Sensitive dependence of the motion of a legged robot on granular media

Chen Li, Paul B. Umbanhowar, Haldun Komsuoglu, Daniel E. Koditschek, and Daniel I. Goldman

*School of Physics, Georgia Institute of Technology, Atlanta, GA 30332; bDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208; and cDepartment of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104

Edited by Harry L. Swinney, University of Texas, Austin, TX, and approved December 29, 2008 (received for review September 12, 2008)

Legged locomotion on flowing ground (e.g., granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bioinspired legged robots display speed relative to body size on hard ground comparable with high-performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments, we study the performance (speed) of a small (2.3 kg) 6-legged robot, SandBot, as it runs on a bed of granular media (1-mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best 2 orders of magnitude smaller than the 2 body lengths/s (~60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction and the limb frequency, and a dramatic transition from rotary walking to slow swimming occurs when phi becomes small enough and/or omega large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.

Results and Discussion

The robot we study, SandBot (Fig. L4), is the smallest (mass 2.3 kg) in a successful series of biologically inspired (18) hexapedal robots, the RHex class (17). RHex incorporates the pogo stick-like dynamics observed in a diversity of biological organisms running on hard ground (19). This dynamics, called the spring-loaded inverted pendulum (SLIP) template (41), is hypothesized to confer passive self-stabilization properties to both biological and robotic locomotors (20). RHex was the first legged machine to achieve autonomous locomotion at speeds >1 body length/s (17), and it and its “descendants” such as EduBot/SandBot, Whegs (21), and iSprawl (22) are still the leaders in legged mobility (roughly, speed and efficacy) on general terrain. In fact, before the recent development of the much larger BigDog (23) platform (1 m long, 75 kg), RHex remained the only class of legged machine with documented ability to navigate on complex, natural, outdoor terrain of any kind and has been used as the standard legged platform in comparisons with commercial wheeled and tracked vehicles like Packbot (24).

SandBot moves using an alternating tripod gait in which 2 sets of 3 approximately c-shaped legs rotate synchronously and pi out of phase. A clock signal (Fig. 1C), defined by 3 gait parameters (see Materials and Methods), prescribes the angular trajectory of each tripod. The c-legs distribute contact (25) over their surfaces and allow the robot to move effectively on a variety of terrain.
trajectories from trials with 2 phases: a slow stance phase and a fast swing phase. Overlapping trajectories from trials with different volume fraction states with different penetration properties (29).

The ensuing rotary motion propels the axle and consequently the wheel, the c-leg abruptly stops translating relative to the grains and begins slipping tangentially in the circular depression surrounding it; at the same time, the center of rotation moves from depth transmitted inertial, gravitational, and frictional stresses at a point of phase; arrows indicate members of 1 tripod. (B) Pulses of air through the 1-mm poppy seeds. With initial fluidization followed by repeated pulses of air (28), we prepare controlled volume fraction states with different penetration properties (29).

In this study, we test the performance (forward speed v_f) of SandBot with varied limb angular frequency (ω) for volume fraction (ϕ) states ranging from loosely to closely packed ($\phi = 0.580$ to $\phi = 0.633$) which fall in the range of ϕ observed in desert dunes (40). We chose forward speed as a metric of performance because it could be readily measured by video imaging. We hypothesized that limb frequency would be important to robot locomotion because the substrate yield strength increases with volume fraction and the yield stress \times robot limb area divided by the robot mass \times velocity is proportional to the maximum limb frequency for efficient locomotion.

We find that robot speed is remarkably sensitive to ϕ (see Movie S3). For example, at $\omega = 16$ rad/s, $v_f(t)$ shows a change in average speed v_f of nearly a factor of 5 as ϕ changes by just 5% (Fig. 1D and E). For a closely packed state ($\phi = 0.633$), $v_f = 20$ cm/s with 5-cm/s oscillations during each tripod rotation, whereas for a more loosely packed state ($\phi = 0.600$), $v_f = 2$ cm/s with 1-cm/s oscillations.

This sensitivity to volume fraction is shown in the average robot speed vs. volume fraction (Fig. 1E). For fixed ω, v_f is effectively constant for ϕ above a critical volume fraction $\phi_c(\omega)$, but is close to zero for $\phi < \phi_c(\omega)$. For fixed ϕ, $\phi_c(\omega)$ separates volume fraction into 2 regimes: the “walking” regime ($\phi \geq \phi_c$, $v_f > 0$) and the “swimming” regime ($\phi < \phi_c$, $v_f \approx 2$ cm/s). See Movie S4 and Movie S5 for examples of rotary walking and swimming modes.

The rotary walking mode is dominant at low ω and high ϕ. In this mode, a tripod of limbs penetrates down and backward into the ground until the granular yield stress exceeds the limb transmitted inertial, gravitational, and frictional stresses at a depth $d(\omega, \phi)$. At this point, rather than rolling forward like a wheel, the c-leg abruptly stops translating relative to the grains and begins slipping tangentially in the circular depression surrounding it; at the same time, the center of rotation moves from the axle to the new stationary center of curvature (see Fig. 3A). The simultaneous halt in both vertical and horizontal leg motion is apparently due to the large reduction in belly friction forces that occurs when the weight of the robot is supported by the limbs rather than the underside of the body or the other tripod. The ensuing rotary motion propels the axle and consequently the rest of the robot body along a circular trajectory in the x-z plane with speed $R\omega$, where $R = 3.55$ cm is the c-leg radius. The forward body motion ends when, depending on ϕ and ω, either

On rigid, no-slip ground, SandBot’s limb trajectories are tuned to create a bouncing locomotion (17) that generates speeds up to 2 body lengths/s (≈ 60 cm/s). We tested this clock signal on granular media but found that the robot, instead of bouncing, produces different motion for the granular substrate; air is turned off before the robot begins to move. (ϕ is reduced by a factor of 30 to $\phi = 0.633$) which is useful on hard ground during bouncing locomotion on the bouncing gait. Study of biological locomotion has revealed a similar loss of performance and has shown that speeds of desert-adapted lizards like *Callisaurus draconoides* on granular media are typically 75% of top speeds on hard ground.

In the desert, animals and man-made devices can encounter granular media which exist in a wide range of volume fractions (40), and some desert adapted animals (like lizards) can traverse a range of granular media with little loss in performance (16). To test the robot performance on controlled volume fraction granular media, we employ a 2.5-m-long fluidized bed trackway (Fig. 1B) (27), which allows the flow of air through a bed of granular media, in this case \sim1-mm poppy seeds. With initial fluidization followed by repeated pulses of air (28), we prepare controlled volume fraction states with different penetration properties (29).

In this study, we test the performance (forward speed v_f) of SandBot with varied limb angular frequency (ω) for volume fraction (ϕ) states ranging from loosely to closely packed ($\phi = 0.580$ to $\phi = 0.633$) which fall in the range of ϕ observed in desert dunes (40). We chose forward speed as a metric of performance because it could be readily measured by video imaging. We hypothesized that limb frequency would be important to robot locomotion because the substrate yield strength increases with volume fraction and the yield stress \times robot limb area divided by the robot mass \times velocity is proportional to the maximum limb frequency for efficient locomotion.

We find that robot speed is remarkably sensitive to ϕ (see Movie S3). For example, at $\omega = 16$ rad/s, $v_f(t)$ shows a change in average speed v_f of nearly a factor of 5 as ϕ changes by just 5% (Fig. 1D and E). For a closely packed state ($\phi = 0.633$), $v_f = 20$ cm/s with 5-cm/s oscillations during each tripod rotation, whereas for a more loosely packed state ($\phi = 0.600$), $v_f = 2$ cm/s with 1-cm/s oscillations.

This sensitivity to volume fraction is shown in the average robot speed vs. volume fraction (Fig. 1E). For fixed ω, v_f is effectively constant for ϕ above a critical volume fraction $\phi_c(\omega)$, but is close to zero for $\phi < \phi_c(\omega)$. For fixed ϕ, $\phi_c(\omega)$ separates volume fraction into 2 regimes: the “walking” regime ($\phi \geq \phi_c$, $v_f > 0$) and the “swimming” regime ($\phi < \phi_c$, $v_f \approx 2$ cm/s). See Movie S4 and Movie S5 for examples of rotary walking and swimming modes.

The rotary walking mode is dominant at low ω and high ϕ. In this mode, a tripod of limbs penetrates down and backward into the ground until the granular yield stress exceeds the limb transmitted inertial, gravitational, and frictional stresses at a depth $d(\omega, \phi)$. At this point, rather than rolling forward like a wheel, the c-leg abruptly stops translating relative to the grains and begins slipping tangentially in the circular depression surrounding it; at the same time, the center of rotation moves from the axle to the new stationary center of curvature (see Fig. 3A). The simultaneous halt in both vertical and horizontal leg motion is apparently due to the large reduction in belly friction forces that occurs when the weight of the robot is supported by the limbs rather than the underside of the body or the other tripod. The ensuing rotary motion propels the axle and consequently the rest of the robot body along a circular trajectory in the x-z plane with speed $R\omega$, where $R = 3.55$ cm is the c-leg radius. The forward body motion ends when, depending on ϕ and ω, either
the second tripod begins to lift the robot or the underside of the robot contacts the ground.

With increased ω, limbs penetrate further as the requisite force to rapidly accelerate the robot body to the finite limb speed (R_0) increases. As the penetration depth approaches its maximum $2R - h$, where $h = 2.5$ cm is the height of the axle above the flat underside of the robot, the walking step size goes to zero because there is no longer a point in the cycle where the limb ceases its motion relative to the grain bed. Any subsequent forward motion is due solely to thrust forces generated by the swimming-like relative translational motion of the limb through the grains. Note that $\phi_0(\omega)$ increases with ω, and that the transition from rotary walking to swimming is sharper in \tilde{v}_s for higher ω and smoother for lower ω. The much slower swimming mode occurs for all volume fractions for $\omega \geq 28$ rad/s.

Plotting the average robot speed as a function of limb frequency (Fig. 2A) shows that the robot speed increases sublinearly as its legs rotate more rapidly. For fixed ϕ, \tilde{v}_s increases sublinearly with ω to a maximal average speed \tilde{v}_s^* at a critical limb frequency ω_c above which the robot swims ($\tilde{v}_s = 2$ cm/s). The solid lines and symbols are for $\phi = 0.580, 0.590, 0.600, 0.611, 0.616, 0.622, \text{and } 0.633$. The dashed lines are fits from a simplified model discussed in the text. (B and C) The dependence of ω_c and \tilde{v}_s^* on ϕ shows transitions at $\phi = 0.6$ (dashed lines).

Fig. 2. Average robot speed vs. limb frequency. (A) For a given volume fraction ϕ, \tilde{v}_s increases sublinearly with ω to a maximal average speed \tilde{v}_s^* at a critical limb frequency ω_c above which the robot swims ($\tilde{v}_s = 2$ cm/s). The solid lines and symbols are for $\phi = 0.580, 0.590, 0.600, 0.611, 0.616, 0.622, \text{and } 0.633$. The dashed lines are fits from a simplified model discussed in the text. (B and C) The dependence of ω_c and \tilde{v}_s^* on ϕ shows transitions at $\phi = 0.6$ (dashed lines).

The expression captures the sublinear increase in \tilde{v}_s with ω at fixed $k(\phi)$, the increase in speed at fixed ω as the material strengthens (increasing k with increasing ϕ), and the limit of zero rotary walking speed when ω is sufficiently large.

The expression for \tilde{v}_s is determined by the fit parameters k and Δt. The parameter k characterizing the penetration resistance increases monotonically with ϕ from 170 to 220 N/m and varies rapidly below $\phi = 0.6$ and less rapidly above. Its average value of ~ 200 N/m corresponds to a shear stress per unit depth of $\alpha \sim 470$ kN/m3 (using leg area $= wR$, where w is the leg width) which is in good agreement with penetration experiments we performed on poppy seeds that yield $\alpha = 300$ and 480 kN/m3 for $\phi = 0.580$ and 0.622, respectively, and is comparable with previous measurements of slow penetration into glass beads (31), where $\alpha = 250$ kN/m3. In contrast, Δt varies little with ϕ and has an average value of 0.4 s compared with the robot’s measured hard ground oscillation period of 0.2 s when supported on a single tripod. The differences in Δt can be understood as follows. In our model we assume the 2 tripods do not simultaneously contact the ground; however, in soft ground this is not the case, which consequently reduces the effective step length per period from 2ϕ to a lesser value. The fit value of Δt is sensitive to this variation;
Fig. 3. Robot speed is determined by step size which depends sensitively on c-leg penetration depth. (A) Schematic of a single robot leg during a step in granular media. After reaching penetration depth \(d\), the leg rotates about its center and propels the robot forward a step length \(s\). The solid shape denotes the initial stage of the rotational motion and the dashed shape indicates when the limb begins to withdraw from the material (end of forward body motion). (B) Step length vs. penetration depth (blue) with critical step length (green dashed horizontal) and critical penetration depth (green dashed vertical) indicating where the robot begins to encounter ground disturbed by the previous step. (C) Granular penetration force for \(k = 1.75, 2.00, 2.25, 2.50, 2.75 \times 10^5\) N/m (blue) and force required to initiate rotary walking for \(\phi = 0, 8, 16, 24, 32\) rad/s (red) vs. penetration depth using simplified walking model with \(\Delta t = 0.2\) s. The penetration depth at constant \(\phi\) is determined by the intersections of the corresponding blue line with the red lines. Beyond the critical depth (green dashed line) limbs encounter disturbed material and move to lower blue lines. (D) Step length as a function of \(\omega\) derived from \(2\pi s/2\phi\omega\) reveals the condition for the onset of swimming for \(\phi > 0.6\) as \(s/R = 1\). The solid lines and symbols are for \(\phi\) values of 0.580, 0.590, 0.600, 0.611, 0.616, 0.622, and 0.633.

Reducing the step size (and thus the speed) in the experimental data by just 13% decreases \(\Delta t\) to 0.2 s, whereas \(\phi\) is increased by \(<10\%\).

Our model indicates that for deep penetration, the walking step length is sensitive to penetration depth (e.g., Fig. 3B). As the walking step length goes to zero with increasing \(\omega\) or decreasing \(\phi\), the fraction of the ground contact time that the leg slips through the grains (swimming) goes to 1. Swimming in granular media differs from swimming in simple fluids because the friction dominated thrust and drag forces are largely rate independent at slower speeds (30, 32). When thrust exceeds drag and using constant acceleration kinematics, the robot advances a distance proportional to the net force divided by \(\omega^2\) per leg rotation, and, consequently, speed is proportional to \(\omega^{-1}\). This explains the weak dependence of \(\bar{v}_c\) on \(\omega\) in the swimming mode. The increase in robot speed with decreasing \(\omega\) is bounded by the condition that the robot speed in a reference frame at rest with respect to the ground cannot exceed the horizontal leg speed in a reference frame at rest with respect to the robot's center of mass. This condition ensures the existence of an eventual transition to a walking mode as \(\omega\) is decreased.

The transition from walking to swimming appears gradual for \(\phi \approx 0.6\) because the penetration depth increases slowly with \(\omega\) at small \(\omega\) (\(R\omega/\Delta t \ll g\)) and the \(\omega^{-2}\) contribution to the per-cycle displacement from swimming is relatively large (see, e.g., the data at \(\omega = 12\) rad/s in Fig. 3B). However, for \(\phi \approx 0.6\), the transition is abrupt. This sharp transition occurs because the step size is reduced sufficiently that the legs encounter material disturbed by the previous step; we hypothesize that the disturbed material has lower \(\phi\) and \(k\). At higher \(\phi\), the volume fraction of the disturbed ground is significantly less than the bulk, which increases penetration and consequently greatly reduces \(s\). This is not the case for the transition from walking to swimming at lower \(\phi\) (and low \(\omega\)) where the volume fraction of the disturbed material is largely unchanged relative to its initial value. For the robot to avoid disturbed ground, it must advance a distance \(R\) on each step, i.e., \(s \geq R\), or in terms of the penetration depth, \(d \leq (\sqrt{3}/2 + 1)R - h = 5.0\) cm (green dashed lines in Fig. 3B and C). The disturbed ground hypothesis is supported by calculations of the step length derived from the average velocity \(2s = 2\pi v_c/\omega\), which show a critical step length near \(s/R = 1\) at the walking/swimming transition (Fig. 3D) for \(\phi > 0.6\). The smallest value of \(s/R = 0.9\) evident in the figure can be understood by recognizing that for \(s\) slightly smaller than \(R\) the majority of the c-leg still encounters undisturbed material. Signatures of the walking/swimming transition are also evident in lateral views of the robot kinematics (see Movie S3, Movie S4, and Movie S5).

At higher \(\omega\) in the swimming mode, limbs move with sufficient speed to fling material out of their path and form a depression that reduces thrust because the limbs are not as deeply immersed on subsequent passes through the material. However, as limb speed increases further, thrust forces become rate dependent and increase because the inertia imparted to the displaced grains is proportional to \(\omega^2\). Between strokes, the excavated depression refills at a rate that depends on the difference between the local surface angle and the angle of repose (33), and the depression size. Investigating the competition between these different processes at high \(\omega\), and their consequences for locomotion could be relevant to understanding how to avoid becoming stranded or to free a stranded device.

Conclusions

Our study systematically investigates the performance of a legged robot on granular media, varying both properties of the
medium (volume fraction) and properties of the robot (limb frequency and gait). Our experiments reveal how precarious it can be to move on granular media: changes in ϕ of $<1\%$ result in either rapid motion or failure to move, and slight kinematic changes have a similar effect. A kinematic model captures the speed dependence of SandBot's performance on granular media as a function of ϕ and ω. The model reveals that the sublinear dependence of speed on ω and the rapid failure for sufficiently small ϕ and/or large ω are consequences of increasing limb penetration with decreasing ϕ and/or increasing ω, and changes to local ϕ due to penetration and removal of limbs. Although detailed studies of impact and penetration of simple rigid objects exist (30, 34), further advances in performance (including increases in efficiency) and design of limb morphology will require a more detailed understanding of the physics associated with penetration, drag, and crater formation and collapse, especially their dependence on ϕ. Better understanding of this physics can guide development of theory of interaction with complex media advanced enough to predict limb design (35) and control (36) strategies, similar to the well-developed models of aerial and aquatic craft. Analysis of physical models such as SandBot can also inform locomotion biology in understanding how animals appear to move effortlessly across a diversity of complex substrates (25, 37). Such devices will begin to have capabilities comparable with organisms; these devices will be used for more exploration of challenging terrestrial (e.g., rubble and disasters sites) and extraterrestrial (e.g., the Moon and Mars) environments.

Materials and Methods

Limb Kinematics. SandBot’s 6 motors are controlled by a clock signal to follow the same prescribed kinematic path during each rotation and, as shown in previous work on RHex, changes in these kinematics have substantial effects on robot locomotor performance (38). The controlling clock signal consists of a fast phase and a slow phase with respective angular frequencies. The fast phase corresponds to the swing phase, and the slow phase corresponds to the stance phase. A set of 3 gait parameters uniquely determines the clock signal configuration: θ_s, the angular span of the slow phase; θ_t, the leg-shaft angle of the center of the slow phase; and d_t, the duty cycle of the slow phase. Specifying the cycle average limb angular frequency ω fully determines the limb motion.

In pilot experiments, we tested 2 sets of clock signals: a hard ground clock signal (HGS) with $(\theta_s = 0.85$ rad, $\theta_t = 0.13$ rad, $d_t = 0.56$) which generates a fast bouncing gait (60 cm/s) on hard ground (17) but very slow (~2 cm/s) motion on granular media, and a soft ground clock signal (SGS) with $(\theta_s = 1.1$ rad, $\theta_t = 0.5$ rad, $d_t = 0.45$) which produces unstable motion on hard ground but regular motion on granular media. These experiments showed that the locomotor capacity of SandBot is sensitive to the clock signal. Careful observation of limb kinematics revealed that the HGCS fails on granular media because it lacks a steady stance phase of 2 tripods. In this study, we use SGS and explore robot performance as a function of ω and substrate volume fraction.

Integrated motor encoders record the position and current (and thus power and communication cables to follow the robot as it moves to minimize the drag from the cables). For each trial, we prepare the trackway with the desired volume fraction and place the robot on the prepared granular media at the far end of the trackway with both tripods in the same standing position. An LED on the robot synchronizes the video and robot motor encoder data. After each trial, MATLAB (MathWorks) is used to obtain landmark coordinates from the video frames and calculate ν_s. Three trials were run for each combination of (ω, ϕ) that was tested.

Detailed Discussion of Rotary Walking Locomotion Model. The model presented in the main body of the manuscript simplifies the underlying physics while capturing the essential features determining robot speed. Here, we describe a more complete model (which lacks a simple expression for ν_s) and compare its predictions to those of the simple model. The exact expression for the vertical acceleration component of the body when the limbs gain purchase is

$$ma_v = ma \sin \theta = ma \sqrt{2(1 + R^2/\ell^2 - 1/R)}$$

instead of the approximation $ma_v = ma$ used in the simple model. Using the exact expression, the vertical force necessary for walking still has the same peak value of $m(a + g)$ but decreases to mg when the leg is at its lowest point.

The second approximation we used in the simple model is that the grain force on the leg is kz. This expression is only strictly valid for a flat-bottomed vertically penetrating intruder (30). Because the leg is a circular arc, the leg-grain contact area and the vertical component of the grain force are functions of limb depth and leg-shaft angle. Generalizing kz to a local isotropic yield stress given by ν_s (12), the vertical force on the small segment of the limb is $F_z = \nu_s w R^2 \xi \cos \psi$, where w is the limb width and the angular position of the segment with respect to a vertical line passing through the ankle. The total vertical force of the leg acting on the terrain is $R_{\nu_s} \nu_s w R^2 \xi \cos \psi$. Substituting $\xi = R \cos(\phi - 1) + d$ and integrating gives $F_z \approx R_{\nu_s} \frac{\nu_s w R^2 \xi \cos \psi}{d(\phi - 1) + d}$, where $\theta = \phi + \psi = \cos^{-1}(\phi - 1) + d$. The vertical force on the center of the leg, Δz is the angular extent of the limb beyond $\phi = 0$ (for a semicircular limb).

Fig. 4A shows that the full model using realistic parameters shares the same essential physics as the simple model. For a given material strength (blue
curves), the penetration depth increases with increasing \(v \) (intersection of blue and red curves) until the step length is reduced below the critical value (vertical green dashed line). Fig. 4B presents fits to the experimental data of the average speed \(v_x \) vs. \(v \) for the full and simple models for \(v_x \leq v^* \) at each \(\phi \). The fits and fit parameters for the simple (\(\Delta t = 0.4 s, a = 470 kN/m^2 \)) and full (\(\Delta t = 0.2 s, a = 330 kN/m^2 \)) models are in good agreement when the step length is less than the critical value \(s = R \).

ACKNOWLEDGMENTS. We thank Daniel Cohen, Andrew Slatton, and Adam Kamor for helpful discussion. This work was supported by the Burroughs Wellcome Fund (D.I.G., C.L., and P.B.U.), the Army Research Laboratory (ARL) Micro Autonomous Systems and Technology (MAST) Collaborative Technology Alliance (CTA) under cooperative agreement number W911NF-08-2-0004 (D.I.G. and P.B.U.), and the National Science Foundation (H.K. and D.E.K.).