
Dimensions 0.48× 0.028× 0.054 m3

Mass 0.83 kg
Motor HSR-5980SG
Motor Torque 2.94 N m
Number of Motors 6
Total Segments 7

TABLE I
PHYSICAL ROBOT CHARACTERISTICS

A B C

D E F

S1S1S1S1S1S1S1 S4
S7

S1 S4
S7

head

tail

2 cm

3 cm

head

tail

motion

Fig. 5. Subsurface swimming in experiment and simulation. (A-C) Sequential
x-ray images of the robot swimming in 6 mm particles, and (D-F) robot
swimming in simulation. Segments from head to tail are denoted as S1 to S7.

C. Robot Performance

To calibrate the device we placed it on a rigid surface and
used video to track the position of the segments from which
we determined the mapping between the maximum relative
segment angle β0 (Eqn. 3) and A/λ. Within the granular
material, the forward velocity of the device monotonically
increased with increasing oscillation frequency (Fig. 7) for
A/λ = 0.2 and a single period wave. The slope of this
relationship (η) was 0.34 ± 0.02. For the same parameters
the simulation predicted η = 0.36± 0.02.

V. DISCUSSION

Like the sandfish, the robot swims within granular media by
propagating a traveling sinusoidal wave posteriorly from head
to tail without limb use. The physical device demonstrates that
subsurface locomotion in granular media using a relatively low
degree of freedom device and a open loop control scheme is
possible. However, the robot does not move forward as fast
(normalized by body-length) or with the same wave efficiency
as the animal.

In the biological experiments, η for a range of granular
material preparations and bead size was approximately 0.5.
The robot in both experiment and simulation performed below
this value. We hypothesized that the number of segments
(for a fixed length device) affected both η and the forward
speed of the device. Increasing the number of segments in
the robot simulation caused the device to move forward faster
and with greater wave efficiency until N ∼ 15 where η

segment S1

6 mm plastic beads A

5 cm
segment S7

motion
motion

B

y
 (

cm
)

x (cm)0 15
0

35

65

Fig. 6. Subsurface swimming in experiment and simulation. (A) Robot
submerged in a container filled with 6 mm plastic particles. Masts with
spherical markers are attached to the first and last module. (B) Kinematics
of the first and last segment of the robot in experiment (green circles) and
simulation (blue triangles).

plateaued (Fig. 8). Interestingly, the maximum η ≈ 0.5 is the
same as measured in the animal experiment. We utilized our
previously developed RFT to predict the performance of the
sand-swimming device with parameters set to match those for
the plastic particles used in the robot experiment. We estimated
η = 0.56 for a smooth profiled undulator which corresponds
to the numerical robot simulation prediction for N > 15 (gray
band, Fig. 8).

Increasing N allowed the device to better match a sinusoidal
wave and increased η This suggests that deviation from the
smooth form of a traveling sinusoidal wave reduces perfor-
mance. A seven segment robot operates below the minimum
N required to achieve maximum η. As a design criterion, N is
important when the length of the device is fixed as increasing
the number of motors beyond the critical N requires motors
with smaller dimensions but capable of producing the same
torque.

We used the numeric robot simulation to measure the
time varying torque required to move within the medium.
As expected, the torque was approximately sinusoidal for all
motors and the torque amplitude generated by the central
motors (3 and 4) was larger than the torque from the motors
nearest the ends, see Fig. 9. As noted earlier, the maximum
torque in the simulation of 0.7 N m was well below the
maximum of the motors used in experiment (see Table 1).
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Fig. 7. Forward velocity vs. oscillation frequency for the robot in experiment
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N= 5 N= 15 N= 48

0 10 20 30 40 50
0

0.35

0.7

Number of Segments

η

Fig. 8. Wave efficiency increases with number of segments for a fixed length
robot in simulation (blue dashed curve)(f = 1 Hz and A/λ = 0.2). The
red, black, and cyan triangles correspond to 5, 15, and 48 segment robots
respectively. The green square corresponds to the seven segment physical
robot, and the grey line indicates η predicted by the RFT solved for a
continuous body profile (see text for details).

Also, the fluctuations in torque at frequencies higher than the
oscillation frequency of the robot were small in comparison
to the torque amplitude.

VI. FUTURE WORK

A sand swimming robot combined with a proven simulation
tool opens many avenues for further research. Of immediate
interest is testing the RFT prediction that an optimal spatial
form (ratio of amplitude to wavelength) maximizes forward
speed of an undulatory sand swimmer [1]. The effect of
the predicted optimal kinematics can also be evaluated by
measuring the mechanical cost of transport. In conjunction
with the numerical simulation the robot can test the effect
of motion profiles (wave shapes) on performance. Since the
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Fig. 9. Motor torque for the simulated 7 segment, 6 motor robot (f = 1 Hz)
(A) varying with time. (B) Torque amplitude vs. motor position; orange (solid
curve), green (dotted curve) , and black (dash-dot curve) correspond to motor
6 (tail), 4, and 1 (head) with motor position 1 denoting segment number 2 in
Fig. 5 and 6.

sandfish uses the same kinematics to move in a variety of
media, duplicating the animals control methods and sensing
modalities in a robot could lead to more effective locomotion.

The sandfish has a non-trivial shape which suggests chang-
ing the morphological characteristics of the robotic device. For
example, the cross sectional shape of the sandfish (flat belly
and rounded top) have been hypothesized to aid rapid burial
into granular media [51]. Our simulated and physical robot
can be used to explore the influence of this morphology along
with body taper on performance. The robotic simulation can
also tune parameters like skin friction and body compliance
to identify optimal values which could then be tested with our
robot.

VII. CONCLUSION

Motivated by biological experiments revealing rapid sub-
surface sand-swimming in the sandfish lizard, we have used
numerical simulation as a design tool to build an undulatory
sand-swimming device. We used our robot simulation to test
whether a device with a finite number of segments (7) could
advance using a simple open loop (traveling wave sinusoid)
control scheme and calculated the motor torque requirements
for the robot. We then built and tested a prototype of the device
to validate the biological observations and predictions from the
RFT [1] and simulations that limbless body undulations were
sufficient to propel the robot forward. Our findings show that
the device can swim, and that it translates faster by increas-
ing its oscillation frequency just as the sandfish does. The
design tools (numerical model and robot) we developed can
generate testable hypotheses of neuromechanical control [52]
and improve our understanding of how organisms exploit the
solid and fluid-like properties of granular media, enabling the



construction of robots that can locomote effectively within
complex environments.
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