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Abstract— In a geometric mechanics framework, the con-
figuration space is decomposed into a shape space and a po-
sition space. The internal motion of the system is prescribed
by a closed loop in the shape space, which causes net motion
in the position space. If the shape space is a simply connected
domain in an Euclidean space, then with an optimal choice
of the body frame, the displacement in the position space is
reasonably approximated by the surface integral of the height
function, a functional relationship between the internal shape
and position space variables. Our recent work has extended
the scope of geometric methods from limbless undulatory
system to those with legs; interestingly, the shape space for
such systems has a torus structure. However, to the best
of our knowledge, the optimal choice of the body frame on
the torus shape space was not explored. In this paper, we
develop a method to optimally choose the body frame on the
torus which results in good approximation of displacement
by the integral of the height function. We apply our methods
to the centipede locomotion system and observe quantitative
agreement of our prediction and experimental results.

I. Introduction
Recently, the geometric mechanics framework [2], [3],

[4] has been successfully applied to study various loco-
motion behaviors, including limbless locomotion [3], and
legged locomotion [5]. In this framework, the motion
of a self-propelling system is separated into a shape
space (the internal joint-angle space) and a position
space (position and orientation of a locomotor in the
world frame). A gait then maps closed loop path in the
shape space to displacement in the position space. To
visually analyze the gait, Shammas et. al [6] numerically
calculated the height function over the shape space and
approximate displacement by the integral of the height
function over the area enclosed by the gait path.

The integral of the height function provides an ap-
proximation, but is not exact, because the system’s
position space is SE(2) whose group structure is not
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Fig. 1. Gait diagram of the retrograde-wave of scolopendra
polymorpha (top) and direct-wave of Scolopocryptops sexspinosous
(bottom). Filled blocks represent stance phase, open blocks repre-
sent swing phase.

commutative. In other words, translation and rotation
motion, in the plane, are separately commutative (i.e.
motion in x and then y, is the same as motion in y
and then x, or rotation in θ1 followed by rotation in
θ2 is the same as rotation in θ2 followed by rotation
in θ1), but when combined, translation and rotation
motion do not commute. More technically, the choice of
an optimal frame mitigates the non-commutative effects
of motion making the integral of the height function is
good. Instead, the displacement in the position space
should be described as the sum of the height function
integral, the Lie bracket term [2] and higher order terms.
It was shown in [2], [4] that when the shape space is a
simply connected domain in the Euclidean space, the Lie
bracket term and higher order term can be minimized
by optimally choosing a body frame.

Recent work extended geometric mechanics framework
to torus shape spaces [7], which allowed for study of a
broader range of locomotors. For example, Ozkan-Aydin
et. al, [1] applied the work of Gong et. al. [7] to study
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Fig. 2. Animal and robot centipede on flat terrain. (a) The North American centipede (Scolopendra polymorpha) is locomoting on a
flat terrain with a retrograde body wave (propagating in the opposite direction of movement).Red dots show the points of contact with
the ground. (by the courtesy of P. Schiebel, M. Brown and J. R. Mendelson III) (b) Robophysical model of a centipede. The robot has
eight segments with a pair of legs in each (see [1] for the details). The lateral undulation of the body is controlled by body servos.

centipede locomotion and design gaits to coordinate
the lateral body undulation and the leg movements.
However, the work in [7] did not consider reducing the
Lie bracket effect for the torus shape space, which may
lead to inaccurate prediction of the displacement by the
surface integral of the height function. For instance, the
surface integral of the height function in [1] did not agree
quantitatively with the experimental data.

In this paper we introduce a numerical method for
finding the optimal body frame on the torus to minimize
the Lie bracket effect. We demonstrate the usefulness
of this procedure with refined analysis of centipede
locomotion. A careful study of centipedes suggested
that the centipede locomotion can be classified into two
groups (see Fig. 1) [8], [9], [10]: the direct-wave (the leg
wave propagates from tail to head) and the retrograde-
wave (the leg wave propagates from head to tail).

Experiments in [1] (see Fig. 2 and 3) showed that
retrograde-wave locomotion results in higher forward
speed. However, the surface integral over the height
functions in [1] does not distinguish between the speeds
in direct-wave and retrograde-wave locomotion. We show
numerically that an optimal choice of the body frame not
only predicts higher forward speed for retrograde-wave
centipedes, but also leads to the quantitative agreement
between the surface integral and the experimental data.

This paper is organized as follows: in Section II we
describe the optimization problem mathematically, then
in Section III we describe the procedure of approximating
the optimal body frame using the finite-element method.
In Section IV we apply our optimization procedure to
study the centipede locomotion and show that our pre-
dictions have quantitative agreement with experimental
robot results of [1]. Finally in Section V, we consider the
efficiency and generalizations of our method.

II. The Problem
A. Background

In this section, we provide a concise overview of the
geometric tools needed for this paper. For a more detailed
and comprehensive review, we refer readers to [7], [2], [4].

In kinematic systems where the inertia is negligible in
the system, the equations of motion [11] reduce to

ξ = A(r)ṙ, (1)

where ξ = [ξx ξy ξθ]
T denotes the body velocity in

forward, lateral, and rotational directions in the desig-
nated body frame; r denotes the internal shape variable;
A(r) is the local form of the connection matrix that
relates shape velocity ṙ to body velocity ξ. Often, for
simplicity of visualization, we assume that the shape
variable is two dimensional, i.e., r = (r1, r2)

T . Note
that the local form of the connection, A(r), depends
on the choice of the body frame. (1) is also called the
kinematic reconstruction equation and maps the changes
in internal shape variables (joint angles) to changes
in group variables (position and orientation) of the
robot. Prior work [3] has shown that numerically derived
local form of the connections using granular resistive
force theory (RFT) can effectively predict movements
in granular media. In this paper, we model the robot-
ground contact by anisotropic Coulomb friction [12], [13],
from which we numerically derive the local form of the
connections.

Each row of the local form of the connection matrix
A corresponds to a component direction [3] of the body
velocity and therefore gives rise to a connection vector
field. The body velocities in the forward, lateral and
rotational directions are respectively computed as the
dot product of connection vector fields and the shape
velocity ṙ. A shape velocity ṙ along the direction of
the vector field yields the largest possible body velocity,
while a shape velocity ṙ orthogonal to the field produces
zero body velocity.

A gait can be represented as a closed curve in the
corresponding shape space. The displacement resulting
from a gait, ∂χ, can be approximated by the body
velocity integral:∆x

∆y
∆θ

 ≈
∫
∂χ

A(r)dr. (2)
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According to Stokes’ Theorem, the line integral along
a closed curve ∂χ is equal to the surface integral of the
curl of A(r) over the surface enclosed by ∂χ:∫

∂χ

A(r)dr =

∫∫
χ

∇ × A(r)dr1dr2, (3)

Fig. 3. Robot experiments on flat hard ground. Snapshots from
the experiments (a) Lateral phase lag (LFL) 0.9 (retrograde) and
(b) LFL 0.1 (prograde) with duty factor 50% of a period T on a flat
particle board. Red dots show the legs on the ground. Red arrows
show the directions of the waves.

where χ denotes the area enclosed by ∂χ.
B. The optimization problem

The third row of the local form of the connection
matrix A(r), Aθ(r), represents the vector field that
gives the rotation. As discussed in [4], the Lie bracket
effect is neglected in the approximation in (1). Hatton et.
al. showed that the Lie bracket effect can be minimized
when the designated body frame is properly chosen [2].
The transformation of body frame orientation can be
interpreted as, replacing the vector filed Aθ(r) by a
new vector field, A′

θ(r) such that the line integral of
A′

θ(r) should be equal to the one of Aθ(r) along any
closed curve in the shape space. By the linearity of line
integrals, Aθ(r) − A′

θ(r) is a vector field whose line
integral along any closed curve is zero. By [14, Thm 2.1,
p.362], Aθ(r) − A′

θ(r) is the gradient of some potential
function, P (r) = P (r1, r2), defined on the shape space.

It is shown in [2] that in the optimal orientation of the
body frame, the norm of the vector field A′

θ is minimized.
Let the vector field Aθ(r1, r2) = (f1(r1, r2), f2(r1, r2))
be the third row of A(r). Since the shape space of
r1, r2 is the standard 2-torus T 2, which we identify with
(R/2πZ) × (R/2πZ) = [0, 2π) × [0, 2π). Now we need
to minimize the ’distance’ between F and the gradient
∇P (r1, r2) of a potential function P (r1, r2) defined on
T 2. For the efficiency of computations, we choose the
L2-norm, and thus our problem becomes:
Problem 1. Given continuous functions f1, f2 defined on
T 2, find a differentiable function P (r1, r2) defined on T 2

such that the integral

∫
T2

[(
f1(r1,r2)− ∂P

∂r1
(r1,r2)

)2
+
(
f2(r1,r2)− ∂P

∂r2
(r1,r2)

)2
]
dr1dr2

(4)
is minimal.

III. The Method
Problem 1 is similar to the Helmholtz-Hodge decom-

position [4, (B5)]. Nonetheless, the torus cannot be em-
bedded into R2, and it is a manifold without boundary,
so the standard Helmholtz-Hodge decomposition does
nor apply. As a result, we cannot directly apply the
decomposition, and our approach to Problem 1 would
be an analogue of the Helmholtz-Hodge decomposition
on the torus.

In practice, we cannot hope to have analytic formulas
for f1, f2. So we need to look for numerical solutions.
Since we only know the values of f1, f2 at finitely
many points in T 2. As a result, we have to discretize
the problem and solve for a discrete approximation of
P (r1, r2).

For suitable n ∈ N, we can decompose [0, 2π)× [0, 2π)
into a mesh of n2 squares, and we focus on the lattices
points

(
2πi
n , 2πj

n

)
, 0 ≤ i, j ≤ n − 1. For sufficiently large

n, the mesh is dense enough, and we try to find the
values of a solution P (r1, r2) at all those lattice points.
For convenience, we denote the side length of squares in
the mesh by u = 2π

n .
Now we apply the finite-element method as in [2]. We

define a family of basis functions ϕi,j such that ϕi,j takes
value 1 at

(
2πi
n , 2πj

n

)
and 0 at all other lattice points.

The motivation of introducing ϕi,j ’s is Lemma 2.

Lemma 2. Suppose P (r1, r2) takes value ci,j at(
2πi
n , 2πj

n

)
. Then at all lattice points

P (r1, r2) =
∑

0≤i,j≤n−1

ci,j · ϕi,j(r1, r2). (5)

Our choice of the basis functions is the following: given
integers 0 ≤ i, j ≤ n−1, for all r1, r2 such that 2π(i−1)

n ≤
r1 < 2π(i+n−1)

n , 2π(j−1)
n ≤ r2 < 2π(j+n−1)

n , we define

ϕi,j(r1, r2) = max

(
1−

∣∣r1 − 2πi
n

∣∣
u

, 0

)

·max

(
1−

∣∣r2 − 2πj
n

∣∣
u

, 0

)
. (6)

Then ϕi,j is well-defined on T 2, only takes value 1 at
the lattice point

(
2πi
n , 2πj

n

)
and takes value 0 at all other

lattice points. In addition, ϕi,j is bilinear within each of
the 4 quadrants around

(
2πi
n , 2πj

n

)
.

Proof of Lemma 2. For any lattice point
(
2πi0
n , 2πj0

n

)
, we

have ϕi,j

(
2πi0
n , 2πj0

n

)
= 1 if i = i0 and j = j0, and ϕi,j =

0 for all other choices of 0 ≤ i, j ≤ n−1. So the right hand
side of (5) equals ci0,j0 · 1 = ci0,j0 = P

(
2πi0
n , 2πj0

n

)
.
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Fig. 4. Comparison of geometric mechanics prediction and the
experimental data in the original frame. (a) The configuration of
the robot in the body body frame (in this case, the head frame)
on the shape space. (b) The vector field of the third row of the
local form the the connection. (c) The forward height function in
the original frame. The blue curve corresponds to the optimal ∂χ
that enclosed the least surface in the upper left corner (shadowed in
solid line) and the most surface in the lower right corner (shadowed
in dashed line). Note that the labels and the axis in (b) an (c) is the
same as in (a). (d) Comparison of the surface integral in the height
function and the experimental data for direct-wave, alternating
tripod and the retrograde-wave gaits.

Fig. 5. Comparison of geometric mechanics prediction and the
experimental data in the optimal frame. (a) The configuration of
the robot in the optimal body frame on the shape space. (b) The
vector field of the third row of the local form the the connection.
(c) The forward height function in the optimal frame. The blue
curve corresponds to the optimal ∂χ that enclosed the least surface
in the upper left corner (shadowed in solid line) and the most
surface in the lower right corner (shadowed in dashed line). Note
that the labels and the axis in (b) an (c) is the same as in (a).
(d) Comparison of the surface integral in the height function and
the experimental data for direct-wave, alternating tripod and the
retrograde-wave gaits.
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For convenience, for any two vector fields G,H defined
on T 2, let their inner product be

⟨G,H⟩=
∫
T2 [G1(r1,r2)H1(r1,r2)+G2(r1,r2)H2(r1,r2)]dr1dr2.

Then D = ⟨Aθ − ∇P,Aθ − ∇P ⟩. Now suppose a
solution P (r1, r2) is expressed as in (5). By the linearity
of ∇ operator,

∇P =
∑

0≤i,j≤n−1

ci,j · ∇ϕi,j . (7)

Since P is a solution, the choice of each ci,j must be
optimal. Then for any 0 ≤ i0, j0 ≤ n− 1, we have

0 =
∂D

∂ci0,j0
=

∂⟨Aθ −∇P,Aθ −∇P ⟩
∂ci0,j0

=
∂⟨Aθ,Aθ⟩
∂ci0,j0

+
∂⟨∇P,∇P ⟩

∂ci0,j0
− 2

∂⟨Aθ,∇P ⟩
∂ci0,j0

= 0 +
∑

0≤i,j,k,l≤n−1

∂⟨∇ϕi,j ,∇ϕk,l⟩ci,jck,l
∂ci0,j0

+
∑

0≤i,j≤n−1

∂⟨Aθ,∇ϕi,j⟩ci,j
∂ci0,j0

= 2
∑

0≤i,j≤n−1

⟨∇ϕi,j ,∇ϕi0,j0⟩ci,j − 2⟨Aθ,∇ϕi0,j0⟩.

Therefore we get n2 linear equations (for all pairs of
0 ≤ i0, j0 ≤ n− 1):∑

0≤i,j≤n−1

⟨∇ϕi,j ,∇ϕi0,j0⟩ci,j − ⟨Aθ,∇ϕi0,j0⟩ = 0. (8)

Now we analyze the linear system (8). The coefficient
matrix is n2 × n2 and sparse.

Lemma 3. Let 0 ≤ i, j, k, l ≤ n− 1 be integers
1) ⟨∇ϕi,j ,∇ϕi,j⟩ = 8u2

3 ;
2) if (i, j) and (k, l) are distinct pairs such that both

i, k and j, l differ by at most 1 modulo n, then
⟨∇ϕi,j ,∇ϕk,l⟩ = −u2

3 ;
3) for all other (i, j) and (k, l), ⟨∇ϕi,j ,∇ϕk,l⟩ = 0.

Lemma 3 follows from direct computations based on
(6).

Proposition 4. The square matrix

A = {⟨∇ϕi,j ,∇ϕk,l⟩}0≤i,j,k,l≤n−1

has rank n2 − 1.

Proof. By Lemma 3, the sum of the column vectors in
A is the zero vector. So the all-one vector 1 belongs to
the null space of A. In addition, by the symmetry and
sparsity of A, there is no other linear dependence among
the column vectors in A, so the rank of A is the size of
A minus the dimension of the null space of A, which is
n2 − 1.

By Proposition 4, the solution space of (8)
has dimension 1. While it is easy to verify that∑

0≤i,j≤n−1 ϕi,j(r1, r2) ≡ 1 for all (r1, r2) ∈ T 2. Hence

any scaling to a solution of ci,j ’s would result in another
solution, and at the level of P (r1, r2) it only differs a
constant with the previous one. So (8) gives a unique
solution of P (r1, r2) up to a constant scaling.

The values of ⟨∇ϕi,j ,∇ϕk,l⟩ could be computed from
(6), and the values of ⟨Aθ,∇ϕi0,j0⟩ can be approximately
computed using the values of Aθ at lattice points near(
2πi0
n , 2πj0

n

)
.

Note that we applied similar approach to determine
the Optimal choice of reference position [2], corresponds
to finding the potential function of the first two rows of
the local form of the connection matrix A(r).

IV. Results

We applied our robot approach to study the body-
leg coordination of centipede locomotion. Biological
centipedes have two distinct locomotion patterns [8],
[9]: the direct-wave (leg wave propagating from tail to
head) and the retrograde-wave (leg wave propagating
from head to tail). The leg wave can be characterized
by leg phase lag L [10], defined as the phase offset
between two consecutive legs on the same side, where
L > 0.5 indicates retrograde wave (fore-leading) and
L < 0.5 indicates direct wave (hind-leading). Note that
L = 0. Retrograde-wave centipedes moving at high
speeds perform a characteristic body undulation, which
is not present in direct-wave centipedes.

In previous work [1], a robophysical centipede model
was built and the contribution of lateral body undulation
to different leg waves was experimentally evaluated [1].
Experiments verified that lateral body undulation has
greater contribution to the retrograde-wave gaits than
the direct-wave gaits.

To study the body-leg coordination, we describe the
centipede leg movements by its phase [5], [15], [7],
denoted as r1 ∈ S1; similarly, we describe the lateral
body undulation by its phase, denoted as r2 ∈ S1.

In the original framework of [7], we chose the head
frame as the body frame (such that the head of centipede
robot is always oriented horizontally, see Fig. 4a) to
numerically calculate the local form of the connection
A(r). An example of the vector field (the third row of
the local form of the connection, Aθ(r)), is plotted in
Fig. 4a. The corresponding forward height function is
plotted in Fig. 4b. The blue curve in Fig. 4 indicates the
optimal ∂χ that enclosed the most surface area in the
height function.

Note that the vector field in Fig. 4a has large norms. In
this way, the Lie bracket can have significant effect on the
quantitative prediction of displacement. In Fig. 4c, we
showed the quantitative prediction of speed (measured
in body length travelled per gait cycle) as a function
of lateral phase lag L. From Fig. 4c, we note that
the contribution from the body undulation is greater
in the direct-wave centipedes than the retrograde-wave
centipedes, which is against the observed pattern.
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We now applied our approach to minimize the Lie
bracket effect, and numerically calculated the potential
function associated with the vector field in Fig. 4a. By
subtracting the gradient of the potential function, we
obtained a new vector field (vector fields in the optimal
body frame) in Fig. 5a. The norm of the new vector field
is significantly less than that of the original vector field.
We then calculated the corresponding height function
in the optimal body frame in Fig. 5b. We observe that
the pattern of the height function in the optimal body
frame is different from the height function in the original
body frame. However, both height function yields similar
body-leg coordination pattern ∂χ.

Next we compare the prediction on speed in the
optimal frame (Fig. 5). We observe that in the optimal
frame, we have agreement with the experimental results:
the contribution from lateral body undulation is greater
in the retrograde-wave centipedes than the direct-wave
centipede, agreeing with the experimental data and the
biological observations.

V. Discussion
In practice, some postures in the shape space are

not allowed in the robot implementation. For example,
some of them have self-intersections, which might cause
damage to the motors. So these postures form the
forbidden region in T 2 as a union of holes, and we
may introduce a new shape space Ω, which is T 2 minus
the forbidden region. In this case, our method could be
adapted as follows:

(i) We discretize the holes by assuming that for each
square in the mesh, it is either entirely contained
in a hole, or disjoint from the holes.

(ii) For each lattice point, if at least one quadrant
around it is not in a hole, then we define a
basis function at this lattice point for the non-hole
quadrants around it, in the same manner as in (6).

(iii) We can still establish a linear system of ci,j ’s, and
the dimension of the solution space depends on the
number of holes in Ω.
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