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Lattice Dynamics and Melting of a Nonequilibrium Pattern
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We present a new description of nonequilibrium square patterns as a harmonically coupled crystal
lattice. In a vertically oscillating granular layer, different transverse normal modes of the granular
square-lattice pattern are observed for different driving frequencies (fd) and accelerations. The
amplitude of a mode can be further excited by either frequency modulation of fd or reduction of
friction between the grains and the plate. When the mode amplitude becomes large, the lattice melts
(disorders), in accord with the Lindemann criterion for melting in two dimensions.
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FIG. 1. (a) A lattice pattern strobed at fd=2 and time aver-
aged (� � 2:90 and fd � 25 Hz, parameters for which the
lattice is almost motionless). The image shows the entire con-
tainer, 18� 18 cm2. (b) Closeup snapshot image (3� 3 cm2) at
� � 2:90 and fd � 30 Hz, for which the lattice oscillates
vigorously. (c) The evolution in time (with units T � 1=fd)
Lattice pattern.—The square patterns, illustrated in
Fig. 1(a), oscillate subharmonically at fd=2; after each

of the peaks in boxes A and B in (b); these peaks oscillate out
of phase with a frequency about 10 times smaller than fd=2.
Systems driven away from thermodynamic equilib-
rium often form patterns when forced beyond a critical
threshold. Close to this bifurcation, the dynamics of the
nonequilibrium patterns are well described by partial
differential equations called amplitude equations, whose
forms are universal [1]. However, these equations lose
predictive power for larger forcing. As an alternative
description of patterns, Umbanhowar et al. [2] conjec-
tured that interacting localized structures, ‘‘atoms’’ of
the patterns, could be the building blocks of spatially
extended patterns. In this Letter, we demonstrate that
this speculation was correct: we describe and predict
the behavior of a pattern in a particular system by treating
it as a finite number of interacting elements. Such an
approach can replace the description of patterns by par-
tial differential equations with a possibly simpler descrip-
tion based on a finite set of coupled ordinary differential
equations.

We use a well-known pattern forming system, a thin
layer of oscillated granular material. We show that the
dynamics (including all oscillatory motions and disor-
dered states) of square patterns are analogous to the
dynamics of a discrete lattice of harmonically coupled
elements. The descriptive and predictive power of such a
framework is especially useful for the patterns formed in
granular materials because the governing equations are
only now being rigorously tested [3], and the exact forms
of the amplitude equations are not yet established.

Experiment.—A layer of 0.17 mm diameter bronze
spheres was oscillated vertically in an evacuated cell at
driving frequency fd with nondimensional peak plate
acceleration � � A�2�fd�2=g, where A is the amplitude
of the plate oscillation and g is the gravitational accel-
eration. For the layer depth studied (four particle diame-
ters), square patterns formed for 2:5< �< 4:0 and fd <
36 Hz. The granular surface was imaged using low angle
illumination that created bright regions at the peaks [4].
The scattered light was collected by a 256� 256 pixel
CCD camera.
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plate oscillation, a peak becomes a crater. At the phase in
the plate oscillation cycle when the pattern amplitude is
maximum, the pattern is composed of an array of peaks
arranged in a square lattice connected by a network of
thin lines of particles. At maximum amplitude, each
peak typically contains several hundred particles.
Images are collected at this phase in the cycle. In the
dark regions between the peaks, there are almost no
grains. Thus, when strobed at fd=2, the pattern resembles
a two-dimensional (2D) square crystal lattice made of
discrete elements separated by lattice constant a. In this
paper, we consider only the motion of the lattice pattern
strobed at fd=2.

Lattice oscillation.—We will now show that the lattice
analogy is more than superficial: The square patterns also
exhibit the dynamics of a coupled lattice. In general, the
center of mass of each peak (lattice element) oscillates
around its equilibrium (time-averaged) lattice site. We
find that, for a range of control parameters, the oscilla-
tion is periodic; a particular example is illustrated in
Figs. 1(b) and 1(c). The peaks in a row at an angle �=4
to the natural lattice direction maintain a constant sepa-
ration of
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a as they oscillate. Such an oscillation of the
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pattern is analogous to a single excited transverse normal
mode in the (1,1) direction of a 2D crystal lattice. We find
that all periodic motions of the lattice resemble �1; 1�T
modes [or the degenerate �1;�1�T], with different wave
vectors and oscillation frequencies.

Dispersion relation.—The evidence that the granular
lattice behaves similar to a discrete coupled lattice is
provided by the dispersion relation shown in Fig. 2(a).
Since the lattice dynamics is in general more complicated
than the periodic oscillation of a single mode shown in
Fig. 1, the dynamical behavior is determined from the
three-dimensional discrete Fourier transform of a time
series of images, giving ~II�kx; ky; fL�. Only certain values
of oscillation frequencies fL and wave vectors �kx; ky�
contain power (j~IIj2), and these combinations yield the
dispersion relation for the lattice in the �1; 1�T [or the
degenerate �1;�1�T] direction [5].

As a first approximation to the unknown 2D potential
between the lattice elements, following Kittel [6], we
assume that the modes can be decoupled in different
crystal directions. Since we observe only the �1;�1�T
modes, we compare the data to a 1D lattice model in
which we assume that the transverse motion of each (1,1)
row is harmonically coupled to its nearest (1,1) neighbors.
As shown in Fig. 2(a), the measured dispersion relation is
well described by the dispersion relation of the 1D lattice
FIG. 2. (a) Comparison of the measured �1; 1�T dispersion
relation (	) at fd � 25 Hz and � � 2:75 with a lattice model
(solid line). The wave number k is in units of 4�=�
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where a is the lattice constant and N � 34 is the number of
(1,1) rows in our square container (N � 32 in Fig. 1). Only N=2
positive k modes are shown since the lattice oscillations are
decomposed into periodic Fourier components. The dashed line
denotes the edge of the first Brillouin zone (k � kBZ) for the
�1; 1�T modes. (b) and (c) show the modulus of the spatial
Fourier transforms, j~II�kx; ky; fL�j, at two lattice oscillation
frequencies, fL � 2:3 Hz and fL � 1:2 Hz, respectively. The
sidebands represent the spatial modulation of the lattice �=4
from the basic square lattice direction—the �1; 1�T modes. The
four peaks (�) that form the basic square lattice (found at fL �
0 Hz) have a power about 50 times larger than the background.
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model with fL � fBZj sin�ka=�2
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�j, where fBZ is the
frequency at the edge of the Brillouin zone [proportional
to the square root of the ratio of effective spring constant
to the effective mass of a (1,1) row], a the lattice constant,
and k is the magnitude of a wave vector in the (1,1)
direction [7]. We have found that, for a wide range of �
and fd, the measured dispersion relations are fit well by
the harmonically coupled lattice model; as � and fd are
changed, fBZ varies between 1.5 and 2.5 Hz, an order of
magnitude smaller than fd.

Excitation of normal modes.—We have demonstrated
that lattice dynamics describes the square patterns; there-
fore, we can view the periodic oscillations of the pattern
as individually excited normal modes. In two ranges of �
and fd, the oscillation of the pattern becomes very intense
(Fig. 3). The two regions are characterized by excitation
of specific normal modes: In region I, the power is
dominant in the mode at the edge of the (1,1) Brillouin
zone, k � kBZ � 2�=�
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a�, while in region II, the power
is dominant in a mode near the middle of the Brillouin
zone. We do not know why these particular modes are
excited. Away from the two regions of excitation, the
lattice is nearly stationary, with small amplitude oscilla-
tions of the lattice elements around the equilibrium sites.
In these quiescent regions, the total power is small and is
roughly independent of the mode number: The lattice acts
as if it is in contact with a thermal bath.

Defect formation.—In a real crystal lattice, if the
amplitude of the oscillations is large enough, defects
form and melting occurs. We see the analogous effect in
the square pattern lattice: Near region II, the single mode
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FIG. 3. Normal modes of the lattice exhibit two regions of
intense excitation, I and II. Top panel: the gray scale indicates
the power in the dominant mode, which was obtained by
integrating the spectral power above a noise background.
Bottom panel: The wave vector of the dominant mode. The
points are taken along the path in the top panel.
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oscillations are large enough to locally break the lattice
and form defects, which either remain in the lattice or
travel through the crystal and annihilate at the boundary.
Thus, in region II the patterns do not display perfect long-
range order.

The defect creation rate can be enhanced by resonantly
exciting a specific normal mode, as shown in Fig. 4(a).We
achieve this by a slow frequency modulation of the layer
oscillation: The signal applied to the container has the
form y � A sin
2�fdt� �fms=fmr� sin2�fmrt�, where fd
is modulated at a rate fmr with a modulation span fms.
The lattice responds to the frequency modulation by
oscillating in a �1; 1�T normal mode with a frequency of
exactly fmr=2, and the strength of the response increases
as fms increases. Several hundred oscillations after the
modulation is turned on, the amplitude of the excited
mode becomes quite large, and a few defects are created
as the mode locally shears the lattice apart.

Friction and melting.—To further increase the rate of
defect formation, we have reduced the friction between
the particles and between the particles and the plate by
adding approximately 0.2 g of graphite powder to the 60 g
of freshly washed particles. This results in enhanced
defect formation within the lattice near region II even
FIG. 4. Defect creation and melting for three cases after a
sudden change in the system parameters. The numbers are the
number of oscillations after the change in conditions, and the
insets show the structure factor (power spectrum) correspond-
ing to the pattern. (a) At t � 0, frequency modulation with
fmr � 2 Hz and fms � 5 Hz was applied (� � 2:9, fd �
32 Hz). (b) At t � 0, the same frequency modulation as in (a)
was applied for particles which had been cleaned and to which
graphite had been added. (c) Molecular dynamics simulation:
At t � 0, the friction coefficient � between the grains and the
plate was reduced from 0.5 to 0 (� � 3:0 and fd � 32 Hz, for
which the pattern weakly oscillates when � � 0:5).
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without frequency modulation of the container [8]; fre-
quency modulation of these particles fully melts the
pattern [see Fig. 4(b)], creating a disordered liquidlike
pattern in which lattice elements are no longer confined to
oscillate near their equilibrium positions. We hypothesize
that the friction controls the mode amplitude by damping
the in-plane sliding motion of the peaks against the
container bottom.

In the experiments, we cannot vary the friction in a
controlled way, but this can be done in molecular dynam-
ics (MD) simulations. We previously found that an MD
code for inelastic hard spheres yielded square patterns
similar to those in Fig. 1(a) [9]. With a friction coefficient
� � 0:5, the spatial patterns and their wavelengths ob-
tained from MD simulations were in good accord with the
experiments for a wide range of � and fd. We find that
melting in the MD simulation occurs rapidly when the
friction coefficient between the grains and the plate is
reduced to zero, as Fig. 4(c) illustrates. In this melting
process, the correlation length of the pattern � decreases
from about 5a to 2a (see inset of Fig. 5). (� was obtained
by fitting an exponential to the envelope of the azimuthal
average of the 2D autocorrelation function.) After reach-
ing a minimum in about 30 plate oscillations, � oscillates
about 2a as defects continue to appear and disappear in
the liquidlike pattern. Since the melting of the granular
lattice is driven by the growth of the single excited mode,
we cannot compare our observations with the well-known
2D melting theory of Halperin and Nelson [10], which
requires uniform (thermal) heating of all modes.

Lindemann melting criterion.— In simulations of 2D
crystalline lattices, melting has been found to occur when
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FIG. 5. Melting occurs when the Lindemann ratio �M (see
text) reaches approximately 0.1. Main figure: the evolution of
�M in simulations with � � 3:0 and fd � 32 Hz after the
friction coefficient � was changed at t � 0 from � � 0:5.
The inset shows that the correlation length of the pattern for
� � 0 reached the plateau region when �M  0:1.
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the Lindemann ratio, �M � hjum � unj
2i=a2, exceeds 0.1

[11,12]; here u denotes displacements of atoms from
lattice sites, and the average is taken over all nearest
neighbors m and n. The time evolution of �M computed
for the granular lattice for different values of � is shown
in Fig. 5. We find that the lattice melts (� reaches its
plateau region) when �M increases through the value of
0.1 , just as in 2D crystals. For � � 0:5, the amplitude of
the excited mode is too small for the lattice to melt, while
for � � 0:1 the pattern oscillates with increasing ampli-
tude until local melting events disrupt the long-range
order (Fig. 5) — such behavior is analogous to the dy-
namics seen in the experiment near the peak of region II.
Thus, the Lindemann ratio can be used as a predictive
criterion for the loss of order in the square patterns.

Conclusions.—We have shown a close correspondence
between the square patterns in a vibrated granular layer
and a discrete set of harmonically coupled elements in a
2D lattice. The applicability of the Lindemann criterion
in the nonequilibrium system further confirms the utility
of the lattice dynamics framework. In addition, we con-
jecture that the stability exhibited by the nonequilibrium
granular lattice pattern is an example of the ‘‘generalized
rigidity’’ typically found in equilibrium lattice systems
and discussed by Anderson [13]. Whether such concepts
and predictive criteria can be applied to other nonequili-
brium systems is an open question. For example, it would
be interesting to see if other nonequilibrium patterns that
display excited modes [14] exhibit a dispersion relation
and a melting scenario similar to what we have observed.
Finally, we note that our observations of the effect of
friction on melting of the lattice could help guide the
development of kinetic and hydrodynamic theory of
granular media, where the role of friction is not well
understood.
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