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SUMMARY

Legged systems offer the ability to negotiate and climb heterogeneous terrains, more

so than their wheeled counterparts [1]. However, in certain complex environments, these

systems are susceptible to failure conditions. These scenarios are caused by the interplay

between the locomotor’s kinematic state and the local terrain configuration, thus making

them challenging to predict and overcome. These failures can cause catastrophic damage to

the system and thus, methods to avoid such scenarios have been developed. These strategies

typically take the form of environmental sensing or passive mechanical elements that adapt

to the terrain. Such methods come at an increased control and mechanical design complex-

ity for the system, often still being susceptible to imperceptible hazards. In this study, we

investigated whether a tail could serve to offload this complexity by acting as a mechanism

to generate new terradynamic interactions and mitigate failure via substrate contact. To do

so, we developed a quadrupedal C-leg robophysical model (length and width = 27 cm, limb

radius = 8 cm) capable of walking over rough terrain with an attachable actuated tail (length

= 17 cm). We investigated three distinct tail strategies: static pose, periodic tapping, and

load-triggered (power) tapping, while varying the angle of the tail relative to the body. We

challenged the system to traverse a terrain (length = 160 cm, width = 80 cm) of randomized

blocks (length and width = 10 cm, height = 0 to 12 cm) whose dimensions were scaled to

the robot. Over this terrain, the robot exhibited trapping failures independent of gait pat-

tern. Using the tail, the robot could free itself from trapping with a probability of 0 to 0.5,

with the load-driven behaviors having comparable performance to low frequency periodic

tapping across all tested tail angles. Along with increasing this likelihood of freeing, the

robot displayed a longer survival distance over the rough terrain with these tail behaviors.

In summary, we present the beginning of a framework that leverages mechanics via tail-

ground interactions to offload limb control and design complexity to mitigate failure and

improve legged system performance in heterogeneous environments.

xii



CHAPTER 1

INTRODUCTION

1.1 Overview of Field Robotics

Many of the environments humans wish to apply robots towards consist of various ape-

riodic heterogeneities, as shown in Figure 1.1. To cope with these scenarios, engineers

have equipped “field robots” with a multitude of mechanisms to augment their mobility

and obstacle handling capabilities. The majority of these augmentations are inspired from

studies of biological organisms, as they are naturally equipped with the ability to traverse

such complex environments [2]. Consequently, the current field of “all terrain robots” con-

sists of a veritable zoo of robot designs where each comes equipped with certain benefits

and drawbacks. Such designs are quite varied, from the number of legs to the overall size

to even the control schemes employed, which emulates similar irregularities observed in

nature.

In recent decades, robots have been made that cover a wide range of designs. From

limbless snake-like [7, 8, 9] or worm-like [10, 11, 12] systems that wiggle through envi-

ronments to myriapedal multi-limbed models that explore the mechanics behind centipede

motion [13, 14, 15]. Within this spectrum, bipedal robotic systems exist which are typically

applied towards working in concert with humans and operating in man-made environments.

These systems are relatively stable given proper control and design [16] and thus, in more

unstructured environments like those seen in Figure 1.1, they require a large amount of

control and sensor complexity to achieve similar performance to humans. Quadrupeds and

hexapods offer an alternative solution to these environments as they are more suited for such

tasks due to their larger stability range when compared to the biped systems. Thus, such de-

signs have received more attention for their capabilities as field robots. Considerable work

has been done in developing insect-like hexapedal systems such as the RHex platform
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Figure 1.1: Natural terrains. (A) Rough flat terrain [3]. (B) Rubble after building collapse
[4]. (C) Martian landscape [5]. (D) Rough climbing terrain [6].

which takes inspiration from cockroach studies [17]. Such robots have a robust stability

region due to their six actuators and by performing an alternating tripod gait, these systems

can achieve high speeds while keeping the center of mass within the polygon formed by the

supporting limbs. This stability benefit of a six-legged system is also the source of its main

drawback as the number of actuators required for more complex mechanisms and control

is scaled by 6. This increases design costs and as more moving components are introduced,

more points of failures are possible. For instance, RHex uses a 1 degree-of-freedom (DoF)

mechanism in its limbs but what if a roboticist wishes to implement more programmable

control with a 2 or 3 DoF limb? There now would need to be 12 or 18 actuators, respec-

tively, on the robotic system and each is a possible source of failure or overload. This

brings about large power requirements if each servo motor is sufficiently strong or it results

in a relatively weak system if the battery source is kept fixed. Thus, the legged design that

has received the most attention in recent years has been the quadrupedal system [18]. Such

a design can achieve static stability when performing a single-foot gait, where only one leg

2



is lifted off the ground at any point in its gait cycle, but this typically results in low speeds

[19]. Instead, quadrupedal systems generally rely on dynamic stability when moving at

high speeds to achieve similar performance to that of hexapods. These four-legged systems

have an added benefit of being more intuitable than six-legged systems. This is because

humans are more familiar with quadrupeds in our daily life and at our scale in size. Fur-

thermore, since geometric planes are defined by 3 non-collinear points, these quadrupedal

systems have a redundant support point in their fourth leg on flat ground. Thus, they offer

a “middle region” between bipedal and hexapedal systems in which researchers can em-

ploy schemes developed from both biological observations and machine learning in order

to figure out how best to robustly operate over complex terrains.

Two main strategies exist on these legged systems to cope with the heterogeneities

present in complex terrain: environmental sensing and passive mechanical elements. Both

of these schemes have aspects that are inspired by biological systems and in practice,

robotic systems typically use a combination of the two strategies, albeit with a preference

towards one or the other.

Figure 1.2: Vision-based sensing example. Hazard maps from the Spirit rover on Mars
[20].

Environmental sensing relies on a combination of perception and cognition schemes

[21] where some sensors take in aspects of the environment around the robot and then in-

ternal computation occurs to determine how that environmental information should dictate

the locomotor’s actions. This strategy is referred to as “task-space closed loop” since these

robots use external environmental information to actively compensate for obstructions by

avoiding them or through careful support placement [22, 23]. This method is inspired
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by the abilities of biological systems to sense and react to their environment and in liv-

ing systems, perception can be done through acoustic means such as echolocation in bats

and electromagnetic sensing like in sharks, as well as several others. In recent decades,

robotics has tended to favor the visual and tactile sensing methods and have employed such

strategies in a variety of robots. Vision-based methods can take the form of LIDAR or

stereoscopic vision to see the environment along with the distance to objects in the scene,

as seen in Figure 1.2. Then, some internal controllers work to modify the robot’s path tra-

jectory to avoid or handle any observed obstructions or hazards. These methods work quite

well in rovers [20] and deployed field robots [22, 24, 25]. More recent research interest has

been tactile sensing and using that information to directly affect the walking pattern of the

robot as this allows for more robust perception of hazards to the robot such as those seen

in Figure 1.1 [23, 26, 27, 28]. An example of such a scheme and its biological inspiration

can be seen in Figure 1.3 where a cockroach maintained a certain distance from the wall

according to deflection detected within its antenna. Such a scheme was further verified

through the use of a robophysical model [26]. The drawback of this method, however, is

that it requires complex computation, control, and actuation, along with robust sensors,

to be able to traverse most environments. Furthermore, the robot’s speed and dynamic

response capabilities suffer as a result of this bandwidth bottleneck.

Figure 1.3: Tactile-based sensing example. (A) Cockroach using antenna deflection and
a PD controller to follow a wall at a set distance. (B) Robophysical model verifying the
proposed tactile-sensing and control hypothesis [26].

In contrast, the second locomotion strategy does not require the same level of compu-

tational intricacy to achieve comparable performance. Instead, this complexity is offloaded
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to the physical design in the form of embodied intelligence [29]. This serves to augment

an existing system with simple underlying motion and control, making it more robust to

environmental disturbances. This method is inspired by biological systems’ ability to ne-

gotiate complex terrain features faster than sensory information can be relayed to the brain

[30, 31]. Such a response is called “preflexive” where the mechanisms within the limbs and

body are such that their adaptation to terrain perturbations precedes internal reflexes that

rely on sensory feedback and a neuromuscular response. This preflexive method, when

applied to robotics in the form of embodied intelligence, offers several benefits over the

environmental sensing approach such as improved energy efficiency and lower computa-

tional requirements [32]. Of major note is the near-elimination of the time delay in the

robotic system’s response to perturbations, thus making more dynamic movements and

faster robot speeds possible. Additionally, by offloading this control to the physics of the

system, it allows for the robot’s computation power to be directed to more high-level tasks

such as sampling environmental conditions, mapping the surroundings for other tasks, and

manipulating objects.

The main drawback to this robotic embodied intelligence approach is that it can be

unintuitive to the human designer on what will work well. To overcome such a limita-

tion, recent studies have attempted to develop such designs using machine learning [33].

Generally, these devices are brought about by observing biological systems to determine

what mechanisms or templates [34] enable these preflexive behaviors. For instance, based

on studies of biological systems over rough terrain [35, 36], researchers found that limb

compliance in the direction of loading played a significant role in the organisms’ ability

to preflexively react to environmental obstructions. This idea was then incorporated into

various robotic designs [32] such as the robotic hexapod, RHex [17], which relies on limb

compliance in conjunction with a feedforward clock-driven limb angle profile to traverse

uneven terrain. Furthermore, compliant C-legs were implemented on RHex to improve its

ability to climb over obstacles [37] and distribute the mechanical feedback at the limbs,

like the spine does in insects and arthropods [38], another instance of embodied intelli-
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gence at work shown in Figure 1.4. Along with these studies for axial loading compliance,

it was also found that biological systems such as centipedes employ anisotropic compli-

ance in the transverse direction to overcome obstacles encountered by the limbs when in

the air, or within their “swing” phase [14]. This directional compliance has been imple-

mented in robots programmatically, via actuators and control schemes [39], and physically

through the use of springs to improve the robot’s ability to traverse a rough terrain [14].

These studies demonstrate the impact that different limb mechanisms have on overall robot

performance but this design approach is not limited solely to robot limbs.

Figure 1.4: Embodied intelligence via distributed mechanical feedback at feet. Col-
lapsible spines on a (A) spider and (B) cockroach facilitate motion across a mesh [38]. (C)
RHex model using compliant linkages for legs and equipped with collapsible spines (D) to
enable motion across a mesh. (E) RHex with C-legs that distribute contact over hazardous
terrain (F) to improve performance.

An embodied intelligence design approach can be applied to other aspects of the body,

such as the shape [40, 41], flexibility, and the methods of actuation. These features serve

to simplify the control complexity needed for robust locomotion by introducing passive

elements rather than active components. For instance, compliant body joints were incor-

porated into a centipede-like robophysical model to augment its ability to negotiate the

transition between flat ground and inclines [14]. This flexibility within the body joints

demonstrates how passive elements can offload computation from the “neurological” con-

troller to the mechanical design. Another example of such a concept is the undulatory robot
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shown in Figure 1.5 A. This design is based on observations of snakes in lattices and uses

muscle-like morphology to traverse multi-post arrays via emergent passive mechanics (see

Figure 1.5 B-D) [42]. In this study, the actuation of the body wave was accomplished via

strings that acted like “tendons” to provide tensile loading while passively deforming in

compression. Such a method allowed for robust locomotion through 2D obstacled envi-

ronments, as shown in Figure 1.5 E. This serves as another case where the tasks done by

a robot with a straightforward mechanical design and a complex internal control scheme

[43] could be similarly accomplished by a robot with a simple control scheme and a more

mechanically complex physical design.

Figure 1.5: Embodied intelligence via muscle-like actuation. (A) Robophysical snake
model that uses tendons to actuate the body undulation [42]. (B) Simplified snake anatomy
showcasing the musculoskeletal system that drives lateral body bending in snakes. (C) C.
occipitalis on model desert sand. (D) Cartoon depicting muscle activation and compliance.
(E) Snapshots of robot demonstrating passive buckling and reversals to traverse a cluttered
lattice.

Despite the benefits the task-space control methods have in avoiding environmental

hazards and the improvement that the embodied intelligence design approach has towards

robust locomotion, robots are still susceptible to failures over some complex terrains. These

situations and hazards can take many forms and can be brought on by several factors. For
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instance, there are the failures incurred by size/design when locomoting over unstructured

environments, such as those shown in Figure 1.1 B&D. Large walkers can clear the gaps

and obstacles present in these environments. However, they are prone to tipping over and

to collapsing the underlying structure due to their weight, both of which result in damage to

the locomotor. In contrast, small walkers are lighter and less prone to damaging themselves

or their environment, but are also less likely to clear the gaps and obstructions. We posit that

there is a moderate size and weight class where the robot is unlikely to collapse a structure

or be damaged from falling, while still maintaining the ability to clear most obstacles and

gaps. However, this “middle” category of robots can have limb dimensions that are of

comparable size to the obstructions and holes being traversed [44]. In this regime, stalling

or “trapping” events begin to occur [38] where a limb falls into a cavity and is unable to be

easily removed. This form of locomotor failure is detrimental to robots using either motion

strategy and can be encountered across many environments. This condition of having a limb

trapped and causing damage to the locomoting system is not specific to robots either and

can be observed in biological systems like lizards and insects. However, these organisms

can recognize when they have an appendage stuck and can utilize complex limb dynamics

and the rest of their body to either free the limb or remove it. Therefore, field robots should

have some comparable method of detecting and freeing themselves when they have fallen

into a trap in order to improve their all-terrain capabilities.

1.2 The trapping condition and possible solutions

These “trapping” scenarios depend on both the locomotor kinematic state and the local

terrain configuration. For instance, a foot-sized hole is hazardous to a legged system when

it is encountered by a limb pushing off the ground but that same hazard is harmless when

the limb is in its swing phase. Due to this geometric coupling, these situations prove to be

quite challenging to predict and overcome. Generally, the strategy is to avoid areas where

such a scenario can occur [20] as seen in Figure 1.2. However, this is not always feasible

since the goal location could reside in a hazardous region or the risk could be hidden from
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plain view. The Spirit rover is an example of the latter since it ended its mission when a

wheel fell into an unperceived hazard of soft sand beneath a thin layer of normal-looking

soil [20]. The rover was unable to extricate the wheel from this trap and it eventually was

reclassified as a stationary research platform, losing its ability to function as a mobile robot.

Being detrimentally susceptible to visually imperceptible hazards is a common problem

amongst all robotic systems currently deployed and thus, work has been done on how to

adjust walking patterns to “probe” the terrain as the robot walks [23]. However, this is but

one of many scenarios that can cause trapping and so, it further demonstrates a need in

robots for a means of self-extrication before catastrophic damage occurs.

Trapping failures are induced by the interplay between the physical state of the loco-

moting system and the relative terrain conditions. Thus, modifying the surroundings or

changing the state of the locomotor could serve to mitigate such interactions. To do the

former would signify “remodeling” the environment to better suit the robotic system. This

approach works well in flowable mediums such as sand where the media can effectively

change from being an elastic solid to a frictional fluid [45]. In a more rigid environmental

setting, this strategy can be viewed as moving the obstruction. For example, if a leg was

pinned between the ground and a rock, “modifying the environment” would be equivalent

to “moving the rock” in this scenario. However, this strategy is not suitable for all loco-

motors as the power cost associated with performing such a task could be larger than the

feasible output of the system.

The other option for mitigating terrain trapping failures is by modifying the physical

state of the locomotor with respect to its local environment. This can be done via some

form of proprioceptive sensing to determine which appendage is trapped and then using

the remaining limbs in some way to release that leg. This is how biological systems react

to traps since these organisms possess a large amount of sensors and degrees-of-freedom

in which to actuate their already compliant bodies. However, achieving such a level of

self-awareness and motion-complexity in an artificial robot system is currently not feasible

for deployed field robots. We posit that this complex, case-by-case sensing and action that
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organisms perform can be emulated to an extent by including a separate non-locomotory

appendage that follows an open-loop strategy or a simple closed-loop control scheme. This

mechanism would serve to disrupt the robot’s state relative to the terrain, thus freeing it

from a trapping region. This method is feasible since such an approach is quite similar

to the concept of embodied intelligence discussed previously, where computational com-

plexity in the robot is simplified by offloading the control to the mechanics of the system.

In this case, the inclusion of an actuated mechanism is simplifying the necessary control

strategy for the limbs. This methodology has been applied to robotic systems before where

the limb control was made more robust by offloading certain forms of stabilization/control

to other parts of the body. These approaches have typically been in through body actuation

[46, 47] or, more notably, in the form of a tail which serves as inspiration for how to best

handle these trapping failures.

1.3 Tails in locomoting systems

Tail designs in robotic systems can be grouped into two categories: in-air and substrate-

contacting. Applications of the former typically rely on conservation of angular momentum

and are used to reject some form of disturbance or inertially reorient the robot while falling.

An example of this disturbance rejection is exhibited by the MIT cheetah robot swinging

its tail to avoid toppling over when hit by a swinging mass [48]. However, most instances

of in-air tail usage are to assist the locomotor as it is falling from some height. This method

takes inspiration from organisms such as cats and lizards which use their tails when jump-

ing to reorient their body as seen in Figure 1.6 A [49]. This strategy has been emulated

in several robots [50, 51, 52] such as the XRL [53] and Tailbot [54] shown in Figure 1.6

B&C performing such a maneuver. While this method of tail use works quite well with

disturbance rejection and reorientation, it would not be effective at properly handling trap-

ping failures. In these scenarios, the tail must alter the robot’s physical state, and so, the

tail would need to be massive to generate the necessary torques. Therefore, this type of tail

mechanism would be infeasible for most robotic systems, making it an unlikely candidate
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to resolve trapping in field robots.

Figure 1.6: Tail use to augment locomoting system. (A) Lizard jumping off a low-friction
surface to land on a wall [54]. It maintains a relatively constant body angle (blue) by using
its tail (green). (B) Robophysical model, Tailbot, consisting of a car with a tail that has a
mass at the tip. (C) Tailbot inertially reorienting itself in mid-air. (D) Tailbot encountering
an obstacle without a tail (top), with a passive tail (middle), and with a tail maintaining
an angle relative to the body. By using the tail, the robot avoids catastrophic pitch-back
failure. (E) Tailbot reorienting itself by pushing off a wall with its tail.

In the second category of mechanisms, the tail acts in direct contact with the ground

to induce several behaviors. Within this group, there exist static and dynamic strategies

which serve to augment the locomotor capabilities. For example, in Figure 1.6 D, Tailbot

encountered an obstacle that caused catastrophic pitch-back failure in the non-tailed system

as seen in the top row. By adding the tail and dragging it behind the body, the robot

mitigated the perturbation’s effect (middle row). Furthermore, by maintaining a set angle

relative to the body, the tail eliminated the pitch-back entirely (bottom row). This and others

[55] are instances of static substrate-contacting tail strategies. In the dynamic regime, there

are several examples of a tail’s benefit in a granular medium, acting as both a means of

obstacle navigation [56] and propulsion [57]. However, this appendage also works well

over more rigid substrates, as seen in Figure 1.6 E. Here, Tailbot impacts a wall to induce

a pitch correction that would be otherwise infeasible without substrate contact. Another

instance of a dynamic tail strategy in a rigid environment includes impacting the ground to
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steer a locomoting robot, accomplishing rapid 90° turns in the process [55]. In this study,

a relatively weak servo motor was able to affect the trajectory and the physical kinematic

state of the overall robot by tapping against the substrate. As such, this method of tail use

could serve as a possible means to handle trapping scenarios.

We posit that, by altering its physical state, a robot could effectively deal with trap-

ping failures. The substrate contact method is appropriate for this task, as the Tailbot and

LoadRoach studies demonstrate that a tail on the ground has the capability to affect the

entire robot [54, 55]. However, in heterogeneous environments, such a method is suscep-

tible to the randomness present in the terrain, making it unclear how best to implement a

tail. Therefore, a study must be done on effective tail contact strategies to overcome the

complex dynamics of this coupled terrain-locomotor trapping event.

To probe the question of how to use a tail to overcome trapping failures, different testing

methodologies can be adopted. For instance, experiments could be done on biological

systems to explore how they utilize their tails in such scenarios. However, as discussed

previously, these organisms have a vast degree of sensor and actuator complexity so it is

likely that they would not use their tails in the first place, relying instead on their compliant

body and limbs. A real-world machine learning approach could be performed instead to

work out how best to use a tail in various terrains. Such an approach avoids issues with

friction and collision models affecting the learning process since the world acts as the

physics engine. Such a method has yielded success in previous studies where robots learned

gaits to effectively operate across many environments [58, 59, 60]. However, this approach

does not typically offer insight into why the learned strategy works and can be subject to

overfitting on the training set.

By determining whether a tail can overcome trapping, there should be an increased

comprehension of how these under-studied failure scenarios occur and why the tail helps.

This suggests that a “robophysical” approach is best suited for such a study. In this field

of research, certain aspects of a model are systematically tested to build up the experimen-

talist’s understanding of the governing mechanics [61, 62, 63]. An added benefit of this
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robophysics method is that it arms the researcher with a better understanding of the emer-

gent dynamics of the system. As such, new controllers and observers can be made that

leverage the inherent physics to make the system behave as desired [64, 65]. Therefore,

this robophysical approach is key to investigating how and why trapping failures occur and

how a tail can be used to overcome such scenarios to augment deployed field robots.

1.4 Objective

To determine how a tail can perform substrate contact to mitigate trapping events requires

a systematic approach to understand the dynamics involved. As such, three key items are

required:

1. A robust, easily repairable legged system that can be augmented with a tailed ap-

pendage. This robophysical model’s control must be robust such that it can be pro-

grammed to follow explicit instructions while being subject to the randomness of the

terrain and nonlinearities caused by stalling events.

2. A rough terrain course capable of systematically producing trapping events with the

legged model.

3. A tail that can be easily attached to the legged system that is capable of providing

sufficient torque to affect the robot.

Chapter 2 is dedicated to the development of these three items to facilitate robophysical

testing and chapter 3 discusses the different control schemes for the appendage and the

change in performance across the terrain. Chapter 4 serves to conclude on the results

presented in chapter 3 and to propose future work to further this investigation.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Legged robot

We emulated the RHex design as it is a system that leverages passive mechanics and feed-

forward control to walk. This serves to highlight how the tail can offload control complexity

from the limbs when encountering traps. However, we used four limbs rather than the stan-

dard six. This was to reduce the number of points of mechanical failure and to further probe

the capabilities of such a system [66]. The resulting RQuad robot (length and width = 27

cm, limb radius = 8 cm) is shown in Figure 2.1 A&B with certain portions highlighted. The

following subsections serve to further detail aspects of the robot design and control.

2.1.1 Limb Design

Each limb, shown in Figure 2.1 C, is composed of two parts: an aluminum motor shaft

coupler and a flexible polyurethane resin leg component. The coupler attaches to the motor

shaft via set screw. This component was used since the torque generated by the actuator

during trapping events would be likely to shear most compliant materials over time given

a press-fit and we know that compliance plays a significant role in robust locomotion. The

flexible portion (leg) connects to the aluminum coupler via a slot and three screws that go

into partially-threaded holes (clearance fit on one slot wall, threaded on the other). This

results in the screws effectively clamping onto the legs, further distributing the stresses

away from the motor. To make the legs, we 3D printed the desired model and then cast it in

silicone. Once the silicone finished curing, we cut the block in half to remove the printed

part, resulting in a mold of the component (see Figure 2.1 D). The polyurethane resin was

then poured into the silicone to cure and once removed, we opened the holes for the slot

screws and removed the leftover material (flash) from the molding process.
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Figure 2.1: Robot and limbs (A) Physical robot model (B) Simplified computer model
with lengths and materials specified. (C) Physical robot limb with the photo interrupter
specified in the upper right panel. The pin at the top of the panel passes through the gap
in the sensor, triggering a digital signal which is observed on the microcontroller.(D) Two
part silicone mold used to make the legs. The flash is removed after extraction from the
mold.

2.1.2 Electronics

The limb actuators are Pololu 37D 70:1 gearmotors which come with a relative encoder.

These motors have a top speed of 2.5 rev/s and a stall torque of 27 kgF·cm with an asso-

ciated current of 5.5 amps. A power supply tether was used for these experiments, which

can be replaced with an appropriate battery in future projects. We used an Anmbest buck
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converter to ensure the 4 motors were supplied with 12 volts with a maximum current rat-

ing of 22 amps. The motors were separated into 2 ipsilateral pairs and each pair was driven

by a Pololu Dual VNH2SP30 Motor Driver Carrier MD03A. This driver is capable of sup-

plying the actuators with the high power necessary for testing failure conditions, while

also offering rudimentary current sensing for each motor (not used within the scope of this

work). To monitor the overall power consumption, we placed a Pololu ACS714 Current

Sensor Carrier on the line directly from the power supply before the buck converter. An

Arduino Due serves as the “limb microcontroller” for this robot and it operates the motors

and monitors the associated sensors. To avoid voltage ripples from the motors affecting the

logic board, the Due is powered from a separate on-board 3.7 V battery that is boosted to

5 volts by a Pololu 5V Step-Up Voltage regulator. Since each motor comes with a relative

encoder, we placed a photo-interrupter (see Figure 2.1 C panel) on each actuator to provide

an absolute position, thereby avoiding encoder drift over time. The signal from this light-

based sensor was subject to bouncing and false positives during preliminary testing. To

reconcile the bouncing issue, we included a basic sensor filter in the code to check whether

a positive reading had been registered in the past 1.5 milliseconds and if so, disregard the

new reading. Additionally, to resolve the false positive issues, we implemented a rudi-

mentary sensor fusion where a new photo-interrupter signal was not registered unless its

corresponding encoder read as being roughly three quarters of the way through its cycle.

Once a true reading was registered, the internal encoder value would reset to zero while all

other position-related values were reset such that their differences were maintained with

respect to the actual encoder.

2.1.3 Control

Each limb rotates according to an angular trajectory known as the Buehler Clock [17],

which consists of a fast and a slow region (Figure 2.2 A) where the slow region is generally

when the limb is in contact with the ground. Each motor follows the assigned motion

profile via a feedback control scheme detailed in Figure 2.2 C. This limb control consists
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of two cascaded PID control schemes with the inner velocity loop running at 4 ms. This is

five times faster than the external position control which outputs a correction term for the

velocity control loop based on the difference between the actual and setpoint positions. To

calculate the actual velocity, a numerical derivative of the encoder values was performed

using microseconds and ordered such that bitwise precision was maintained. By using

a cascaded set of control loops, smooth tracking of the desired curve was ensured without

significant drift. To generate the desired setpoint profile, the following functions were used:

θi,d(t) = ωi,dt , ωi,d(θi,d) = Pi +


ωs θmin ≤ θi,d < θmin + ϕ

ωf otherwise

(2.1)

Where ωs and ωf are the slow and fast velocities, respectively, and their formulas are de-

tailed in the appendix. Subscript d indicates that this variable is the desired reference signal

used in the control scheme in Figure 2.2 C. To prevent significant windup from occurring

when a trapping event occurs, θi,d was modded by 1 whenever θi,d− θi > 1 which signifies

that the setpoint position has done a full revolution with respect to the actual limb. We

implemented this position-based scheme rather than a clock-driven method since it results

in a simple yet robust implementation of the angular trajectory that is insensitive to motor

stalling. The robot locomotes by following a gait pattern (i.e. phasing the limbs relative

to each other in time) [67]. An example pattern for a diagonal couplet gait is shown in

Figure 2.2 B, where the symmetric phasing ψlat (phasing between limbs on the same side)

is 35% and the asymmetric phasing ψopp (phasing between the pairs of limbs on either side)

is 50%. By setting the initial position of each motor to correspond to a snapshot in time

of a desired gait and by using the setpoint functions detailed in Equation 2.1, the robot can

easily emulate the prescribed pattern as time goes on, assuming no disturbances that will

significantly perturb θi,d.

However, as the topic of this study is the trapping condition, stalling behaviors are to

be expected and those will constitute significant disturbances to the desired setpoint pro-

file and gait pattern. To resolve this, a method of enforcing the relative temporal phasing
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Figure 2.2: Control schemes. (A) Motion profile for limb rotation. Trajectory (black line)
described by two speeds: fast (red) and slow (blue). Slow region described by the stance
phase (gray) and the time spent there is described by the duty factor (purple). (B) Gait
diagram showing relative limb phasing. Black is when the limb is in the slow region and
has a length equal to the duty factor (purple). Each lateral and opposite pair is phased by
ψlat (orange) and ψopp (pink), respectively.

between the limbs is needed while also keeping the control decentralized so as to fit best

with Equation 2.1 (i.e. not a central pattern generator). Inspired by reflex chains seen in

simple organisms and robots [27, 28, 68], along with the efficiency displayed by decen-

tralized control algorithms to generate robust locomotion [69], and guided by our desire to

systematically test different gait patterns, we developed a state feedback control scheme to

coordinate the limb motions. The details of this scheme and its implementation are in the

appendix but in short, it effectively results in each motor looking at its neighbors to adjust

its own setpoint velocity (seen in Equation 2.1 as Pi) until the desired gait pattern phasing

is achieved.

For overall system implementation, we randomized the order in which motor com-

mands were sent each code cycle. This was to prevent drift accumulating on the final

motor in the sequence, which was a significant issue in preliminary tests. Finally, to ensure

failure events would not cause permanent damage with every trial, we placed a “kill” switch
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on the robot. If a limb failed to complete a revolution within two gait cycles (5 seconds),

this indicated a trapping event and the robot shut down, ending the trial.

2.2 Terrain

To model unstructured terrains and trapping conditions, we constructed a stepfield of length

160 cm and width 80 cm (model shown in Figure 2.3 B). This is a common approach for

modeling obstacle-laden environments [17, 36, 70] and it consists of placing a collection

of blocks randomly across a grid where each block height is chosen from some random

distribution. For this study, since the goal was to induce trapping, we desired a distribution

that:

1. prioritized having blocks of tall and short heights;

2. kept the range in heights feasible for the robot to climb;

3. contained blocks within the tall and short bounds so that the robot was continually

perturbed.

Given these goals, we used an inverted normal distribution whose associated equations are

detailed in the appendix. It takes as inputs a mean µ, a standard deviation σ, and bounds

β. For the purpose of this study, these values were normalized by the limb radius (8 cm)

for the distribution generation and we used a mean of 6 cm (0.75 leg radius), standard

deviation of 1.6 cm (0.2 leg radius), and bounds of 6.4 cm (0.8 leg radius or 4 times the

standard deviation). Each block was given a 10 by 10 cm footprint to scale them to be

roughly a third of the robot’s body length and width. Therefore, there were 128 blocks in

total and the resulting distribution is shown in Figure 2.3 A as the red line with 11 bins for

the heights.

With the heights and dimensions chosen, the blocks were then placed across the 2D grid

such that, starting from the center, the tallest block was placed and then surrounded by the

shortest blocks available and then those short blocks were surrounded by the tallest blocks
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Figure 2.3: Rough terrain. (A) Inverted normal distribution used to obtain block heights.
(B) Design of terrain with simplified robot model. (C) Physical terrain model.

available. This placement pattern continued outwards from the center in a counterclockwise

spiral when looking at the terrain from above. This method resulted in a terrain that starts

with alternating blocks with shallow height disparities that get progressively larger as one

moves along the terrain and towards the end, the block patterns become more unstructured
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with moderate height differences.

To create the terrain model shown in Figure 2.3 B, we stacked several inch thick insu-

lation foam sheets and cut them into 80 by 10 cm strips. We placed these boards under a

waterjet to carve out the 16 desired geometric profiles. Then we placed the finished strips

on a wooden board and glued them into place. To prevent damage to the foam interior, we

placed a 3 mm thick wooden square on each block. The finished terrain is shown in Fig-

ure 2.3 C with a flat board on the left for the robot to start from and IR reflective markers

at the corners for tracking purposes.

2.3 Tail

For the active tail, we attached an aluminum beam (length = 17 cm, width = 2.7 cm) and

two Savöx high torque servo motors (operated at 7.4 V, max torque of 40 kgF·cm) to the

robot (Figure 2.4 A). The overall tail weighs 0.4 kg and at its end is a triangular pad for

ground contact and tracking. The tail and its components are shown in Figure 2.4 C. Nylon

rods act as rolling supports to distribute the reaction forces away from the yaw servo and

a steel pin serves a similar function for the pitch servo. Acrylic skids were placed on the

underside of the aluminum beam to mitigate instances where the tail bottom gets caught on

an obstacle. A strain sensor consisting of 4 strain gauges and a full Wheatstone bridge was

mounted onto the beam. For this study, this sensor was not utilized in any control schemes

or analysis but it could serve as a source for future work.

The tail was controlled via an Arduino Pro Mini that had serial communication capa-

bilities with the Due running the limbs. However, this communication channel was not

used in this project as the goal was to study how a tail could offload the control complexity

requirements for the limbs. Thus, the tail was not explicitly coordinated with the legs. This

serves to make this study’s results more applicable to deployed robots as it implies that an

active “lever” can be attached to a locomotor without needing to rewrite the existing code.

Within this study, the tail was free to move in the yaw direction as seen in Figure 2.4 B.

This degree of freedom can be active in future work but the goal here is to investigate the
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Figure 2.4: Physical tail figure. (A) Robophysical model with tail. Red dashed lines
outline the tail. (B) Tail with its range in yaw shown along with dimensions and certain
components highlighted. (C) Tail with annotations highlighting key components.

simplest form of effective control. As such, restorative springs were used such that the tail

returned to the center after yaw movement. The mechanism’s motion was actively actuated

along the pitch direction, varying the maximum tail angle (βset) relative to the robot body

from 0° to 90° (Figure 2.5 A).

2.4 Experimental Procedure

We implemented three tail strategies in this robophysical study: static pose, periodic tap-

ping, and load-triggered tapping. The static tail strategy consists of maintaining a set angle

relative to the body. This method can provide support in locomoting systems over mildly

heterogeneous terrain, where individual disturbances can lead to failure [54]. The periodic
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tapping strategy consists of tail oscillation from 0° to a βset. Such a scheme results in the

tail regularly attempting to impact the ground, possibly resulting in a significant change to

the locomotor’s kinematic state [55]. A rectangular wave programmed to the robot at the

start of each trial dictates the tapping frequency with an example shown in Figure 2.5 B.

These frequencies were varied for different βset by changing the space between pulses in

the rectangular wave and keeping mark constant at 0.25 s. With this strategy, the tail tapped

at the set frequency irrespective of whether it made ground contact, thus serving as a basic

open-loop scheme for tail impacting. Load-triggered tapping relies on failure detection to

ascertain when to impact the ground. Based on our knowledge of the system, we antici-

pated a large, sustained increase in the power intake when encountering trapping failures.

Thus, when the perceived load on the system exceeded a threshold and stayed above that

intensity for a set amount of time, that served as an indication of a trapping event. The

tail would then begin to move periodically from 0° to βset at the maximum frequency of 2

Hz. This scheme is illustrated in Figure 2.5 C and it serves as simple form of closed-loop

control where the load detection acts as a rudimentary “observer” for the trapping state.

Figure 2.5: Tail control figure. (A) Side view of the robot tail with varied tail angle βset -
0° (red line), 15° (orange line), 30° (blue line), 45° (green line), 60° (purple line), and 90°
(black line). (B) Diagram showing rectangular wave used to drive periodic tapping. Mark
and space are describe the duration of the wave at βset and 0°, respectively. (C) Diagram
showing expected behavior of load versus time during a load-triggered behavior.

For all trials detailed in this study, the duty factor dt of the limbs is set at 75% and the
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gait period TG at 2.5 s. We recorded the robot’s path over the terrain via two webcams,

a side and a top view. The center of geometry of the robot was tracked via Optitrack

and analyzed with custom MATLAB functions. Tailed trials where the robot went off the

sides of the course were discarded and tests were terminated once the system achieved

a displacement of 140 cm. The locomotor’s heading was not actively controlled as the

goal was to study the emergent properties of the walker. Trials were conducted until at

least 4 tests (maximum of 17) were obtained for a tail behavior where the robot did not

fall off the course or suffer damage. We examined the likelihood of traversal by plotting

each behavior’s empirical complementary cumulative distribution function (eCCDF) of the

final displacement from each trial. The mean displacement before failure (MDBF) was

obtained by integrating the curve of the CCDF. In addition, we calculated the probability of

freeing by taking into account each trapping and freeing event. This was done by analyzing

the recorded webcam videos and searching for instances of trapping where the robot had

little to no displacement amongst the obstacles for 2 gait cycles (5 seconds for this study).

From this data, the probability of freeing was calculated by subtracting the last trapping

event (where the robot failed, if applicable) from the total number of times the robot was

stuck. Then, the value was divided by the total number of trapping events. These metrics

serve as an indication for the tested behavior’s ability to mitigate this form of failure while

maintaining simple control for the limbs.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Note to the reader

The figures and data presented in this chapter correspond to work published in Robotics for

Sustainable Future: CLAWAR 2021 under the title Enhancing Legged Robot Navigation

of Rough Terrain via Tail Tapping [71]. The publisher is not responsible for any errors

or omissions in this version of the manuscript or any version derived from it. The Ver-

sion of Record is available online at https://doi.org/10.1007/978-3-030-86294-7 19 and at

https://crablab.gatech.edu/pages/publications/index.html.

3.2 Robot performance without tail

We first tested the robophysical model without a tail using a diagonal couplet gait (Fig-

ure 2.2 B) over a flat surface and the rough terrain. Snapshots of the robot’s progression

over time is shown in Figure 3.1 A&B for these two surfaces. The robot was able to tra-

verse the flat course with a periodic oscillation in its displacement over time, shown in

Figure 3.1 C. On the rough terrain (Figure 3.1 D), the displacement versus time does not

display any significant periodicity and instead, there are portions of time where the dis-

placement plateaus. This region emerges when the robot is trapped in the terrain. For the

case presented, this plateau occurs at the 10 second mark and remains for 5 seconds. At this

point, a limb was unable to complete a rotation within 2 gait cycles and so the kill switch

was triggered. This results in the robot ”relaxing” which is why there is a change in the

displacement after the 15 second mark.

We then ran the robot across those two surfaces with different gait patterns where we

varied the phasing between the limbs. Example trajectories for the gaits (pace, single foot,

trot, pronk, and bound) are shown in Figure 3.2 A&B for flat and rough terrain, respectively.

25



Figure 3.1: Example gait trial over flat and rough terrain. Snapshots of the robot moving
over a flat (A) and rough (B) terrain, using the diagonal couplet. Example displacement
over time for the robot using the diagonal couplet gait over flat (C) and rough (D) terrain.

The phase parameters used to distinguish the different patterns and the colors associated

with each gait are shown in the boxes to the right of Figure 3.2. On the flat surface, the

robot was able to traverse the course independent of the prescribed gait. With the diagonal

couplet and pronk gait, the robot reached the end of the course consistently, evidenced by

the flat lines at the 140 cm mark in the displacement box plot for flat ground shown in

Figure 3.2 C. However, the pronking gait is one where all legs move simultaneously and

so, there are significant vertical oscillations and power consumption associated with such a

pattern that are not shown in this figure. With the other gaits, the robot did not move in a

straight path over the flat course and fell off the sides. As expected, for the different gaits,

the system did not exhibit any trapping or locomotor failure over the flat ground. However,

the robot was consistently hindered from traversing the rough terrain. It encountered traps

that resulted in median displacements of 35.4 cm, 39.6 cm, 37.5 cm, 29.1 cm, 59.1 cm, and

34.3 cm for the pace, single foot, diagonal couplet, trot, pronk, and bound gait, respectively.

A box plot in Figure 3.2 C shows the difference in performance across the two courses. This

method of data representation was used since the underlying failure distribution is unlikely

to be Gaussian and so, the quantiles represent the spread of the data more effectively. As

is evidenced in Figure 3.2 C, the rough terrain trials had significantly lower displacements
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than their flat terrain counterparts due to the traps, despite including tests that went over

the sides of the course.

Figure 3.2: Gait trials over flat and rough terrain. Example trajectories for each gait
over flat (A) and rough (B) terrain. Gaits tested were pace (purple), single foot (burgundy),
diagonal couplet (gray), trot (gold), pronk (turquoise), and bound (blue). (C) Median dis-
placement per gait over flat and rough terrain. Red crosses show outliers. Phase shift
between lateral (ψlat) and opposite (ψopp) limbs for each gait are shown to the right.
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The discrepancy between the flat and rough terrain displacements is due to the differ-

ence in propulsion methods. Over the flat ground, the limbs provide thrust to the overall

body by generating force that is in the direction of travel by interacting with a horizontal

surface (“floor”). This force is mainly in the form of Coulomb friction with some additional

impulses from when a limb initially impacts the ground. However, over the rough terrain,

the limbs have a second means of providing body thrust by pushing off of the vertical

planes (“walls”) present. Thus, there are instances of “obstacle-aided” propulsion where

the robot achieves higher instantaneous velocities than it could on flat ground. Ordinarily,

this would serve as a significant form of perturbation to the stability of the locomotor since

it corresponds to a removal of a supporting force. However, when on the rough terrain, the

robot’s belly is mainly in contact with the ground. This is quite different than the case on

flat ground where the robot’s underside is mainly suspended in air. By keeping the belly

in contact with the ground, the underside acts as another point of support over the rough

terrain.

Acknowledging this obstacle-aided propulsion and the belly as a point of support is key

to understanding how trapping failures occur within this system. This propulsion against

walls does not have any compliance, unlike the method over floors which can shift from

static to kinetic friction (slip). In this open-loop system, the limbs rotate regardless of

whether there has been a body collision that halts forward motion. For the case where slip

occurs, the limbs continue to rotate without significant impedance, preventing the actuators

from over-torquing. In the case where slip does not occur, a trap will ensue since the robot

will damage itself through motor or pitch-back failure in attempting to rotate the legs. For

the current system, the traction on the limbs is such that slipping occurs before failure.

With the obstacle-aided method, there is no such compliance. Therefore, if the robot is

impeded when using this scheme, a limb will continue increasing its torque until the motor

fails. Instances like this are common on the rough terrain course since the belly acts as

an extra point of support and as an additional point to impede motion. To escape these

traps, the “pushing limb” could continue to increase its torque and propelling force until
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the body pushes through the obstacle, effectively remodeling its environment. However,

such a method is not possible on this created terrain. Therefore, the only remaining way

for the robot to escape from a trap is by removing the pushing limb’s frictional foothold.

This can be done by the individual motor increasing its torque until it surpasses the static

friction limit against the wall or by one of the other limbs pushing the body such that the

same effect is achieved. This serves as an indication that adding a tail could offer a benefit

to the locomotor by offering additional methods through which to remove the frictional

foothold.

3.3 Tailed robot performance over rough ground

For all tail strategies, the robot used the diagonal couplet gait as it was the only gait that

remained within the course bounds and reached the end of the course consistently while

having minimal vertical oscillations and power consumption. Additionally, only the pitch

servo (along the vertical plane) was active and the yaw servo (along the horizontal plane)

was free to move passively. Displacement analysis was performed only on the trials that

remained within the course for the entire experiment, ending when a trap fully halted the

robot or the locomotor surpassed 140 cm. The diagonal couplet median displacement and

MDBF is thus changed from 37.5 cm and 41.0 cm to 30.6 cm and 39.8 cm, respectively.

3.3.1 Static tail strategy

For the static tail strategy, we tested four βset angles: 0°, 15°, 30°, and 45°. This method

was inspired by Tailbot [54] and serves as the simplest way to use an active tail. Figure 3.3

A shows sample trajectories for each angle with the associated displacement over time

plots in Figure 3.3 B-E. Within these example trials, we see plateaus in the displacement

that correspond to instances of trapping, with the final instance being marked here by the

dashed black line.

The 0° static tail trials probe the effect that this appendage has on the overall system due

to its added mass and geometry. The tail’s inclusion hinders the robot’s ability to traverse
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Figure 3.3: Static tail strategy examples. (A) Example trajectories over rough terrain for
each angle tested: 0° (red), 15° (orange), 30° (blue), and 45° (green). Example displace-
ments versus time for βset of (B) 0°, (C) 15°,(D) 30°, and (E) 45°. Black lines indicate
where the final trapping event occurred.

the course, lowering its survival likelihood for long distances, as seen in the eCCDF in Fig-

ure 3.4 A as well as the MDBF being 34.3 cm (lower than the no tail version). Furthermore,

the robot’s probability of freeing was reduced from 0.25 to 0.125 as seen in Figure 3.4 B.

The 15° tail strategy had similar effects on the locomotor, reducing the long distance likeli-

hood with an MDBF of 49.1 cm. This signifies an increase in the average distance traveled

along with a reduction in the survival likelihood for long distance. This is due to the 15°

trials tending to fail within a certain region on the course, rather than failing more spread

out like in the no tail trials. Additionally, this behavior decreased the probability of freeing

further to 0.08. These reductions in freeing ability were due to the added mass causing the

robot to tend to pitch backwards as it encountered obstacles and the geometry of the tail
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preventing the system from pitching like it desired. This served as another impediment for

the robot’s motion and thus induced trapping more often without a means of eliminating the

frictional foothold, resulting in the aforementioned reductions in locomotor performance.

Figure 3.4: Static tail strategy summary. (A) Empirical complementary cumulative dis-
tribution functions (eCCDFs) and (B) probability of freeing for each tested angle and the
robot without the tail (gray).

When at higher angles like 30° and 45°, the weight-induced pitching of the robot was

mitigated by the additional point of support offered by the tail. Furthermore, this additional

contact reduced the likelihood for the back limbs to fall deeply into holes and thus, they

were not as strongly held by these obstructions. This resulted in higher freeing probabilities

for these angles as seen in Figure 3.4 B with the 30° and 45° tail trials having freeing

likelihoods of 0.31 and 0.36 with MDBFs of 50.0 cm and 46.5 cm, respectively. The

30° static tail behavior also showed an improved long distance survival likelihood when

compared to the no tail experiments while the 45° tests showed a reduction in this metric.

This was due to the high tail angle pushing the front of the robot further down, making

it more likely to collide with obstacles in the terrain. Additionally, this behavior exposed

more of the tail to the terrain at large impact angles, making snags more common despite the

design elements to mitigate such effects (see Figure 2.4 C). These trials and results hint at

the need for more dynamic behaviors to mitigate trapping. A static element simply changes

the terrain-locomotor configuration at which trapping occurs and does not introduce the

dynamics necessary.
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3.3.2 Periodic tapping strategy

For the second tail strategy, we tested periodic open-loop tapping where βset oscillated

from 0° to one of three angles: 15°, 30°, and 45°. A high and a low frequency was tested

per angle. This served to gauge the effects that tap amplitude and timing had on the robot’s

performance. For each angle, the high frequency test was the max frequency possible (2

Hz). A different low frequency was used for each angle to account for the changed ampli-

tudes with 15°, 30°, and 45° having frequencies of 0.67, 0.33, and 0.22 Hz, respectively.

Example trajectories for these behaviors are shown in Figure 3.5 A&B with corresponding

displacement over time in Figure 3.5 C-E. Across all angles tested, the lower frequency tap-

ping outperformed its high frequency counterpart in distance traveled, with more variation

in the freeing likelihood across these two behaviors.

Figure 3.5: Periodic tapping strategy examples. Example trajectories over rough terrain
for periodic tapping at (A) low and (B) high frequency. Inset in (A) shows angles tested:
15° (orange), 30° (blue), and 45° (green). Higher frequency colored with a darker shade
of the assigned color. Example periodic tapping displacements versus time for (C) 15°,(D)
30°, and (E) 45°.

During the 15° tests, we observed similar effects to those detailed in the static angle
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tests. Namely, the robot’s ability to free itself was reduced to 0.11 and 0.17 for low and

high frequencies, respectively. Moreover, at these lower amplitudes, the survival likelihood

in Figure 3.6 A&B was reduced and the MDBFs became 37.3 cm and 22.3 cm for the low

and high frequencies, respectively.

Figure 3.6: Periodic tapping strategy summary. eCCDFs for tested angles in (A) low and
(B) high frequency with the robot without the tail (gray). Probability of freeing for each
angle for low (C) and high frequency (D).

When at more significant amplitudes, both methods of periodic tapping served to effec-

tively disrupt the kinematic state of the robot relative to the terrain, removing the friction

foothold on the trapped limb. However, with the high frequency trials, the robot’s perfor-

mance was hindered due to this disruption. The 30° and 45° tapping behaviors affected the

system’s heading, leading to several trials being discounted as the robot fell off the sides

of the course. These trials shown in Figure 3.6 B have a low survival likelihood for long

distances, as well as MDBFs of 39.0 cm and 30.1 cm for 30° and 45°, respectively. This

tapping behavior tended to cause the robot to escape potential failure regions for the back

limbs before the requisite 5 seconds passed for that event to be logged as a “trap”. However,

when the system did fall into a trap, this high frequency tapping prevented the robot from

freeing itself, leading to the low probability of freeing shown in Figure 3.6 D. This was due
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to the impacts causing the overall locomotor to pitch forward and drive the front limbs and

belly deeper into the terrain. Consequently, those limbs tended to become trapped more of-

ten with these high amplitude taps preventing other legs from getting the sufficient traction

to free the system. Additionally, the tail pushed the body backwards, driving trapped limbs

further into obstacles. From these tests, it is evident that disrupting the kinematic state of

the robot can hinder its performance if done extensively and improperly.

When at lower frequencies, high amplitude tapping improved locomotor performance.

The 30° and 45° tapping trials had improved long distance survival and MDBFs of 52.1 cm

and 50.6 cm, respectively (see Figure 3.6 A). Additionally, these behaviors improved the

likelihood of freeing from 0.25 to 0.42 and 0.50, as seen in Figure 3.6 C. At these angles,

the tail made consistent contact with the ground, which was the major failing of the 15°

tapping behaviors. Additionally, the tail tended to hit the ground when the robot was on

the verge of failure, leading to the higher freeing probability. Notably, the system often

landed into a new trapping region after the initial tap freed it. Consequently, the robot

typically reached the kill condition before a new series of taps could be performed that

freed it. The improvement observed with these tests suggests that the optimal timing of tail

impacts changes based on the kinematic state of the robot and the local terrain conditions.

Therefore, while proper tapping can improve performance, an open-loop method is unlikely

to consistently mitigate trapping failures.

3.3.3 Load-triggered tapping

For the final tail strategy, we applied a closed-loop method for tapping to the system. In

this behavior, the tail would begin to tap at 2 Hz once the detected current on the power

supply exceeded a threshold of 2.5 amps for more than 100 milliseconds. Once started,

the tail would continue to tap until the load dropped below the baseline, after which the

appendage finished its last cycle before resting (see Figure 2.5 B&C). This strategy builds

off of the knowledge acquired in the open-loop tapping tests. Namely, that the timing of

the taps plays an important role in how the behavior affects the locomotor performance. If
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done too often, the impacts hinder the robot as seen in the high frequency tapping tests. If

done too intermittently, the robot is likely to fail before another tail impact can free it. We

tested three βset angle amplitudes: 30°, 60°, and 90°. Example trajectories for each can be

seen in Figure 3.7 A with associated displacements over time in Figure 3.7 B-D.

Figure 3.7: Load-triggered tapping strategy examples. (A) Example trajectories over
rough terrain for each angle tested for the load-triggered behavior. Inset illustrates tail
angles tested: 30° (blue), 60° (purple) and 90° (black). Example displacements versus time
for (B) 30°, (C) 60°, and (D) 90°.

This strategy managed to consistently address trapping as it occurred, with examples

shown in Figure 3.7 B-D at 9.5 sec, 12 sec, and 9 sec, respectively. This improvement

resulted in the likelihood of terrain traversal being comparable to or greater than the robot

without the tail (Figure 3.8 A). Each amplitude increased MDBF and freeing probability

from 39.8 cm and 0.25 for the no tail trials to 45.3 cm, 67.1 cm, and 50.3 cm and 0.28, 0.40,

and 0.35 for the 30°, 60°, and 90° angles, respectively. Additionally, these angles improved
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survival likelihood for the entire course, with 60° having the best enhancement. With the

30° amplitude trials, the tail offered only minor benefits to the robot since the impacts did

not consistently provide sufficient force to free the system. At the 90° amplitude, the tail

would over-disrupt the locomotor like in the 30° and 45° high frequency trials. Conse-

quently, the robot would change its heading and take more circuitous routes, increasing

the likelihood to fall into traps where tail-ground contact was not guaranteed. With 60°

load-triggered tests, the locomotor had the most improvement since the taps disrupted the

system enough to free it without significantly affecting the heading. This meant that the

robot traveled relatively straight and when traps were encountered, it often had tail-ground

contact possible.

Figure 3.8: Load-triggered tapping summary. (A) eCCDFs for each tested angle and the
robot without the tail (gray). (B) Probability of freeing for each angle.

3.3.4 Tailed strategy summary

Comparing across all tested behaviors, low frequency periodic tapping at βset of 30° and

45° outperformed other strategies in the likelihood of freeing as seen in Figure 3.9 A.

However, this periodic strategy is not easily applied outside of a lab setting. In reality,

the robot only needs to tap momentarily to free itself from a trap. Disruptions brought on

by further tapping could hinder performance over less hazardous areas. In contrast, load-

triggered tapping and a static tail both offer real-world applicability. For the static tail,

the median distance traveled increased from 30.6 cm to 43.6 cm and 43.4 cm for 30° and
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Figure 3.9: Tail strategies comparison. (A) Probability of freeing for each behavior. (B)
Median displacement for each tail behavior. Black/white dots show the mean displacement
before failure (MDBF). Black/white horizontal lines show the median. Red crosses show
outliers. Statistic performed with a Wilcoxon rank sum test, comparing each behavior. Dif-
ferences were significant at p≤0.05 when comparing load-triggered 60° to low frequency
15°, high frequency 15°, and high frequency 45°.

45°, respectively. This behavior can also offer benefits in homogeneous or less hazardous

environments by stabilizing the system through a new point of support [54]. While not

providing the best improvement for probability of freeing, load-triggered tapping offered

consistent performance in that metric across all angles tested. Furthermore, this behavior

had the best improvement in both the average and median distance traveled. This indicates

that the tail strategy improved the locomotor more consistently than the other behaviors

and thus, it can serve as a desirable strategy for field robotics. The 60° tapping behavior

had the most improvement with a median distance of 63.0 cm and this was due to the

tail consistently making ground contact while not over-disrupting the system like in the

90° trials. The key benefit of this behavior is that it only begins to tap once a “failure”
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threshold is met and that offers the possibility for future enhancement through more “failure

observers” that do not disturb the robot in less hazardous environments.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

Humans wish to apply robots to explore and traverse all types of environments. To achieve

this, roboticists have created several locomotor designs that can move over most terrains

using different control schemes. However, in certain scenarios, the applied robot has di-

mensions that are of comparable size to the obstacles and holes present in the environment.

In such situations, trapping can occur where the locomotor is unable to make any forward

progress due to a limb being trapped in the terrain. When faced with these traps, biological

systems utilize their vast array of sensors to detect which limb is at fault and use complex

dynamics to free their compliant bodies. Rather than implement such a strategy on an ar-

tificial system, could a new mechanism in the form of a tail be introduced to offload the

complexity required of the limb control? To probe this question, we performed a robo-

physical study using a RHex-inspired quadrupedal system with an attachable active tail

traversing a terrain designed to elicit failure.

This robot design used a single motor and absolute encoder for each limb and was able

to emulate different gaits to walk over flat ground. The robot was able to achieve these

different gait patterns via a cascaded series of PID loops on each limb, along with a state

feedback control scheme that was inspired by reflex chains observed in simple organisms

and robots. This control scheme was able to emulate the desired gait pattern and strictly

follow it. This can serve as a point of study for future researchers to gain insight into gait

terradynamics over terrains that induce motor stalling. To elicit trapping failures, a complex

terrain stepfield was created where the block heights varied according to an inverted normal

distribution. Such a distribution, when patterned correctly, was able to bring the robot’s

motion to a standstill at different points within the terrain.

These diverse and situational terradynamic interactions consistently trapped the robot

when it attempted to traverse the designed course. Such conditions prove to be challeng-
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ing to predict or detect since they depend on both the locomotor state and the properties

of the environment at its location. However, a properly-used simply-controlled active tail

enhanced the robot’s intrinsic capabilities by mitigating the influence of such interactions.

Consequently, the tail improved the traversal likelihood and freeing probability. Addition-

ally, improper tail usage hindered performance by disrupting the robot’s natural ability to

handle the environment. As such, there is a nonlinear relationship between tail usage and

locomotor performance. By including a sensor on the power line, a rudimentary observer

for the robot’s “trapping state” was introduced and augmented the active tail “controller” to

dictate when to begin impacting the ground while avoiding extraneous disturbances. This

strategy improved the likelihood of freeing and the distance traveled over the complex ter-

rain. In summary, an actuated tail with minimal control and sensing can be used to augment

existing robots to aid in locomotion over hazardous terrains.

This idea of an “observer” and “controller” for the failure state can be a source of future

investigation. For instance, refining the observer’s ability to detect more forms of failures

such as the robot being flipped onto its back or the limbs no longer contacting the ground

and being unable to propel the system. Additionally, improving the tail controller’s ability

to overcome such failures by actuating the yaw servo and incorporating the existing strain

sensor would be a good avenue for future work. For instance, the tail was not always

guaranteed to impact the ground when tapping since the robot could be tilted in the roll

direction which causes the appendage to deal a glancing blow with the terrain. A solution

for this is to incorporate the yaw servo into the tail control scheme and to introduce an

“observation” step where the tail sweeps through its achievable angles and looks to see

where an appreciable increase in power or tail strain occurs. With that done, the tail could

then impact the ground at the desired location and with the appropriate force. Additionally,

another improvement to be made is with the tail impact control strategy. As it stands, the

current approach is a fairly open-loop method where the tail goes to some preassigned

angle to do a tap. A more sophisticated approach would entail using the severity of the

trapping event (which can be ascertained from the load readings) to dictate the force needed
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to extricate the robot. Then using that knowledge, in conjunction with the predetermined

location of the terrain, to specify how fast and how much distance the tail must travel

before it impacts the ground in order to successfully free the locomotor. Such a scheme

could be deemed an ”impact control” and could have uses beyond locomotion and trapping

events to situations where forces are needed that are outside the range of what a quasi-

static approach can generate. Additionally, it could serve to further this tapping scheme’s

applicability to more fragile locomotion systems as it would allow one to specify the upper

bound of possible disturbances that can be generated by the uncoordinated tail.

Another possible avenue of future work would be to further probe the capabilities of the

RQuad system on different terrains (granular media, slopes, slants, etc.) and to see what is

possible if the limbs were to respond in tandem with the tail. For instance, we observed that,

at times, the limbs were further driven into the walls of the terrain when the tail impacted

the ground and this resulted in the robot staying trapped in the environment. A solution for

this would be to cause the limbs to have a load-triggered response as well, where the limbs

reverse as the tail makes ground contact. Indeed, preliminary tests showed that this strategy

resulted in very few robot trapping failures. However, this strategy also resulted in the robot

being diverted off its original trajectory and subsequently falling off the course. So this

method, while being robust to trapping failures and having a high probability of freeing, has

a low eCCDF due to its inability to traverse the terrain. Therefore, refining this method by

introducing methods of steering, either through tail [55] or through gait modifications [72]

or a combination of the two, could be a potentially rich source of possible improvements

for the RQuad platform and how to negotiate trapping.

Finally, another path for future work would be in developing a systematic way to create

these obstacled terrains to better understand trapping and possible ways to predict it. This

method of creating stepfields of arbitrary configuration and stiffness, with the ability to

measure applied forces and torques, could serve as a huge asset to robophysics and the

study of field robotics, as well as improve our understanding of how biological systems

operate within different 3D environments.
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APPENDIX A

GAIT CONTROL

Each limb is controlled to rotate according to an angular trajectory known as the Buehler

Clock which consists of a fast and slow region. This trajectory, as a function of position, is

shown in Equation 2.1. As a function of time, this motion profile takes the form shown in

Equation A.1 where t is the input time modulo TG (the gait period):

f(t) =


ωf t t ≤ θmin

ωf

ωst+ (1− ωs

ωf
)θmin

θmin

ωf
< t ≤ θmin

ωf
+ ϕ

ωs

ωf t+ (1− ωf

ωs
)ϕ otherwise

(A.1)

For the robot to walk, the four motors must be phased in time relative to one another

in order to achieve a gait pattern as detailed in Figure 2.2. Assuming each limb is driven

according to Equation A.1 above, then phasing could be achieved by introducing a delay τi

in each motor’s position function as seen in Equation A.2.

θ∗i = f(t− τi) (A.2)

This delay would be specific to each leg and would be relative to a global clock t shared

amongst all the limbs. In practice, however, it was simpler and less sensitive to drift if each

limb’s setpoint velocity was controlled according to its setpoint position. Consequently, the

global clock was no longer needed and the phasing of the limbs became an initial condition

that was subject to disturbances. As there is no universal reference to compare against,

each motor relied on its relative phasing to the other three to control its own “delay”. To

do this, each motor’s time within its angular cycle was estimated from its position. This is

possible since the periodic function detailed in Equation A.1 is bijective (i.e. each point in

time corresponds to a unique position). This mapping from position to time was done for
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each limb, generating a 4-by-1 vector of time estimates tmap shown below.

tmap = t− τ = f−1(θ), θ =


θ1

θ2

θ3

θ4


, τ =


τ1

τ2

τ3

τ4


(A.3)

The relative phasing between each motor ψest was then be estimated by taking the dif-

ference between each entry in the tmap vector. This was done via multiplication with the

16-by-4 matrix M , shown below using the 4-by-4 ones matrix J4, the 4-by-4 identity ma-

trix I4, and the matrix unit Ei,j which is a 4-by-4 zero matrix except for a 1 in the i-th row

and j-th column.

ψest =Mtmap,M =


J4E1,4 − I4

J4E2,4 − I4

J4E3,4 − I4

J4E4,4 − I4


(A.4)

This phase estimate was then compared to the desired phase vector (see section 6.0.3) and

this 16-by-1 vector was then multiplied by the transpose of M to create a 4-by-1 “error”

term. A control gain K (K = 1 for this implementation) was then applied to that error

term, resulting in a phase correction vector P which effects the setpoint velocity of each

corresponding limb.

P = KMT (ψ∗ − ψact) (A.5)

θ̇∗i = Pi + g(θ∗) (A.6)
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APPENDIX B

INVERTED NORMAL DISTRIBUTION EQUATIONS

X ∼ IN(µ, σ2, β) (B.1)

PDF:

f(x) =


κ√
2πσ2

(1− e−
(x−µ)2

2σ2 ) , µ− β < x ≤ µ+ β

0 , otherwise

(B.2)

CDF:

F (x) =


1 , x > µ+ β

κ√
2πσ2

(x−
√

πσ2

2
erf( x−µ√

2σ2
)) + ζ , µ− β < x ≤ µ+ β

0 , x ≤ µ− β

(B.3)

Quantile:

Q(p) = x, s.t. q(x, p) = 0 (B.4)

q(x, p) = x−
√
πσ2

2
erf(

x− µ√
2σ2

) +

√
2πσ2

κ
(ζ − p)

κ =

√
σ2

β
√

2
π
−
√
σ2 erf( β√

2σ2
)

ζ =
1

2
− µ

2β −
√
2πσ2 erf( β√

2σ2
)
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APPENDIX C

EQUATIONS FOR IMPLEMENTATION

Slow and fast velocities used in Buehler Clock:

ωs = ωslow =
ϕ

dtTG
, ωf = ωfast =

1− ϕ

TG(1− dt)

Desired phase between limbs according to a gait pattern:

ψ∗ =


ψ1

ψ2

ψ3

ψ4



ψ1 =


0

ψlat

ψopp

ψlat + ψopp


, ψ2 =


−ψlat

0

ψopp − ψlat

ψopp


, ψ3 =


−ψopp

ψlat − ψopp

0

ψlat


, ψ4 =


−(ψlat + ψopp)

−ψopp

−ψlat

0


Motor time estimate given position:

tmap,i = f−1(θi) =


K1θi θi < tmin

K2θi +K3 θmin ≤ θi < θmin + ϕ

K1θi +K4 θi ≥ θmin + ϕ

K1 =
1− dt
1− ϕ

,K2 =
dt
ϕ
,K3 = θmin(K1 −K2), K4 = dt − ϕK1
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