrial swimming, and discuss the relative

advantage (i.e., higher speed and less sensitivity to obstacle-rich environments) of body-

dominated (slip-driven) over leg-dominated (minimal slipping) terrestrial swimming by
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Figure 6.2: The geometric nature of terrestrial swimming (c) Experimental verification
of force-velocity relationship (Θbody = π/3, Θleg = 0, n = 8). We test the relationship
between the whole body drag force and the velocity by measuring the speed of robots on
slopes. We compared two spatial frequencies, ξ = 1 and ξ = 1.3. In both experiments, we
observed that there exists an linear relationship between force and velocity near equilib-
rium.

Figure 6.3: Direction of limb slipping (i) Typical trajectories of foot tips of robophysical
device (n = 6) during stance phase for (a) body-dominated (Θbody = π/3, Θleg = 0) and
(b) leg-dominated (Θbody = 0, Θleg = π/6) terrestrial swimming. x-axis is the direction of
motion. We quantify the slipping of a foot by its direction (Ψ unit: rad) and magnitude
(unit: BL/cycle).

robophysical experiments. Finally, we used our scheme to analyze the locomotion of a

biological multi-legged system and reveal slip-driven terrestrial swimming in centipedes.

Similar to our predictions on robophysical experiments, we also observe a smooth gait

transition from leg-dominated to body-dominated locomotion as speed increases.

Body undulation

We adapted a robophysical modeling approach [233] to systematically study terrestrial lo-

comotion. Specifically, we constructed a multi-legged robot consisting of repeated mod-

ules. Each module contains one pair of legs and one body connection. All combined,

each module has three degrees of freedom (DoF): the shoulder lifting joint that controls
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Figure 6.3: Direction of limb slipping (ii) The simulation prediction (red curves) and
experimental measured (black dots) time series of slipping angles.

Figure 6.3: Direction of limb slipping (iii) The slipping profiles from simulation. We
illustrate (top) the slipping direction profile and (bottom) the slipping magnitude profile.

the contact states of contralateral legs, the shoulder retraction joint that controls the for/aft

positions of limb movements, and the body bending joint that controls the lateral body un-

dulation. The synchronization of these three DoF is coupled using the extended Hildebrand

framework, which prescribe a leg stepping wave and a body undulation wave, both prop-

agating from head to tail. The amplitude of body undulation, Θbody, the amplitude of leg

movement, Θleg, and the spatial wave number ξ, can then uniquely prescribe the gait of the

multi-legged robot. Note that unless otherwise mentioned, we set ξ = 1 throughout paper.

As discussed in prior work, body undulation can play an important role in multi-legged

systems [234, 176]. In Figure 6.1c, we show the midline trajectory during undulatory
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Figure 6.4: Performance space of multi-legged terrestrial locomotion. We characterize
the terrestrial locomotion using a performance space consisting of the amplitudes of body
undulation and leg movement. (a) The heat map of velocity (v, unit: cm/cycle) over the
performance space for robophysical model with (left) 4, (right) 8 pairs of limbs. n is the
number of limb pairs. Note that optimal terrestrial locomotion (the highest velocity) occurs
at “hybrid” region when N = 4 and at body-dominated when N = 8. (bottom) We showed
the snapshots of body configurations over a cycles for (i) N = 4, Θbody = 60◦, Θleg = 15◦,
(ii) N = 4, Θbody = 0◦, Θleg = 45◦, and (iii) N = 8, Θbody = 60◦, Θleg = 0◦. (b) The transition
of optimal terrestrial locomotion from leg-dominated to body-dominated as the number of
leg pairs increases.

locomotion of the multi-legged robot (Θbody = π/3, Θleg = 0, n = 6, n is the number of

modules). We refer to gaits with high Θbody and low Θleg as body-dominated, and gaits with

low Θbody and high Θleg as leg-dominated. While the body parts were lifted off the ground,

the undulatory body trajectory was similar to slithering motion (commonly observed in

snakes and nematodes locomoting on continuous media such as sand [126] and viscous

fluid [116]).

To quantitatively investigate terrestrial swimming, we tracked the trajectory of the CoG

(center of geometry) of the robophysical model. In Figure 6.1d left panel, we illustrated

the displacement and speed profile. Interestingly, we observed that after the transient re-

sponse (t < 2s) upon the initiation of gait, the trajectory of velocity converged to a stable

oscillation. To better understand the initial transient response and the stable oscillation,
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we established a dynamic model (see [235]) and a quasi-static model [234] (Figure 6.1d).

While the dynamic model under-predicted 1 the magnitude of the transient response upon

the initiation of gait, the predicted velocity from dynamical model also converged to a sta-

ble oscillation. The average of the stable oscillation is almost identical in experiments,

dynamical model prediction and quasi-static model prediction, indicating that the effect of

inertial is not significant in the dynamic system in terrestrial swimming.

To quantify the effect of inertia, we tested the locomotion performance of the multi-

legged system (Θbody = π/3, Θleg = 0, m = 6) under different temporal frequencies (Fig-

ure 6.2a). We showed that despite the changes in absolute speed (ranging from ≈ 15 cm/s

to 1.5 cm/s), the step length is almost constant. Furthermore, we tested the locomotion per-

formance of the multi-legged systems (Θbody = π/3, Θleg = 0, m = 6) on different surfaces

ranging from coarsely fabricated wood (µ ∼ 0.6) to coated smooth surfaces (µ ∼ 0.1). In

all surfaces, swimming motion converged to the steady-state equilibrium velocity within in

one gait cycle. (Figure 6.2b).

We posited that such convergence to steady-state equilibrium velocity can be a result

of an emergent friction-velocity negative feedback. To explore this force-velocity relation-

ship, we tested the locomotion performance on slopes. Specifically, by varying the slope

tilting angle α, we can measure the relationship between the external force tanα (normal-

ized by nominal friction µN) and the step length (body length traveled per cycle). We tested

two undulatory gaits with different spatial wave numbers (Θbody = π/3, Θleg = 0, m = 6,

ξ = {1, 1.3}). In both cases, we observed a locally negative linear relationship (Fig. Fig-

ure 6.2c) between external force and the step length. The emergence of such negative linear

relationship not only explains the convergence, but also raises an intuiting concept: effec-

tive viscous friction emerged from terrestrial swimming with Coulomb friction. In the next

sections, we will further analyze and model such emergent negative linearity.

1We posited that it is the static friction that leads to the discrepancy between the empirically measured
and model predicted transient response

181



Figure 6.5: Advantage of body-dominated terrestrial swimming in obstacle-rich en-
vironments (a.1) A snapshot of robot (n = 6) moving on obstacle-rich environments
(ρ = 0.06). Cartoon illustration of interaction between robot and obstacles subject to differ-
ent slipping directions (top: typical body-dominated; bottom: typical leg-dominated). Red
blocks represents obstacles, legs from darker color to lighter color represents progression of
time. (a.2) We choose three isoheight lines on the velocity heat-map over the performance
space: v = 12 cm/cycle, v = 16 cm/cycle, and v = 18 cm/cycle. We quantify the degree of
body and leg use by β = tan−1(Θleg/Θbody). (b) Comparison of locomotion performance in
homogeneous (curves with error bar in green colors), heterogeneous environments (curves
with error bar in black color), and theoretical predictions from Equation 6.6 (curves and
areas in light brown color). From top to bottom the flat line descended from isoheight lines
with v = 18cm/cycle, v = 18cm/cycle, and v = 18cm/cycle.

Effective viscous friction

Slipping analysis

Similar to locomotion at low Reynolds number, we consider terrestrial swimming as a body

undulatory system with assistance from the periodic leg lifting and landing. As documented
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Figure 6.6: Analysis of centipede locomotion (a) (left) Snapshots of a trial of (i) body-
dominated and (ii) leg-dominated centipede locomotion. (right) The trajectory of foot slip-
ping colored by time. The stance phase spans 0.4 seconds.Trajectory of centipede body
during terrestrial swimming colored by time. (b) The (top) displacement and (bottom)
velocity profiles. Measured animal data is presented in cycles and the predictions from
quasi-static model is presented in blue curve.

in prior work on locomotion at low Reynolds number [115, 228], the drag anisotropy of

slender rods (higher reaction forces in the perpendicular than in the parallel direction) is the

critical physical property enabling swimming in viscous flows. In terrestrial environments

where the drag force is typically assumed isotropic Coulomb friction, the direct implemen-

tation of undulatory motion would be ineffective [148].

In Coulomb friction, the direction of ground reaction forces should be opposite to the

direction of slipping. Therefore, it is crucial to investigate the direction of slipping. Un-

like other legged systems with fewer legs, there is significant slipping during undulatory

locomotion of the multi-legged robot. We predicted from the quasi-static model that in

body-dominated gaits, the direction of slipping is predominantly in the lateral direction.

We verified this prediction by tracking the trajectory of the tip of a foot (second foot from

the left) and empirically measuring the direction of the slipping (Θbody = π/3, Θleg = 0,

n = 6). Both simulation and experiment suggested that slipping in lateral/medial direction

(perpendicular to the direction of motion, Figure 6.1) dominates over the slipping in ante-
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Figure 6.6: Analysis of centipede locomotion (c) The transition from leg-dominated gaits
to swimming dominated gaits as speed increases. In each centipede locomotion trial, we
extract amplitude of body undulation and leg retraction, and represented it as a cross (col-
ored by its speed) on performance space.

rior/posterior (parallel to the direction of motion) direction (Figure 6.3). We quantified the

direction of slipping by measuring the slipping angle Ψ, defined as the angle between the

direction of slipping and the medial direction. We compared the experimentally measured

and simulation predicted time series of slipping angle in Figure 6.3a.ii, and both suggest

that the direction of foot slipping is almost always perpendicular to the direction of mo-

tion (Ψ = 0 or π). Finally, we showed the slipping angle profile from numerical simulation

inFigure 6.3a.iii. We noticed that for almost all feet, the slipping angle is distributed around

either 0 or π, both suggesting lateral/medial slipping.

Kinematic model

With the knowledge of lateral/medial dominated slipping, we developed a theoretical model

to illustrate how periodic leg lifting and landing can acquire drag anisotropy similar to

locomotors in viscous flow.
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As documented in prior work on undulatory locomotion, each body segment experi-

ences oscillation in the lateral and rotational directions with an offset of π/2 [123, 83].

Specifically, d, the distance from the body to the central body axis can be expressed as:

d(τ) = dm sin τ, where dm is the magnitude of lateral oscillation and τ ∈ [0 2π) is the

gait phase; θ, the angle between the body orientation and the direction of motion can be

expressed as θ(τ) = θm cos τ, where θm is the magnitude of rotational oscillation (Fig-

ure 6.1a). θm and dm are determined by the amplitudes, (Θleg and Θbody) and the spatial

wave number (ξ) of body undulation. From geometry, we know that dm = nΘbody/(2πξ)2,

and θm = Θleg + tan−1 (
nΘbody/(2πξ)

)
.

To simplify our analysis, we assume that the center of geometry (CoG) of the robot has

a constant forward velocity, v. The velocity of a foot (for simplicity, we only discussed the

right feet. The analysis of left feet will be symmetric to our analysis) can then be expressed

as a joint effect of CoG movement and the lateral/rotational oscillation:

vx(τ) = ḋ(τ) + lθ̇(τ) sin
(
θ(τ)

)
vy(τ, v) = v + lθ̇(τ) cos

(
θ(τ)

)
(6.1)

where vx and vy are velocity components in the lateral and anterior directions respectively;

l is the leg length. Friction should have the opposite direction to the direction of foot

slipping. Thus, the projection of the instantaneous frictional force to the anterior direction

is:

fy(τ, v) = −µN sin
(

tan−1 (
vy(τ, v)
vx(τ)

)
)

(6.2)

where µN is the magnitude of friction determined by normal force N and friction coefficient

µ. Assuming that each of contralateral foot is in contact with the substrate for half of a
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period (e.g., s1 < τ < s1 + π), we can calculate the average friction over the stance phase:

f̄ (v) =

∫ s1+π

s1

−µN sin
(

tan−1 (
vy(τ, v)
vx(τ)

)
)
dτ (6.3)

We can calculate the steady-state CoG velocity, vss, by assuming the force in equilib-

rium ( f̄ (vss) = 0). By the force balance ( f̄ (vss) = 0), we established a implicit function

vss = vss(s1). Furthermore, we took a variational approach to find the optimal stance period

[s1, s1 +π] to maximize vss (i.e., dvss/ds1 = 0). The sufficient condition for s1 (to optimize

v) is then:

sin
(

tan−1 (
vy(s1 + π)
vx(s1 + π)

)
)

= sin
(

tan−1 (
vy(s1)
vx(s1)

)
)
, (6.4)

Solving Equation 6.4 yields two optima: s1 = 0, s1 = π. They correspond to maxi-

mal vss (highest forward speed) and minimal v (highest backward speed) respectively. In

other words, by properly controlling the sequence of lifting and landing, we can effectively

acquire drag anisotropy in either direction and therefore enable swimming along (direct

wave [43]) and against (retrograde wave [43]) the direction of wave propagation. Inter-

estingly, s1 = 0 also optimizes body-leg coordination as reported in [234] where the body

undulation is considered to assist leg retraction. In this paper, we only considered the

retrograde-wave terrestrial swimming. Thus we set s1 = 0 unless otherwise discussed.

Since slipping is primarily in the lateral direction, we assume vx � vy. We can therefore

calculate the changes in friction in response to disturbance to steady state velocity (v =

vss + δv):
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fy(τ, vss + δv) = −µN sin
(

tan−1 (
δv + vy(τ, vss)

vx(τ)
)
)

[∵ vx � vy] ≈ fy(τ, vss) − µN sin
(

tan−1 (
vss

vx(τ)
)
) δv

vss
,

Integrating over the stance period, we can obtain the changes of the average friction:

f̄ (vss + δv)︸      ︷︷      ︸
f̄d(δv)

= f̄ (0)︸︷︷︸
0

−δv

∫ π

0

µN
vss

sin
(

tan−1 (
vss

vx(τ)
)
)
dτ︸                               ︷︷                               ︸

γ0

f̄d(δv) = −γ0 δv (6.5)

The effective linear force-velocity relationship allows us to analyze the terrestrial swim-

ming similar to that in viscous fluid. Despite being counter-intuitive with Coulomb friction,

Equation 6.5 predicts that this equilibrium is asymptotically stable. Note that our analysis

is invariant to the choice of foot. Equation 6.3 and Equation 6.5 can thus be generalized to

the overall multi-legged system by a scaling factor of n (the number of leg pairs).

To verify our analysis, we compared predictions from Equation 6.5 and the experi-

mental measurement in Figure 6.2c, and we observed good agreement between theory and

experiments, especially locally near equilibrium.

Performance space

As discussed earlier, both body undulation and leg retraction can contribute to generate

thrust in multi-legged systems. To systematically explore the coordination and balance of

body and leg, we introduced a performance space (Figure 6.4) where the axes are Θleg, the

amplitude of leg retraction, and Θbody, the amplitude of body undulation. Depending on the

relative magnitude of Θbody and Θleg, we soft classify the performance space into (1) body-

dominated (Θbody � Θleg), (2) hybrid (Θbody ∼ Θleg), and (3) leg-dominated (Θbody � Θleg).
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Note that competition exists between high Θbody and high Θleg since it will lead to self-

collision among legs which can break the robot. In previous discussions, we focused on

body-dominated terrestrial swimming regime of the performance space. The conventional

leg-dominated counter-part experiments (Θbody = π/3, Θleg = 0, n = 6) are provided in

Figure 6.3b. Note that the slipping in conventional leg-dominated gaits is significantly

lower than those in body-dominated terrestrial swimming.

To systematically explore the competition and coordination between body undulation

and limb reduction, we experimentally tested the locomotion performance of different

points on the performance space. Figure 6.4a shows a heat-map of speed over perfor-

mance space for robots with 4 (Figure 6.4a. left) and 8 (Figure 6.4a. right) pairs of legs.

Immediately, we noticed that for systems with different leg pairs, the optima reside in dif-

ferent regimes. For robots with 4 pairs of legs, a hybrid mode of body undulation and leg

retraction can lead to the highest speed. On the other hand, for robots with 8 pairs of legs,

pure body-dominated terrestrial swimming (Θleg = 0) can led to the highest speed. This

is also evidenced by the gradient of iso-height contours. To further quantify the transition,

we identified the optima [Θleg, Θbody] for robots with 3, 4, 5, 7, and 8 pairs of legs. Note

that we numerically determine the optima as over 90 percentile of the step length among

all gaits. We then colored the optima [Θleg, Θbody] by the number of leg pair n. From Fig-

ure 6.4b, we observe that the optima transition from leg-dominated to body-dominated as

the number of leg pairs increases.

Interaction with obstacles

In this section, we further explored the relative advantage of body-dominated and leg-

dominated gaits in obstacle-rich environments. We posited that the slipping direction plays

an important role in the interaction with obstacles; and that the body-dominated gaits (with

lateral/medial slipping) are more robust over the presence of obstacles as compared to the

leg-dominated gaits (with anterior/posterior slipping).
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In Figure 6.3. we compared the direction of slipping for leg-dominated and body-

dominated gaits. Specifically, slipping in leg-dominated gaits almost always occurs first

in the anterior direction (the direction of motion) then follows in the posterior direction.

This chronological order of slipping can affect the interaction with terrain heterogeneity

(obstacles). In other words, the interaction between a leg and an obstacle is more likely to

occur during the preceding slipping than the succeeding slipping. The interactions between

obstacles and the preceding anterior slipping feet are in the posterior direction, which can

be detrimental to locomotion. Thus, qualitatively, we predict that the terrain heterogene-

ity will reduce the locomotion performance of conventional leg-dominated gaits. On the

other hand, in body-dominated gaits, feet slip in lateral/medial directions, which reactions

from interactions with obstacles are also in medial/lateral direction and will not affect the

locomotion performance in the direction of motion.

To verify this prediction, we constructed a heterogeneous environment (low-height ob-

stacles randomly distributed on a flat terrain, see [235]) and tested the locomotion perfor-

mance of different gaits in the multi-legged system (n = 6). We identified three iso-height

lines on the performance space such that all points on an iso-height line have the same step

length on homogeneous environment. We chose the iso-height lines with v = 12, v = 16,

and v = 18 (unit cm/cycle). We quantified the degree of body and leg use by the angle

β = tan−1( Θleg

Θbody
). Interestingly, we noticed that gaits with low β had almost the same step

length in heterogeneous environments as in homogeneous environments. However, gaits

with high β had significantly reduced step length in heterogeneous environments.

To better understand the robustness of gaits in heterogeneous environments, we es-

tablished a simple statistical model. To simplify the analysis, we approximated the slip-

ping angle Ψ (Figure 6.3) by β such that Ψ = 0 during body-dominated terrestrial swim-

ming (β = 0) and Ψ = π/2 during conventional leg-dominated terrestrial swimming

(β = π/2). Assume that the reaction force from terrain heterogeneity is a constant, F.

Then the projection of reaction force in fore-aft direction can be approximated by F sin (β).
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Consider an obstacle-rich environment with obstacle density ρ and a robot with n pairs

of legs, then the distribution function of at least one leg interacts with an obstacle is

h(y) = {1 if y < nρ; 0 if y ≥ nρ}, where y ∼ U(0, 1), U is the uniform distribution.

Thus the distribution function of the projection of reaction force in fore-aft direction is

Fh(y) sin β. From Equation 6.5, the distribution function of step length is:

v ∼ vss − γ
−1
0 F sin (β)h(y)

v̄ = vss − γ
−1
0 F(1 − nρ) sin (β)

std(v) = γ−1
0 F

√
nρ(1 − nρ) sin (β), (6.6)

where γ0 is the effective drag coefficient from Equation 6.5. We observe quantitative agree-

ment between the theoretical prediction and the experiments (Figure 6.5).

Biological centipedes

Biological centipedes can properly coordinate their body and leg movement and rapidly

traverse different terrestrial environments [43, 202, 195, 236]. However, there have been

limited biomechanical analysis on centipede locomotion. In many existing works, it is

often assumed that there is no foot slipping [237, 211, 184]. Here, we use our framework

to study the slipping in the rapid-moving biological centipedes.

We predict from our drag anisotropy analysis (solving Equation 6.3) that body-dominated

gaits should be a faster mode of locomotion as compared to leg-dominated (Figure 6.6 the

underlying heatmap). The model predicts that at high Θbody, low Θleg, centipedes could

maintain high-speed steady-state motion by having feet slipping laterally/medially. How-

ever, if Θleg is increased, it will introduce unwanted anterior/posterior slipping, which can

break the symmetry in the steady-state swimming motion and therefore is detrimental to

locomotion.

To verify such prediction, we studied the locomotion performance of a biological cen-
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tipede (Scolopendra polymorpha, 5 individual, in total 11 trials) and quantitatively char-

acterized the leg dynamics under different speeds. Specifically, we collected high speed

video recordings of centipedes moving on white board. We extracted the amplitude of

body undulation (Abody) and leg movements (Θleg), and the speed (in the unit of body length

per cycle) from each trial (presented by colored cross in Figure 6.6c). We noticed that the

emergence of body undulation is accompanied by the decrease in Θleg. This indicates that

in response to high speeds, the behavior of these centipedes is beyond just the emergence

of body undulations. Instead, there is a transition of leg-dominated gaits (high Θleg, low

Θbody) to body-dominated gaits (low Θleg, high Θbody), in quantitative agreement with our

prediction.

Further, we use our model to study the kinematics behind centipede locomotion. Sim-

ilar to our analysis on the robot, we compared a body-dominated gait (Figure 6.6a.i) and

a leg-dominated gait (Figure 6.6a.ii) in biological centipedes. We then investigated the

direction of foot slipping for both cases. Interestingly, we observed that the slipping is

extensive and mostly in lateral (medial) direction for the body-dominated gait; and the

slipping is reduced and in anterior/posterior direction for leg-dominated gait. Finally, we

showed the displacement and velocity profile for both body-dominated and leg-dominated

gaits in Figure 6.6b and that our quasi-static model can give a quantitative predictions of

the velocity profile for the relatively high-speed (∼ 0.5 BL per second) centipede terrestrial

swimming. In this way, we showed that our terrestrial swimming analysis can be applied

to rapid-moving systems, providing alternative solutions to the potential agile robots.

Conclusions

Locomotors on solid substrates typically rely on leg retraction to generate thrust, whereas

locomotors on continuous media typically use body undulation for propulsion. Often, these

are considered two distinct locomotive behaviors. One of key differences lies in the inter-

action with substrates. In continuous media, each body segment experiences continuous
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reaction forces, which allows us to analyze reaction forces and therefore locomotion dy-

namics using RFT. It not only analyzes the biological systems, but also provides guidelines

to robot controls. However, because of the discontinuous and nonlinear reaction force, the

application of RFT to terrestrial locomotion is limited.

The discontinuous and nonlinear reaction force is often caused by the no-slipping con-

dition. Slipping during terrestrial locomotion has been considered detrimental to loco-

motion because it can be energetically inefficient and cause unstable oscillation [20, 229,

230]. Therefore, in both biological and artificial locomotors, slipping is often actively

avoided [20, 229, 230, 231]. For these systems, complicated feedback control is often re-

quired to maintain the no-slip condition [230, 231]. However, many biological locomotors,

for example cockroaches [238] and centipedes, can acquire high-speed stable locomotion

with the presence of extensive foot-slipping. Despite the interesting slip-driven locomotion,

the mechanism of such locomotion is less studied.

Here, we studied slipping in terrestrial locomotion using an RFT framework. Specifi-

cally, we studied slipping in terrestrial swimming, and established a framework to analyze

the causal relationship between slipping and locomotion performance. Furthermore, our

framework connected the studies of locomotion in continuous media to terrestrial envi-

ronments. Specifically, we showed that by properly controlling the lifting and landing of

contralateral feet (and thus the slipping direction), terrestrial locomotors can acquire drag

anisotropy and effective viscous friction in the environments dominated by isotropic, rate-

independent Coulomb friction.

Finally, we systematically compared the performance of slip-driven (body-dominated)

locomotion and the reduced slipping (conventional leg-dominated) locomotion. We noticed

that the advantage of body-dominated swimming in continuous media (the capability to

benefit from terrain heterogeneity to aid locomotion [239, 150, 240, 241]) preserved in ter-

restrial environments. Specifically, we established a performance space of terrestrial swim-

ming, and compared its performance in homogeneous and heterogeneous environments by
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robophysical experiments. Further, we used our framework to discover and rationalize the

relationship between the slipping and behavior in biological multi-legged locomotors. In

doing so, we discovered a new regime of effective locomotion in terrestrial environments

revealing its advantage in high-speed regime and in obstacle-rich environments.
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CHAPTER 7

A SHANNON-INSPIRED FRAMEWORK FOR MULTI-LEGGED MATTER

TRANSPORT

Part of this chapter is adapted from a journal article under review “A Shannon-inspired

framework for multi-legged matter transport.” Science. My contribution in this project in-

cludes (1) designing the experiments, (2) conducting the numerical analysis, (3) writing the

manuscript. Robophysical experiments presented in this chapter are conducted by Juntao

He.

The transmission of information over distance has played an increasingly important role

in human history [242]. Early on, information was often transmitted with physical matter

(e.g., carrier pigeons) as the medium. With the emergence of analog or digital signal trans-

mission channels (e.g., drum beat patterns, electrical transmission lines, and space-based

links) information transmission was decoupled from matter transportation. Over a noise-

less channel, a continuous analog signal is in principle sufficient for effective information

transmission [243]. Despite its efficiency, the establishment of such error-free channels can

be expensive. To counter channel noise inherent in all communication modalities, Shan-

non [112] constructed a digitized encoding scheme, in which a core concept is to “buffer”

and correct the transmission error via redundancy (Fig. Figure 7.1a). Specifically, a sig-

nal is first encoded into redundant digital bits to transmit through a noisy channel, then

these channel-noise contaminated bits are decoded to recover the original signal. Note that

such signal transmission strategy of error correction coding (correction via redundancy)

is an alternative to error detection coding, where in the latter, the presence of a reverse

channel can facilitate the re-transmission of signals, thereby improving signal transmission

accuracy [112, 242].

The transport of physical matter is another important aspect in human society, biologi-
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cal systems, and increasingly in physics in the form of “active matter” [244]. Locomotion

as a means of matter transport has been thoroughly studied in various forms [1, 2, 3, 4],

where a core concept is to actively generate thrust against drag to develop “self-propulsion”.

Thrust is typically generated from interactions between locomotors and surrounding sub-

strates, and heterogeneous substrate structures can cause interference. On land, to counter

substrate heterogeneity and its effect on locomotion, humans have built costly platforms

(such as tracks and roads) where continuous thrust can be reliably generated from continu-

ous substrate-contact. In particular, the conveyance arising from wheels on tracks or roads

is believed to be one of the most efficient terrestrial matter transportation schemes [5].

Similar to analog signal transmission, matter transportation with continuous thrust relies

heavily on the homogeneity of the established platforms (Fig. Figure 7.1b) and thus gen-

eral principles governing more complex terrestrial environments are lacking [14, 13].

In environments where construction of low-noise “channels” is inconvenient, researchers

have either increased the size of the wheels [14] or have developed appendage based

self-propulsion (e.g., legged locomotion). A properly-coordinated leg lifting and land-

ing scheme offers the potential to simplify self-propulsion from the complexity of natu-

ral “terradynamic” [74] interactions. However, it is generally believed that environmental

awareness is necessary to exploit such potential [70, 245]. State-of-the-art robots with

legs are mostly bipedal and quadrupedal systems, and their increasingly agile locomotive

performance relies heavily on accurate sensors [3, 111]. Specifically, sensor-based closed-

loop controls enable environmental awareness which facilitates appropriate selection of

feasible substrate-contact points to counter the uncertainty from the substrate [3, 111, 70,

245]. Note that a sensor-based framework in locomotion shares a mechanism similar to

error detection coding in information theory where the framework relies on an accurate

re-transmission channel.

To locomote effectively on legs with minimal sensing and environmental awareness

(effective open-loop locomotion), increasing the number of legs can be beneficial. That is,
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Figure 7.1: An analogy between signal transmission and matter transportation. (a)
The flowchart of signal transmission. We compare analog and digital signal transmission
through noisy wires. Digital redundant signal allows reliable transmission through a noisy
wire via either redundancy or a re-transmission channel. (b) Matter transportation with both
continuous and discrete active contacts can be effective on perfect tracks. Discrete redun-
dant contacts enable robust matter transportation over rugose tracks via redundancy or envi-
ronmental awareness. (c) Multi-legged robophysical locomotors traverse noisy landscapes:
(c.1.left) pebbles, (c.1.middle) stairs and slopes, (c.1.right) entangled granular media, and
(c.2) a laboratory model of rugose terrain.

in recent years hexapods have become an intriguing alternative to bipedal and quadrupedal

robots over noisy landscapes [4]. If properly coordinated, the additional legs in hexapods

provide additional ground supports to avoid catastrophic failures (e.g., loss of stability).

However, terrain heterogeneity can still cause thrust deficiency which significantly reduces

the locomotion performance [246, 247]. Therefore, although to a lesser extent than in

bipedal or quadrupedal systems, sensors in hexapods are also believed to be essential [248,

249]. Our recent work on design, construction [212] and control [235] of myriapod robots

with up to 16 legs has demonstrated remarkable progress towards robust open-loop opera-

tions in diverse environments [250]. However, it remains unclear what mechanism drives

such robustness and, more importantly, whether redundancy in leg numbers can be gener-
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Figure 7.2: Encoding and decoding of signal transmission and matter transportation.
(a) The analogy of (a.1) signal transmission (adapted from [112]) and (a.2) locomotion
(matter transportation). (b.i) The matter to be transported to a destination D. (b.ii) The
desired bac sequence to reach the locomotion destination. (b.iii) Noisy landscapes can
introduce contact errors such as delaying bacs and shortening the duration of bacs. We
labeled the desired bac (spans the duration of τ) and two terrain-contaminated bacs (starts
at c1 with duration τu). (b.vi) The actual bac sequence (contaminated by contact errors).
(b.v) The actual locomotion destination D̂.

ally sufficient to counter the terrain noise for self-propulsion or some environmental aware-

ness would be necessary.

Inspired by the principles which facilitate signal transmission on noisy channels, we

hypothesize there exist general principles of matter transportation by which, for a complex

terradynamic task, we can “guarantee” that multi-legged robots can self-transport over dis-

tance with error rate (e.g., loss of stability or thrust deficiency) arbitrarily close to zero,

even without environmental awareness. To explore such principles, we develop a general

framework of locomotion, analogous to that of signal transmission [112]. Our analogy

proceeds as the following (Fig. Figure 7.2): consider a matter transportation task to deliver

some payload to a specific destination D. To enable robust matter transportation, thrust

generation is digitized into what we will refer to as basic active contacts (bacs, our analogy

to bits), discrete units of active environmental interaction, such as legs [15] and vertical

waves of contact in limbless robots [16]. We quantify the temporal and spatial distribu-

tion of bacs as a sequence Xm. As the locomotor implements the desired bac sequence in
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a noisy landscape (the analogue of a noisy channel), the terrain uncertainty can introduce

contact noise to the actual bac sequence, Ym. Such contact noise can therefore lead to a

discrepancy between the actual destination D̂ and the desired destination, D. This chapter

aims to bound the uncertainty in such discrepancy by the redundancy in bacs.

A terrestrial terrain can have different types of heterogeneities with different terrady-

namic bac interactions [74]. Consider a terrain given by a height map, h(x, y). Depending

on the scale of the gradient, [∂h/∂x, ∂h/∂y], the terrain heterogeneity can interfere with

the locomotion in the form of slopes, walls, or obstacles (Fig 1c), which directly affect

the thrust-generation process in the plane parallel to the terrestrial surface. As discussed

in prior work [250], parallel thrust disturbances could be minimized by proper design of

mechanical structures or passively compliant mechanisms. Here, we focus a class of noisy

landscapes (rugose terrains) where the height distribution, h(x, y), can affect the supporting

force distribution (e.g., missing steps) in directions perpendicular to the terrestrial plane:

Ym = Xm + Xm
u , where Xm

u is the contact noise emerging from interaction between carriers

and rugose terrains.

We first consider an abstract characterization of thrust generation with one pair of legs.

We quantify the instantaneous thrust over a bac, f (t), as the instantaneous external force

required to keep the locomotor in place at time t ∈ [0, τ), where τ is the duration of the

bac. The nominal average thrust in open space is: fn = 1
τ

∫ τ

0
f (t)dt.

Next we introduce a function which encapsulates the uncertainty in the bac, c(t). The

terrain-disturbed thrust can be formulated by f̃ = 1
τ

∫ τ

0
c(t) f (t)dt. We assume c(t) has the

property 1
τ

∫ τ

0
c(t) = 1, so that the supporting force balances gravity. Further, we assume

that the initiation of a bac is delayed by time c1, and the duration of a bac is shortened

to τu: {c(t) = 0, t < [c1, c1 + τu]}. Specifically, c1 is assumed to be a random variable

from a uniform distribution: c1 ∼ U(0, τ); and the duration of the bac, τu, is assumed to

be a random variable determined by the terrain uncertainty. Here we sample τu from the

cumulative distribution function given by G(τu) = (1 − b)τu/τ + b, τu ∈ [0, τ] so that
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Figure 7.3: Numerical verification of the sufficiency to bound contact errors via re-
dundancy. (a.1) (Left) An illustration of thrust generation from bacs. (Right) Illustrations
of the relationship between thrust and velocity. Self-propulsion with (i) nominal contact
and (ii) contact errors are compared. (a.2) (Left) The instantaneous thrust f (t) as a func-
tion of time, derived from [235]. (mid) The cumulative distribution function of τu. (Right)
The thrust-velocity (normalized by nominal velocity) relationship. (b.1) The numerical his-
togram of terrain-disturbed thrust for robots with different combinations of temporal (T )
and spatial (N) redundancy. (b.2) Numerically calculated N95%, the minimal number of leg
pairs to facilitate successful locomotion with 95% confidence interval (CI), plotted against
noise level (b). (c.1) The numerical distribution of velocity for robots with different spatial
and temporal redundancy. The color schemes are identical to (b.1). (c.2) The numerically
calculated expected average velocity plotted as a function of the number of leg pairs.
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there is a finite probability of complete bac loss: p(τu = 0) = b, and b < 1 characterizes

the contact noise level. As we will discuss later, the contact noise level can give us an

approximation to the rugosity of the terrain. Note that in case where c1 + τu > τ, we extend

the excessive contact duration (c1 + τu − τ) over into the next bac (Fig. Figure 7.2.b.iii and

SI section IV). For simplicity, we assume that c(t) is otherwise uniformly distributed during

the bac: {c(t) = τ−1
u τ, t ∈ [c1, c1 + τu]}. In this way, the terrain-disturbed thrust reduces

to: f̃ = sign(τu)τ−1
u fu, where fu =

∫ c1+τu

c1
f (t)dt is the thrust disturbance. The sign function

sign(τu) indicates that no thrust will be generated ( f̃ = 0) with complete bac loss (τu = 0).

Taking the analogy from information theory in which redundant bits can bound the

uncertainty from channel noise, we hypothesize that locomotors with redundant bacs can

offer robustness over terrain uncertainty. The direct practice would be the simple repetition

over multiple periods (temporal redundancy):

f̃ [1]
T =

1
T

T∑
i=1

sign(τi
u)

f i
u

τi
u
, (7.1)

where f̃ [1]
T is the average generated thrust over T periods, τi

u and f i
u are the contact and thrust

disturbance respectively over the i-th period. T here represents the order of temporal redun-

dancy. We expect the variance of the generated thrust, σ2( f̃ [1]
T ), to decrease as T increases.

Further, f̃ [1]
T converges to a Dirac delta function as T approaches infinity (proof given in the

SI, section VII). Moreover the expected average generated thrust, 〈 f̃ [1]
T 〉, remains constant

(Central Limit Theorem). Such direct repetition could be inefficient because of its low code

rate 1, as per the information theory paradigm [242]. In analogy to Shannon’s encoding

scheme, we now develop a framework to remove inefficient redundancy and compensate it

with “redundancy of the right sort” [242, p. 164] for more effective locomotion.

Subtly different from the signal transmission over a noisy channel, redundancy in loco-

motion can also exist in the spatial domain. The spatial-domain redundancy is important

because it can facilitate the simultaneous “communication” among bacs in response to con-

1The ratio between useful information symbols and actual transmitted symbols [242]
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tact noise. Specifically, with proper coordination, the effect of contact noise will be shared

by all bacs instead of acting on an individual bac. Effectively, the spatial-domain redun-

dancy can serve as a moving average filter over the contact noise. To develop a specific

scenario for legged systems, we consider spatial redundancy in the form of repeating se-

rially connected modules, where a module is defined as a pair of legs. For simplicity, we

consider a simple module coordination that the instantaneous thrust f (t) on each module

is identical and invariant to the number of modules. The average thrust generated from N

serially connected modules over T periods is:

f̃ [N]
T =

1
T

T∑
i=1

(
sign(

N∑
j=1

τi j
u )

∑N
j=1 f i j

u∑N
j=1 τ

i j
u

)
, (7.2)

where τi j
u and f i j

u are disturbances on j-th module over i-th temporal repetition. Intuitively,

in the case where there are M complete bac losses in i-th temporal repetition, M = |{ j, τi j
u =

0}|, the locomotor with N modules will essentially reduce to the that with N − M modules.

In other words, locomotors with N spatial redundancy can afford up to N − 1 complete

bac losses without significant thrust deficiency, indicating that spatial redundancy can also

serve to bound the uncertainty in thrust generation. We show that with arbitrary T ≥ 1, f̃ [N]
T

will also converge to a Dirac delta function as spatial redundancy N approaches infinity

(proof in SI, section VII). Further, the expected average thrust generated, 〈 f̃ [N]
T 〉, can be

approximated by (1 − bN)Cs where Cs is a constant determined by f (t) and b (proof in

SI, section VII). Therefore, greater spatial redundancy not only reduces variance but also

improves the expected average generated thrust, a feature otherwise not feasible with only

temporal redundancy.

To illustrate our prediction, we choose a module coordination pattern simplified from

observations in biological centipedes [235] such that the instantaneous thrust f (t) is inde-

pendent of our choice of spatial redundancy (proof in SI section IV). We illustrate f (t) in

Fig. Figure 7.3.a.2 with nominal thrust fn = 0.72. Assuming b = 0.5, we compare the
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distribution of f̃ for different combinations of temporal and spatial redundancy in Fig. Fig-

ure 7.3.b.1. Note that in this example, Cs = fn, indicates that the terrain-disturbed thrust

will converge to nominal thrust given sufficient spatial redundancy.

Considering drag in terrestrial locomotive systems, effective self-transportation often

requires a minimal threshold thrust, fth. The source of threshold thrust can be frictional

drag which is a first approximation for terradynamic interactions. We define locomotion

failure as thrust generated below fth. The probability of locomotion failure can be non-

negligible with insufficient or ill-designed redundancy. Our theory predicts that when fth <

Cs the probability of locomotion failure can be arbitrarily close to zero if provided with

sufficient spatial redundancy. To illustrate our prediction, we calculate the order of spatial

redundancy N95% required to facilitate successful locomotion with 95% confidence interval

(CI) as a function of contact noise level for different fth values in Fig. Figure 7.3.b.2. Note

that we set T = 1 and approximate contact noise level by b.

As suggested in previous studies of multi-legged locomotion on relatively flat sur-

faces [235, 251], robot locomotion velocity is correlated with the generated thrust ( f̃ ).

Assuming fth = 0, we show an example of thrust-velocity curve in Fig. Figure 7.3.a.2. In

Fig. Figure 7.3.a.2, we normalize velocity by the velocity in undisturbed systems, vopen.

This thrust-velocity relationship facilitates mapping from the abstract thrust generation to

the observable robot velocity subject to different combinations of temporal and spatial re-

dundancy (Fig. 3.c.1). As discussed earlier, increasing spatial redundancy can improve the

expected average generated thrust, and therefore the expected average velocity. To illus-

trate this prediction, in Fig. Figure 7.3.c.2, we numerically calculate the expected average

velocity as a function of spatial redundancy subject to different contact noise levels. No-

tably, we observe that the marginal benefit of having more legs decreases as the spatial

redundancy increases, and the expected average velocity converges to vopen.

We next test the theoretical framework and its predictions in a laboratory robophysical

model, focusing on the efficacy of open-loop multi-legged robots with different leg num-
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bers and terrain complexity. To facilitate comparison across different spatial redundancy N,

our chosen substrate-contact sequence has the property such that all robots share the same

thrust function f (t), the same performance on flat terrain, and the same thrust-velocity re-

lationship (see SI, section IV).

To develop an approximation of contact errors, we construct laboratory models of

rugose terrains defined as terrains composed of blocks with variation in heights [252]

(Fig. Figure 7.4a). The block (10 × 10 cm2) heights, h(x, y), are randomly distributed

(see SI, section I). Such rugose terrains were previously used as a testing terrain in field

robotics [212] ensuring that limbs will experience thrust deficiency from stochastic con-

tact 2. We define the terrain rugosity, Rg, as the standard deviation of heights normalized

by block size. We test the performance of 6-16 legged/segmented robophysical models

on rugose terrains and record the bac duration (τu) on each leg. The distributions of τu

(measured from 225 and 309 bacs for terrain with rugosity 0.17 and 0.32 respectively) are

shown in SI section II.E, where the empirical distributions justify our assumptions on bac

duration distribution.

To illustrate that the thrust deficiency from contact error is the primary driving force

to cause variations in velocity, we record the locomotion velocity (v/vopen, normalized by

nominal velocity) and the bac duration (τu/τ, normalized by nominal bac duration) of a 12-

legged robot on rugose terrains (30 trials on each terrain). In Fig. Figure 7.4.b, we observe

a clear correlation between the bac duration and the locomotion velocity. In matter trans-

portation, the “estimated time of arrival” is an important metric to evaluate transportation

performance. Therefore, we estimate the robot performance via number of periods, T[D=60],

required for a robot to transport 60 cm over rugose terrains with Rg = {0, 0.17, 0.32} (10

trials in each condition). We notice that a hexapod can eventually self-transport over 60

cm but there is a large variation in T[D=60]. In contrast, systems with high spatial redun-

dancy (e.g., N ≥ 5) can finish the self-transport task with short average estimated time of

2Note that the contact error can also come from robot motor noise.
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Figure 7.4: Experimental verification of the sufficiency to bound contact errors via
redundancy. (a) Rugose terrains with rugosity (a.1) Rg = 0.17 and (a.2) Rg = 0.32. The
block height distribution is shown on the right panel. (b) The correlation between bac
duration and locomotion velocity of a 12-legged robots on rugose terrains. Color schemes
are identical to (a). (c) For robot with different number of leg pairs N, we recorded T[D=60],
the number of periods required to transport D = 60cm on terrains with (blue) Rg = 0,
(green) Rg = 0.17, and (black) Rg = 0.32. The error bar was calculated from at least
10 trials. T[D=60] for contact modulated gaits are illustrated in the purple rectangle. (d)
The empirical distribution of velocity on terrains with (d.1) Rg = 0.17 and (d.2) Rg =

0.32. Effect of temporal redundancy on (Top) the 6-legged robot and (Bottom) the 12-
legged robot. Non-negligible locomotion failure is observed when there is not sufficient
redundancy. The empirical distributions were obtained from 30 trials.
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arrival and small variation. Further, T[D=60] converges as we increase the number of legs, in

agreement with our prediction of marginal benefit of spatial redundancy (Fig. Figure 7.4c).

Our robophysical experiments indicate that with only temporal redundancy, carriers can

self-transport reliably to the destination but with unpredictable estimated time of arrival.

The value of spatial redundancy thus lies in not only reliable self-transport, but reliable

self-transport on time.

From the Shannon scheme for signal transmission, it is reasonable to anticipate im-

proved performance with more elaborate coding schemes, which we redefine as designing

the kinematic property of bacs (e.g., instantaneous thrust function f (t) and thrust-velocity

relationship). Unfortunately, we cannot directly engineer the kinematic property of bacs.

Instead, the kinematic property of bacs can be modulated via gait designs (the temporal and

spatial distribution of bacs and the associated body postures), such as amplitude modula-

tion [235] or frequency modulation [107]. In practice, however, effective gait modulation

can be challenging because of the high dimensionality associated with the many bacs. In

SI section IV, we provide a subset of parameterized gait modulation and their effects on

bac kinematic property based on our prior work on myriapod locomotion [253, 235].

Here, we illustrate one example of coding which takes the form of temporal modula-

tion of bacs. Specifically, we impose a vertical wave along the body such that the duration

of bacs (τ) is actively and systematically shortened (see SI section V). We test the perfor-

mance of contact-modulated (CM) myriapods over rugose terrain and observe improved

locomotion robustness over terrain rugosity with some sacrifice of nominal velocity vopen

(Fig. Figure 7.4 in purple rectangle box). Further, using the framework as well as con-

tact modulation our myriapod robot is capable of traversing diverse laboratory (obstacles,

slopes and walls) experiments (Fig. 1.c.1 and in SI movie) and field-like environments

(granular media, pebbles, and rock piles) with completely open loop operations.

These experiments reveal that a value of our framework lies in its robustness over

contact errors, in contrast to contact error prevention as in the conventional sensor-based
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closed-loop controls which take advantage of visual, tactile, or joint torque information

from the environment to effect a change in dynamics of the robot [3, 111]. Similar to error

correction codes in signal transmission, redundancy in matter transportation is sufficient to

bound the uncertainty from (contact) noise, which explains the robust performance of our

myriapod robots. In this way, the complexity of matter transport can be transferred from

the real-time feedback-based control (e.g., dealing with the flow of sensor information) to

premeditated gait design. Despite the challenges in gait design with high dimensionality,

our framework simplifies matter transport tasks such as search-and-rescue [254], extrater-

restrial exploration [255] or even micro-robotics [256], where robot deployments are often

preferred yet challenging due to unpredictable terradynamic interactions and unreliable

sensors.

In addition to the importance of self-transport in artificial locomotors, we posit that our

matter transport framework can give insights into aspects of neuromechanical and morpho-

logical evolution [206] from a living systems physics perspective. That it, animals ranging

from those which generate propulsion via a single bac pair (i.e., bipeds) [257, 258] to those

which utilize many bacs (i.e., myriapods) [259] are capable of traversing complex natural

terrains. Interestingly, the importance of environmental awareness and whole body coor-

dination is hypothesized to diminish as the number of bacs (redundancy) increases [260,

261]. Thus, in biological terrestrial locomotors there appears to be a shift towards ei-

ther advanced neuromechanical control with reduced body appendages, or redundant body

appendages with simplified neuromechanical control. Integration of our framework with

advances in biological experimentation [2, 262] could yield insights into benefits and trade-

off of diverse control architectures [1].
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Supplement Information

Terrain construction

To systematically emulate rugose terrains, we used stepfields in accordance with NIST

standards for assessing search-and-rescue robot capabilities [252]. Each block is a 10 by

10 cm square with a height between 0 and 12 cm in 1 and 2.5 cm increments for the terrains

with rugosity Rg = 0.17 and Rg = 0.32, respectively. The number of blocks associated with

each height was determined from a normal distribution generated in MATLAB with a mean

(µ) and standard deviation (σ) of 6.0 and 2.0 cm for the Rg = 0.17 terrain and 6.25 and 4

cm for the Rg = 0.32 terrain. We truncate these distributions between 0 and 12 cm using

MATLAB’s truncate() command such that we avoided negative heights in our model and

extreme heights when physically constructing these terrains. We formed these blocks out

of foam (FOAMULAR Insulating Sheathing (IS) XPS Insulation) and laid them spatially

across a 2D grid of size W,H where (W,H) = (80, 160) cm for the Rg = 0.17 terrain and

(50, 300) cm for the Rg = 0.32 terrain.

We placed the blocks such that we would avoid extreme height differences (≥ 8 cm) as

that would require active lifting across the body and would thus classify these terrains as a

different form of noise than we wish to test. The procedure we followed is detailed below.

The original code can be found in 3.

We denote the starting height distribution of blocks as H0, the total number of blocks as

N, and the distribution after some number M of blocks have been placed as HM. We begin

the act of populating the grid by placing a block of 0 height at location (1, 1). That forms our

base case that allows to implement the more general process of determining arbitrary block

height after M blocks have been placed. To determine what height the M + 1 block should

be at a location (x, y), we look to each neighboring block of that position according to a

Manhattan distance metric. These block heights are denoted as h1, h2, h3, and h4. Note that

3https://doi.org/10.5281/zenodo.7121219
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along the edges of the grid when x, y = 0 or W,H respectively, there will be less neighbors

according to how many edges this (x, y) location touches and we denote the total number

of neighbors as n. We then generate n distributions of height differences by subtracting

these neighboring block heights from the remaining height distribution and denote these

new distributions as ∆i where ∆i = HM − hi = δ1, δ2, ..., δM. From these sets, we discard

all |δi| ≥ δlim where δlim is our chosen height difference limit of 8 cm. These new sets are

denoted as ∆i,s. We then add the corresponding neighboring block height to each of these

sets (Hi,s = ∆i,s + hi) and generate a final set of heights HM, f made up of heights that appear

within each Hi,s (HM, f = H1,s & H2,s & H3,s & H4,s). From HM, f , we uniformly

randomly choose a height and place that at location (x, y). We repeat this process until the

grid is populated, iterating along x until W is met after which y is incremented by 1 and x

is reset to 0.

Robophysical experiments

Modular design

To verify our theoretical predictions with robophysical experiments, we build a multi-

legged robotic system. The robot was 3D-printed by Taz Workhorse and the printing ma-

terial is PolyLite PLA. AX-12A and 2XL430-W250 motors control body undulation, and

limb retraction/protraction. The overall robot is composed of multiple repeating modules

(Fig. Figure 7.5a). Each module has three degrees of freedom (DoF): the shoulder lifting

joint that controls the contact states of contralateral legs, the shoulder retraction joint that

controls the fore/aft positions of leg movements, and the body bending joint that controls

the lateral body undulation. Specifically, a leg up/down servo motor and a leg swing motor

control the limb stepping and are connected by a hip connector (Fig. Figure 7.5b). Those

limb motors are connected with a body undulation motor with a undulation connector. The

limb lifting connector which contains fishing lines (yellow lines in Fig. Figure 7.5a) con-

necting the up/down motor to the legs. Each leg is hinged to the hip connector using a
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Figure 7.5: Robophysical model. (a) CAD of one module of the robot. The legs are out-
of-phase and their up/down and fore/aft positions are controlled by two AX 12A motors.
The body motor (2XL 430) controls the lateral undulation of the body. Body angle and
legs are coupled to each other with a hip and a undulation connector. Inset shows the max
lifting angle (60◦) of the leg. (c) Overall sketch of a 12-legged robot.

rigid DoF revolute joint whose rotation axis is parallel to the fore/aft direction. The legs

can lift up to 60◦ from their neutral position which corresponds to a maximum lift of about

7cm above the ground (see the inset of the Fig. Figure 7.5a). The leg lifting angles can

be modulated by controlling the up/down motor. The leg swing angle, θ, and the lateral

body angle, α, are actively controlled by a leg swing motor and a body undulation motor

(Fig. Figure 7.5b). The final design of a module (length = 15 cm) with three servos is given

in Fig. Figure 7.5. This modular design allows us to readily change the number of the

modules (and legs) of the robot. We perform experimental verification of our prediction

model by changing modules of the robophysical model (3 to 8 modules corresponding to 6

to 16-legged robotics system).

Leg compliance design

Inspired by real centipede animals, we leverage rubber bands (1/4 LB) to design two types

of leg compliance to minimize the parallel force disturbance. The first intelligent design is

an inward leg compliance (Fig. Figure 7.6a). Rubber bands connect legs and hip joint con-

nector, and support the body weight of each robot module by drag forces. The contralateral

legs from the same module are 180◦ out of phase with each other. Instead of indepen-

dently actuating two legs, this inward compliance can couple two legs with only one motor.
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Figure 7.6: Leg compliance design.(a) Working principle of inward compliance. Return
rubber bands connect legs and the hip connector. Drag forces from rubber bands support the
weight of each module of the robot. Rubber bands also recover the lifted leg to its neutral
position when the leg up/down motor stops lifting. (b)Working principle of the directional
flexible (bends from head to tail) leg with a return rubber band. The leg approaches the
obstacle, pivots around the tip, and bends. After it passes the obstacle, the rubber band
returns the leg to its neutral position. Black arrow indicates the moving direction of the
robot.

Fig. Figure 7.6a shows an example of how this design works. The up/down motor rotates

and fastens fishing line to lift the right leg. Then the motor return to its neutral position

whereas the return rubber band drags the right leg down to its neutral position.

The second compliance design is the longitudinal leg compliance. This design enables

the leg to passively bend when hitting obstacles and subsequently slide on obstacles to

pass (Fig. Figure 7.6b). The return rubber band together with a rotation pivot connect the

upper part and lower part of a leg. The lower part bends passively when hitting an obstacle,

then the leg can slide on the obstacle and finally pass it. After passing, return rubber band

recovers the lower part to its neutral position.

Programming and control

We use the Dynamixel SDK library to develop control code for our robophysical model

and finish programming in MATLAB. The PC input control signals to the robot via Robotis

U2D2 while a DC power supply HY3050E provides power for the motors (Fig Figure 7.7).

The voltage of the power supply is set as 11.1 V which is the recommended input voltage
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Figure 7.7: Robot connection. The PC input control signals to the robot via a Robotis
U2D2 USB communication converter. A DC power supply HY3050E provides power for
the motors.

of AX 12A and 2XL430-W250 motors.

Robophysical experiment tracking

We use 4 OptiTrack prime 13w cameras to track the movement of the robot, collect, and

analyze experimental results. Four cameras are mounted on tripods and are placed at each

corner of the robot testing arena (Fig. Figure 7.8). The tracking system is calibrated by

a CW-500 Calibration Wand Kit and a CS-400 Calibration Square. Markers are mounted

on the top of each leg’s up/down motor for capturing. We use Motive as motion capture

software to collect tracking data.

Contact duration

We manually measure contact duration from the side-view recording of the robot experi-

ments on rugose terrains. We identify the duration of any “missing steps” of all legs on

the same side and then approximate the contact duration. In Fig. Figure 7.9, we illustrate

a snapshot of a side-view video and label the missing steps using blue arrows. The cumu-

lative distribution functions of empirically measured contact duration are illustrated in the

bottom panel of Fig. Figure 7.9.
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Figure 7.8: Tracking system setup. (a). Four 4 OptiTrack prime 13w cameras are fixed on
tripods and placed at each corner of the testing arena for tracking. (b). A 12-legged robot
mounted with markers.

Figure 7.9: Contact error. (Top) Side view of robot on rugose terrain. Missing steps
are identified in blue arrows. (Bottom) Cumulative distribution functions of empirically
measured contact duration for (green) lower rugose terrain with Rg = 0.17 and (black)
higher rugose terrain with Rg = 0.32
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Contact planning

We use a binary variable c to represent the contact state of a leg, where c = 1 represents the

stance phase and c = 0 represents the swing phase. Following [253], the contact pattern of

robophysical model with N pairs of legs can be written as

cl(τc, 1) =


1, if mod(τc, 2π) < 2πD

0, otherwise

cl(τc, i) = cl(τc − 2π
ξ

N
(i − 1), 1)

cr(τc, i) = cl(τc + π, i), (7.3)

where ξ denotes the number of spatial waves on legs, D the duty factor, cl(τc, i) (and

cr(τc, i)) denotes the contact state of i-th leg on the left (and the right) at gait phase τc,

i ∈ {1, ...N} for 2n-legged system.

Legs generate self-propulsion by protracting during the stance phase to make contact

with the environment, and retracting during the swing phase to break contact. That is, the

leg moves from the anterior to the posterior end during the stance phase and moves from

the posterior to anterior end during the swing phase. With this in mind, we use a piece-

wise sinusoidal function to prescribe the anterior/posterior excursion angles (θ) for a given

contact phase (τc) defined earlier,

θl(τc, 1) =


Θleg cos ( τc

2D ), if mod(τc, 2π) < 2πD

−Θleg cos ( τc−2πD
2(1−D) ), otherwise,

θl(τc, i) = θl(τc − 2π
ξ

N
(i − 1), 1)

θr(τc, i) = θl(τc + π, i) (7.4)
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where Θleg is the shoulder angle amplitude, θl(τc, i) and θr(τc, i) denote the leg shoulder

angle of i-th left and right leg at contact phase τc, respectively. Note that the shoulder

angle is maximum (θ = Θleg) at the transition from swing to stance phase, and is minimum

(θ = −Θleg) at the transition from stance to swing phase. Note that we chose D = 0.5 unless

otherwise mentioned.

We then introduce lateral body undulation by propagating a wave along the backbone

from head to tail, The body undulation wave is

α(τb, i) = Θbodycos(τb − 2π
ξb

N
(i − 1)), (7.5)

where α(τb, i) is the angle of i-th body joint at phase τb, ξb denotes the number of spatial

waves on body. For simplicity, we assume that the spatial frequency of the body undulation

wave and the contact pattern wave are the same, i.e. ξb = ξ.

In this way, gaits of multi-legged locomotors by superposition of a body wave and a leg

wave can be described as the phase of contact, φc, and the phase of lateral body undulation

τb. As discussed in [253], the optimal body-leg coordination (optimal phasing of body

undulation to assist leg retraction) is φc = τb − (ξ/N + 1/2)π. In this paper, we took

Θleg = π/6, Θbody = π/6, ξ = N/6 for all experiments.

Gait design and bac kinematics

We consider the myriapod gaits following the prescriptions above. The instantaneous thrust

is given by [235]:

f (t) = sin
(

tan−1 vy(t)
vx(t)

)
if t ∈ (0, τ)

where
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Figure 7.10: Contact modulation. Snapshots of (a) top view and (b) side view of contact
modulated gaits. Note that for modules in the concave part of the vertical wave (labelled in
red arrow), both legs are not in contact with substrate because of contact modulation. We
also label the modules in concave part of vertical wave in the top view.

vx(t) = xm cos(2π
t

2τ
) − lγm sin(2π

t
2τ

) sin(γm cos(2π
t

2τ
))

vy(t) = lγm sin(2π
t

2τ
) cos(γm cos(2π

t
2τ

))

γm = tan−1 (2πξxm) + Θleg

xm = NΘbody/(4π2ξ2)

Note that l is the ratio between leg length and body length. For modules with fixed leg

length, we have l =
lleg

Nlbody
, where lleg is the length length and lbody is the module length.
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In our framework, we consider the case where t > τ (e.g., τu + c1 > τ). In those cases,

we define the actual bac to have two segments: [0, c1 + τu − τ] ∪ [c1, τu]. In this way, we

define f (t) to be periodic: f (t) = f (t + kτ), k ∈ Z.

Proposition: f (t) is invariant of N.

Proof. By re-arranging the definition of xm, we find

γm = tan−1 (6Θbody/(π)) + Θleg,

which is invariant of N.

Also from algebra, we have:

vx(t) = xm cos(2π
t

2τ
) − lγm sin(2π

t
2τ

) sin(γm cos(2π
t

2τ
))

=
9Θbody

π2N
cos(

πt
τ

) −
γmlleg

Nlbody
sin(

πt
τ

) sin(γm cos(
πt
τ

))

=
1
N

gx(t),

where gx(t) is a function that does not depend on N.

Similarly, we have:

vy(t) = lγm sin(2π
t

2τ
) cos(γm cos(2π

t
2τ

))

=
lleg

Nlbody
γm sin(2π

t
2τ

) cos(γm cos(2π
t

2τ
))

=
1
N

gy(t),

where gy(t) is a function that does not depend on N.

In all, we find that vy(t)
vx(t) is invariant of N, which implies that f (t) is invariant of N.

�

The nominal velocity, vopen has the following property:
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∫ τ

0
sin

(
tan−1 vy(t) − vopen

vx(t)
)
dt = 0.

Proposition: The absolute velocity is invariant of N.

Proof. Note that vopen has units of body lengths per cycle. The body length is given by

Nlbody. Therefore the absolute velocity is given by vabs = vopen × Nlbody.

In this way, we have:

∫ τ

0
sin

(
tan−1 vy(t) − vopen

vx(t)
)
dt

=

∫ τ

0
sin

( 1
N gy(t) − 1

N
vabs
lbody

1
N gx(t)

)
dt

=

∫ τ

0
sin

(gy(t) − vabs
lbody

gx(t)
)
dt = 0.

since both gx(t) and gy(t) are invariant of N, we know that vabs is also invariant to N. �

The thrust-velocity relationship is given by:

f̃ − fn =
1
τ

∫ τ

0
sin

(
tan−1 vy(t) − v

vx(t)
)
dt,

where fn = 1
τ

∫ τ

0
sin

(
tan−1 vy(t)

vx(t)

)
dt is the nominal thrust.

Contact modulation

We modulate the contact duration by imposing an vertical wave. The vertical wave is

implemented by vertical joints αv(i). The vertical wave and lateral wave are coupled as the

following:

αv(τb, i) = Θvcos(2τb − 4π
ξb

N
(i − 1)), (7.6)
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such that the vertical wave has spatial frequency twice that of the lateral wave. The mod-

ules in the concave part of the vertical wave are lifted off the ground (Fig. S6) such that

both legs are not in contact with substrate. The contact modulation follows similar coordi-

nation as the sinus lifting as discovered in snakes [146]. Snapshots of contact modulation

is illustrated in Fig. Figure 7.10.

Convergence proof

The sign function sign(x) is defined as the following:

sign(x) =



1, if x > 0

0, if x = 0

−1, if x < 0

Proposition: f̃ = sign(τu)τ−1
u fu, as defined in Eq. 1, is sampled from a probability

density function, and

f̃ [1]
T = 1

T

∑T
i=1 f̃ tends to a Dirac delta function as T tends to infinity.

Proof. This follows from the central limit theorem [263]. f̃ [1]
T represents a sum of T identi-

cal random variables, each having finite variance independent of T . Say that Var( f̃ ) = σ2.

Then f̃ [1]
T has variance given by Var(XT ) = σ2/T This variance limits to 0 as T approaches

infinity, which implies that XT is a constant random variable with probability 1. �

Proposition: Consider f̃ [N]
T , as defined in Eq. 2. Define f̃ [N] = f̃ [N]

1 . As N tends to

infinity, f̃ [N] tends to a Dirac delta function. 〈 f̃ [N]〉 can be approximated by (1−bN)C when

N is large, where C is a constant determined by f (t) and b.

Proof. Now we consider the complete missing step in Eq. 2. The probability of complete

missing step (
∑N

j=1 τ
j
u = 0) is then bN . Recall that p(τu ≤ 0) is given by G(0), and the

definition of G precedes Eq. 1 in the text. Thus, 〈 f̃ [N]〉 can be expressed by:
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〈 f̃ [N]〉 = bN × 0 + (1 − bN)
〈∑N

j=1 f j
u∑N

j=1 τ
j
u

〉
(7.7)

We can then simplify Eq. S5 into:

〈 f̃ [N]〉 = (1 − bN)
〈 1

N

N∑
j=1

f j
u

〉〈 N∑N
j=1 τ

j
u

〉
= (1 − bN)〈 fu〉

〈 N∑N
j=1 τ

j
u

〉
(7.8)

In the cases where N is large, the following approximation exists [264]:

〈 N∑N
j=1 τ

j
u

〉
≈ 1/〈τu〉. (7.9)

From the distribution of τu, we have: 〈τu〉 = 1−b
2 τ. With the approximation in Eq. S7, we

have:

〈 f̃ [N]〉 ≈ (1 − bN)
2〈 fu〉

(1 − b)τ︸   ︷︷   ︸
C

(7.10)

Now we consider the variance. We define a random variable Z as follows:

Z =

∑N
j=1 f j

u∑N
j=1 τ

j
u

=

1
N

∑N
j=1 f j

u

1
N

∑N
j=1 τ

j
u

. (7.11)

We notice that as N approaches infinity, both the numerator and the denominator con-
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verge to a normal distribution, by the weak law of large numbers.

Z →
〈 fu〉 + x f

〈τu〉 + xτ

x f ∼ N(0,
σ( fu)
√

N
)

xτ ∼ N(0,
σ(τu)
√

N
) (7.12)

As N approaches infinity, we have 〈 fu〉 >> x f and 〈τu〉 >> xτ, therefore Eq. S10 reduces

to:

Z →
〈 fu〉

〈τu〉
+

x f

〈 fu〉
−

xτ
〈τu〉

, (7.13)

which will approach a Dirac delta function centered at 〈 fu〉
〈τu〉

. The random variable Z is related

to f̃ [N] in that:

p( f̃ [N] = 0) = bN

p( f̃ [N] = Z) = 1 − bN . (7.14)

Note that bN → 0 as N → ∞, because b < 1. Hence f̃ [N] also converges to a Dirac delta

function centered at Cs =
〈 fu〉
〈τu〉

as N approaches infinity. �
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CHAPTER 8

CONCLUSION

8.1 Summary

This thesis advanced the geometric mechanics theory and applied it to various locomo-

tors across scales. Surprisingly, many seeming complicated biological and robotic systems

(e.g., undulatory snakes and fast-walking centipedes) can be described by geometric me-

chanics framework, where the inertial effect is assumed to be negligible. Despite the rela-

tively high speed (e.g., ∼ 0.5 body length/second in centipedes), we show that the geometric

theory can still capture the essence of locomotion, especially at steady-state equilibrium.

We used geometric mechanics analysis to connect the biological observations and the

robot controls. On the one hand, with the illustrative diagram (height function), geomet-

ric mechanics can rationalize the seeming complicated animal behaviors (e.g., differential

turns in sidewinder snakes) with simple parameterization. On the other hand, using the ge-

ometric mechanics as a model, we can systematically investigate the relationship between

the morphological details (what they have) and locomotion strategy (how they move). With

insights from geometric mechanics, we can use robot experiments to test behaviors which

are less commonly observed in biological systems (e.g., traveling wave and standing wave

in intermediate lizards), thereby verifying the hypothesis of animal locomotion behaviors.

In Chapter 2, we used geometric mechanics to study the optimal amplitude for undu-

latory limbless locomotion across scales, from nematodes in microscopic scale to snakes

in macroscopic scale. The predictions from geometric mechanics are in quantitative agree-

ment with the measurement in biological experiments. Further, with the introduction of

contact function, we not only predicted the optimal lateral wave amplitude in sidewinders,

but also revealed a turning modulation scheme for steering during differential turn.
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In Chapter 3, we advanced geometric mechanics to legged systems. We first studied

quadruped with a single body bending DoF. We showed that properly coordinated body

bending can improve locomotion performance in forward, sideways, and rotational mo-

tions. Our geometric mechanics prediction is also in quantitative agreement with measure-

ment in fire salamanders.

In Chapter 4, we further studied the body-leg coordination in short-limb elongate lizards.

Lizards have evolved a diversity of body forms from fully limbed and short-bodied to limb-

less and elongate. We showed that this diversity in morphology coincides with a similar

diversity in locomotion patterns, ranging from standing wave to traveling wave body un-

dulation. We observed that the degree of body elongation and limb reduction were closely

related to how the body and limb movements were coordinated, indicating an intercon-

nected morphological and locomotor continuum. Using biological experiments, a geomet-

ric theory of locomotion, and robophysical experiments, we showed that the body weight

distribution between the limbs and the body (and therefore, the primary thrust generation

mechanism) plays a crucial role in the locomotor transition from fully limbed to limbless.

Specifically, we found that fully limbed lizards adopted a traveling wave to undergo terres-

trial swimming when the penetration resistance of the substrate was reduced and the belly

contracted the medium. Further, our robophysical experiments revealed that a traveling

wave enhanced locomotor performance only when some thrust was generated by the body.

In Chapter 5, we developed a general gait design framework for a broad class of lo-

comotors: multi-legged robots (with an arbitrary number of pairs of legs) with an articu-

lated backbone, including limbless sidewinding. Specifically, we extended the Hildebrand

gait formulation [17, 96], originally used to categorize symmetric quadrupedal gaits, and

combined it with modern geometric mechanics tools to investigate optimal leg-body coor-

dination. We showed that the symmetry in Hildebrand quadrupedal gaits is conserved for

other locomotors. The framework is not only simple enough to enable physical interpreta-

tion of the gait parameters; but also covers a range of potentially interesting gaits, offering
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a scheme to modulate gaits in a diversity of robot shapes. Furthermore, our framework

facilitated testing hypotheses about the role of body undulation in multi-legged systems.

Specifically, we found that in robots with a fixed straight backbone, the displacement per

gait cycle is nearly invariant to the changes in the lateral phase lag, Φlat. On the other hand,

in gaits where body undulation is properly coordinated with leg motions, Φlat affects the

displacement. This seemingly counter-intuitive observation can help us develop hypotheses

about gait modulation principles. Finally, our proposed control principles can also offer ex-

planatory power to some hypotheses about body-leg coordination in biological locomotion

(Salamandra salamandra and Scolopendra polymorpha).

In chapter 6, we studied slipping in terrestrial locomotion using an RFT framework.

Specifically, we studied slipping in centipede terrestrial swimming, and established a frame-

work to analyze the causal relationship between slipping and locomotion performance.

Furthermore, our framework connected the studies of locomotion in continuous media to

terrestrial environments. Specifically, we showed that by properly controlling the lifting

and landing of contralateral feet (and thus the slipping direction), terrestrial locomotors

can acquire drag anisotropy and effective viscous friction in the environments dominated

by isotropic, rate-independent Coulomb friction. Finally, we systematically compared the

performance of slip-driven (body-dominated) locomotion and the reduced slipping (con-

ventional leg-dominated) locomotion. We noticed that the advantage of body-dominated

swimming in continuous media (the capability to benefit from terrain heterogeneity to aid

locomotion [239, 150, 240, 241]) preserved in terrestrial environments. Specifically, we

established a performance space of terrestrial swimming, and compared its performance in

homogeneous and heterogeneous environments by robophysical experiments. Further, we

used our framework to discover and rationalize the relationship between the slipping and

behavior in biological multi-legged locomotors. In doing so, we discovered a new regime

of effective locomotion in terrestrial environments revealing its advantage in high-speed

regime and in obstacle-rich environments.
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In Chapter 7, we illustrated that the redundancy in legs can be sufficient to counter the

terrain roughness without environmental awareness. The value of our framework lies in

its robustness over contact errors, in contrast to contact error prevention as in the conven-

tional sensor-based closed-loop controls which take advantage of visual, tactile, or joint

torque information from the environment to effect a change in dynamics of the robot [3,

111]. Similar to error correction codes in signal transmission, redundancy in matter trans-

portation is sufficient to bound the uncertainty from (contact) noise, which explains the

robust performance of our myriapod robots. In this way, the complexity of matter transport

can be transferred from the real-time feedback-based control (e.g., dealing with the flow

of sensor information) to premeditated gait design. Despite the challenges in gait design

with high dimensionality, our framework simplified matter transport tasks such as search-

and-rescue [254], extraterrestrial exploration [255] or even micro-robotics [256], where

robot deployments are often preferred yet challenging due to unpredictable terradynamic

interactions and unreliable sensors.

8.2 Future work

8.2.1 Connection morphology to locomotion

There is generally believed that the morphology of a locomotor (what they have) can af-

fect their locomotion strategy (how they move) [15, 32, 206]. Below are a few possible

directions to be pursued in future study.

Small surface features in biological systems can have significant and diverse functional

consequences [265]. For example, the structurally anisotropic texture in snake skins can

provide drag anisotropy which benefits the undulatory motion [103]. Note that such drag

anisotropy in snakes has the property with lower resistive force to slide longitudinally than

to slide laterally. To quantify such anisotropy, we define da as the ratio between resistive

force in lateral direction and the longitudinal directions. Apparently, da in snakes is greater

than 1. However, in legged systems, it is commonly believed that the skin structures should
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have higher resistive force in longitudinal direction to avoid slipping [266]. That is, da in

legged systems is typically less than 1.

Unfortunately, the function of lizard limb structural texture on locomotion is less stud-

ied. Our primary geometric simulation suggested that da < 1 is beneficial for lizards with

long legs. We hypothesize that as the size of limb decreases, the structural texture of limb

should also change accordingly to generate the maximum self-propulsion.

Furthermore, sand swimming in sandfish the lizard no longer uses limbs for propul-

sion [72]. Instead, the limbs are folded as if it is one part of the undulatory body. Now that

the limbs are immersed in sands, there is a emerged property of da > 1 due to the property of

the granular media. The subtle difference between terrestrial-running and sand-swimming

lizards is the duty factor: the fraction of a period that a limb is in contact with the substrate.

The duty factor in terrestrial-running lizards is typically around 0.5. However, for sand

swimming lizards, the quantification of duty factor can vary according to our definition of

limb contact. If we define the limb contact as to provide additional thrust, then limbs of

sand swimming lizards have duty factor 0; if we define the limb contact as to experience

reaction force from interactions with substrates, then limbs of sand swimming lizards have

duty factor 1. Our primary geometric model suggests that the importance of duty factor can

be modulated by da. In the case where da ∼ 1, locomotion performance will be sensitive to

the choice of duty factor: typically lower duty factor leads to higher speed [17]. In the case

where da � 1, the locomotion performance will be robust over the choice of duty factor.

Inspired by this observation, we hypothesize that the duty factor also plays an important

role in the correlation between limb size and structural texture.

8.2.2 Coding in matter transportation

In Chapter 7, we discussed the sufficiency to use spatially redundant modules to counter

terrain rugosity. The rugosity is one of many challenges from natural complex terrains. In

future work, we aim to extend the redundancy framework towards more general challenging
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natural terrains.

Contact errors can have two types: unexpected contacts and missing steps. The loco-

motion response to these two types of errors are often different: unexpected contacts can

introduce additional drag resistance whereas missing steps lead to thrust deficiency. For ex-

ample, on rigid terrestrial surfaces, most contact errors result from missing steps. Whereas

in complex natural substrates such as sand, dirt, and pine straw, it is often challenging

to completely break contact with substrates and therefore unexpected contacts are likely

inevitable.

Notably, robust locomotion over complex natural substrates with characteristic unex-

pected contact is particularly challenging. Our preliminary work showed that locomotion

efficiency on loosely-packed granular media has been compromised for both conventional

limbless and legged locomotors. We hypothesize that the compromised locomotion can be

a result of poor robustness over unexpected contact from mechanical design.

In future work, we propose to establish a gait library where we can choose suitable

gaits for environments with different contact error with different noise levels. While the

multi-legged robot requires less complexity for environmental interactions, redundant legs

introduce high-dimensional internal coordination space (e.g., joint angles and contact pat-

terns). In other words, to fully exploit the potential in multi-legged robots, we require a

systematic gait design framework to coordinate the high-dimensional internal degree-of-

freedoms (DoF). Therefore, in future work we can use a geometric mechanics framework

to design a gait library ranging from low nominal speed but robust over noises to high

nominal speed but sensitive to noises.

If we extend the analogy with information theory, then every pre-planned contact pat-

tern corresponds to a binary code of dimension given by the number of legs of the robot.

Specifically, a leg that is planned to make contact will be encoded as 1, and a leg that is not

planning contact with the terrain is encoded as 0. The realized locomotion of this robot is

analogous to transmitting the binary code over a noisy channel. To wit, the variations in
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terrain height introduce channel noise, and every contact error corresponds to a “bit-flip”

in this model. We then model channel noise as a stochastic process; a model terrain can

be generated by sampling heights from a probability density function, and these terrain

heights give some probability of introducing a contact error. The problem of robotic gait

design now becomes a problem of encoding leg contact patterns. This formulation gives a

lower bound on the amount of redundancy needed in the contact pattern, and this bound is

formulated in terms of the entropy of the terrain [112]. The main benefit of this reformula-

tion is that we can estimate the amount of redundancy required by computing the entropy

of a randomly generated terrain.
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